Short-Term Adverse Events and Antibody Response to the BNT162b2 SARS-CoV-2 Vaccine in 4156 Health Care Professionals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Serum Tests
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Adverse Events
3.3. Antibody Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.E.; Gargano, J.W.; Marin, M.; Wallace, M.; Curran, K.G.; Chamberland, M.; McClung, N.; Campos-Outcalt, D.; Morgan, R.L.; Mbaeyi, S.; et al. The Advisory Committee on Immunization Practices’ Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine—United States, December 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1922–1924. [Google Scholar] [CrossRef] [PubMed]
- Self, W.H.; Tenforde, M.W.; Rhoads, J.P.; Gaglani, M.; Ginde, A.A.; Douin, D.J.; Olson, S.M.; Talbot, H.K.; Casey, J.D.; Mohr, N.M.; et al. Comparative Effectiveness of Moderna, Pfizer-BioNTech, and Janssen (Johnson & Johnson) Vaccines in Preventing COVID-19 Hospitalizations Among Adults Without Immunocompromising Conditions—United States, March-August 2021. MMWR Morb. Mortal. Wkly. Rep. 2021, 70, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Spadaccini, M.; Canziani, L.; Aghemo, A.; Lleo, A.; Maselli, R.; Anderloni, A.; Carrara, S.; Fugazza, A.; Pellegatta, G.; Galtieri, P.A.; et al. What gastroenterologists should know about SARS-CoV 2 vaccine: World Endoscopy Organization perspective. United Eur. Gastroenterol. J. 2021, 9, 787–789. [Google Scholar] [CrossRef]
- Sahin, U.; Muik, A.; Derhovanessian, E.; Vogler, I.; Kranz, L.M.; Vormehr, M.; Baum, A.; Pascal, K.; Quandt, J.; Maurus, D.; et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020, 586, 594–599. [Google Scholar] [CrossRef]
- Menni, C.; Klaser, K.; May, A.; Polidori, L.; Capdevila, J.; Louca, P.; Sudre, C.H.; Nguyen, L.H.; Drew, D.A.; Merino, J.; et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: A prospective observational study. Lancet Infect. Dis. 2021, 21, 939–949. [Google Scholar] [CrossRef]
- Maeda, K.; Amano, M.; Uemura, Y.; Tsuchiya, K.; Matsushima, T.; Noda, K.; Shimizu, Y.; Fujiwara, A.; Takamatsu, Y.; Ichikawa, Y.; et al. Correlates of neutralizing/SARS-CoV-2-S1-binding antibody response with adverse effects and immune kinetics in BNT162b2-vaccinated individuals. Sci. Rep. 2021, 11, 22848. [Google Scholar] [CrossRef]
- Severe Covid, G.G.; Ellinghaus, D.; Degenhardt, F.; Bujanda, L.; Buti, M.; Albillos, A.; Invernizzi, P.; Fernandez, J.; Prati, D.; Baselli, G.; et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N. Engl. J. Med. 2020, 383, 1522–1534. [Google Scholar] [CrossRef]
- Bonelli, F.; Sarasini, A.; Zierold, C.; Calleri, M.; Bonetti, A.; Vismara, C.; Blocki, F.A.; Pallavicini, L.; Chinali, A.; Campisi, D.; et al. Clinical and Analytical Performance of an Automated Serological Test That Identifies S1/S2-Neutralizing IgG in COVID-19 Patients Semiquantitatively. J. Clin. Microbiol. 2020, 58, e01224-20. [Google Scholar] [CrossRef]
- Iguacel, I.; Maldonado, A.L.; Ruiz-Cabello, A.L.; Casaus, M.; Moreno, L.A.; Martinez-Jarreta, B. Association between COVID-19 Vaccine Side Effects and Body Mass Index in Spain. Vaccines 2021, 9, 1321. [Google Scholar] [CrossRef]
- Raw, R.K.; Rees, J.; Kelly, C.A.; Wroe, C.; Chadwick, D.R. Prior COVID-19 infection is associated with increased Adverse Events (AEs) after the first, but not the second, dose of the BNT162b2/Pfizer vaccine. Vaccine 2022, 40, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.J.; Moreira, E.D., Jr.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Perez Marc, G.; Polack, F.P.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months. N. Engl. J. Med. 2021, 385, 1761–1773. [Google Scholar] [CrossRef] [PubMed]
- Klein, N.P.; Lewis, N.; Goddard, K.; Fireman, B.; Zerbo, O.; Hanson, K.E.; Donahue, J.G.; Kharbanda, E.O.; Naleway, A.; Nelson, J.C.; et al. Surveillance for Adverse Events After COVID-19 mRNA Vaccination. JAMA 2021, 326, 1390–1399. [Google Scholar] [CrossRef]
- Salmeron Rios, S.; Cortes Zamora, E.B.; Avendano Cespedes, A.; Romero Rizos, L.; Sanchez-Jurado, P.M.; Sanchez-Nievas, G.; Mas Romero, M.; Tabernero Sahuquillo, M.T.; Blas Senalada, J.J.; Murillo Romero, A.; et al. Immunogenicity after 6 months of BNT162b2 vaccination in frail or disabled nursing home residents: The COVID-A Study. J. Am. Geriatr. Soc. 2021, 69, 1441–1447. [Google Scholar] [CrossRef]
- Ebinger, J.E.; Fert-Bober, J.; Printsev, I.; Wu, M.; Sun, N.; Prostko, J.C.; Frias, E.C.; Stewart, J.L.; Van Eyk, J.E.; Braun, J.G.; et al. Antibody responses to the BNT162b2 mRNA vaccine in individuals previously infected with SARS-CoV-2. Nat. Med. 2021, 27, 981–984. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, T.G.; Zisaki, S.; Mitroulis, I.; Konstantinidou, E.; Kontekaki, E.G.; Romanidou, G.; Karvelas, A.; Nanousi, I.; Lazidis, L.; Cassimos, D.; et al. Levels of Produced Antibodies after Vaccination with mRNA Vaccine; Effect of Previous Infection with SARS-CoV-2. J. Clin. Med. 2021, 10, 2842. [Google Scholar] [CrossRef]
- Goel, R.R.; Apostolidis, S.A.; Painter, M.M.; Mathew, D.; Pattekar, A.; Kuthuru, O.; Gouma, S.; Kuri-Cervantes, L.; Meng, W.; Adamski, S.; et al. Longitudinal Analysis Reveals Distinct Antibody and Memory B Cell Responses in SARS-CoV2 Naive and Recovered Individuals Following mRNA Vaccination. medRxiv 2021. [Google Scholar] [CrossRef]
- Prendecki, M.; Clarke, C.; Brown, J.; Cox, A.; Gleeson, S.; Guckian, M.; Randell, P.; Pria, A.D.; Lightstone, L.; Xu, X.N.; et al. Effect of previous SARS-CoV-2 infection on humoral and T-cell responses to single-dose BNT162b2 vaccine. Lancet 2021, 397, 1178–1181. [Google Scholar] [CrossRef]
- Naaber, P.; Tserel, L.; Kangro, K.; Sepp, E.; Jurjenson, V.; Adamson, A.; Haljasmagi, L.; Rumm, A.P.; Maruste, R.; Karner, J.; et al. Dynamics of antibody response to BNT162b2 vaccine after six months: A longitudinal prospective study. Lancet Reg. Health Eur. 2021, 10, 100208. [Google Scholar] [CrossRef]
- Coggins, S.A.A.; Laing, E.D.; Olsen, C.H.; Goguet, E.; Moser, M.; Jackson-Thompson, B.M.; Samuels, E.C.; Pollett, S.D.; Tribble, D.R.; Davies, J.; et al. Adverse effects and antibody titers in response to the BNT162b2 mRNA COVID-19 vaccine in a prospective study of healthcare workers. medRxiv 2021. [Google Scholar] [CrossRef]
- Mahallawi, W.H.; Mumena, W.A. Reactogenicity and Immunogenicity of the Pfizer and AstraZeneca COVID-19 Vaccines. Front. Immunol. 2021, 12, 794642. [Google Scholar] [CrossRef]
- Sanchez-de Prada, L.; Ortiz de Lejarazu-Leonardo, R.; Castrodeza-Sanz, J.; Tamayo-Gomez, E.; Eiros-Bouza, J.M.; Sanz-Munoz, I. Do Vaccines Need a Gender Perspective? Influenza Says Yes! Front. Immunol. 2021, 12, 715688. [Google Scholar] [CrossRef]
- Barda, N.; Dagan, N.; Ben-Shlomo, Y.; Kepten, E.; Waxman, J.; Ohana, R.; Hernan, M.A.; Lipsitch, M.; Kohane, I.; Netzer, D.; et al. Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. N. Engl. J. Med. 2021, 385, 1078–1090. [Google Scholar] [CrossRef] [PubMed]
- Ganga, K.; Solyar, A.Y.; Ganga, R. Massive Cervical Lymphadenopathy Post-COVID-19 Vaccination. Ear Nose Throat J. 2021. [Google Scholar] [CrossRef] [PubMed]
- Igual-Rouilleault, A.C.; Soriano, I.; Quan, P.L.; Fernandez-Montero, A.; Elizalde, A.; Pina, L. Unilateral axillary adenopathy induced by COVID-19 vaccine: US follow-up evaluation. Eur. Radiol. 2021, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.; Hazut Krauthammer, S.; Wolf, I.; Even-Sapir, E. A sigh of relief: Vaccine-associated hypermetabolic lymphadenopathy following the third COVID-19 vaccine dose is short in duration and uncommonly interferes with the interpretation of [(18)F]FDG PET-CT studies performed in oncologic patients. Eur. J. Nucl. Med. Mol. Imaging 2021, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Baek, D.W.; Hwang, S.; Kim, J.; Lee, J.M.; Cho, H.J.; Moon, J.H.; Hwang, N.; Jeong, J.Y.; Lee, S.W.; Sohn, S.K. Patients presenting high fever with lymphadenopathy after COVID-19 vaccination were diagnosed with hemophagocytic lymphohistiocytosis. Infect. Dis. 2021, 1–5. [Google Scholar] [CrossRef]
- Rahmani, A.; Dini, G.; Orsi, A.; Sticchi, L.; Bruzzone, B.; Montecucco, A.; Pellegrini, L.; Manca, A.; Domnich, A.; Battistini, A.; et al. Reactogenicity of BNT162b2 mRNA COVID-19 Vaccine in a Young Working Age Population: A Survey among Medical School Residents, within a Mass Vaccination Campaign, in a Regional Reference Teaching Hospital in Italy. Vaccines 2021, 9, 1269. [Google Scholar] [CrossRef]
- Mitsikostas, D.D.; Aravantinou-Fatorou, K.; Deligianni, C.; Kravvariti, E.; Korompoki, E.; Mylona, M.; Vryttia, P.; Papagiannopoulou, G.; Delicha, E.M.; Dellis, A.; et al. Nocebo-Prone Behavior Associated with SARS-CoV-2 Vaccine Hesitancy in Healthcare Workers. Vaccines 2021, 9, 1179. [Google Scholar] [CrossRef]
Events | Total | Dose 1 | Dose 2 |
---|---|---|---|
Number of events | 2211 | 1031 (46.6%) | 1180 (53.4%) |
Number of symptoms | 3 (2–6) | 2 (1–4) | 5 (3–7) |
Duration of symptoms | 3 (1–7) | 3 (1–3) | 3 (1–7) |
≤1 day | 733 (33.2%) | 372 (36.1%) | 361 (30.6%) |
≤3 days | 999 (45.2%) | 476 (46.2%) | 523 (44.3%) |
≤7 days | 350 (15.8%) | 126 (12.2%) | 224 (19.0%) |
≤14 days | 92 (4.1%) | 37 (3.6%) | 55 (4.7%) |
≤21 days | 37 (1.7%) | 20 (1.9%) | 17 (1.4%) |
Emergency department access | 8 (0.36%) | 3 (0.29%) | 5 (0.42%) |
Any drug taken for adverse events | 971 (43.9%) | 232 (22.5%) | 739 (62.6%) |
- antipyretics | 587 (98.2%) | 165 (94.3%) | 422 (99.8%) |
- other drugs | 38 (6.4%) | 23 (13.1%) | 15 (3.6%) |
Univariable Analysis | Multivariate Analysis (n = 6111) | |||
---|---|---|---|---|
Odds Ratio (95% Confidence Interval) | p Value | Odds Ratio (95% Confidence Interval) | p Value | |
Female gender | 1.98 (1.77–2.21) | <0.001 | 1.95 (1.74–2.19) | <0.001 |
Age (years) | 0.98 (0.98–0.99) | <0.001 | 0.98 (0.98–0.99) | <0.001 |
BMI | 0.95 (0.93–0.97) | <0.001 | ||
Blood group (vs. O) | ||||
- A | −0.99 (0.76–1.30) | −0.956 | ||
- B | −0.80 (0.53–1.24) | −0.323 | ||
- AB | −1.13 (0.64–2.02) | −0.662 | ||
Rh+ | 0.79 (0.57–1.1) | 0.167 | ||
2nd vaccine dose (vs. 1st) | 1.37 (1.24–1.52) | <0.001 | 1.36 (1.22–1.51) | <0.001 |
Previous COVID-19 | 1.51 (1.30–1.74) | <0.001 | 1.41 (1.22–1.65) | <0.001 |
Median IgG (IQR) | p for Interaction | ||
---|---|---|---|
Total | (n = 2765) | 856 (294–1470) | |
Gender | Male (n = 990) Female (n = 1775) | 432.5 (283–1370) 963 (302–1520) | 0.0006 |
Age (years) | ≤37 (n = 1452) >37 (n = 1313) | 1030 (324–1540) 465 (268–1350) | <0.0001 |
Blood groups | O (n = 223) A (n = 188) B (n = 46) AB (n = 23) | 956 (306–1430) 1080 (362–1635) 918 (306–1370) 1250 (371–1710) | |
Rh factor | Positive (n = 402) Negative (n = 78) | 1040 (347–1430) 996 (265–1630) | |
Previous COVID-19 | Yes (n = 412) No (n = 2353) | 2285 (1195–3750) 421 (286–1300) | <0.0001 |
BMI | ≤23.2 (n = 856) >23.2 (n = 811) | 937 (312–1460) 719 (288–1460) | 0.0540 |
Any adverse event | Yes (n = 1143) No (n = 1622) | 1110 (345–1630) 386 (261–1350) | <0.0001 |
Muscle Pain | Yes (n = 640) No (n = 2125) | 1200 (368–1825) 495 (278–1370) | <0.0001 |
Fever | Yes (n = 441) No (n = 2324) | 1230 (374–1830) 637 (283–1390) | <0.0001 |
Lymphadenopathy | Yes (n = 197) No (n = 2568) | 1300 (383–1880) 793 (289–1430) | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azzolini, E.; Canziani, L.M.; Voza, A.; Desai, A.; Pepys, J.; De Santis, M.; Ceribelli, A.; Pozzi, C.; Turato, M.; Badalamenti, S.; et al. Short-Term Adverse Events and Antibody Response to the BNT162b2 SARS-CoV-2 Vaccine in 4156 Health Care Professionals. Vaccines 2022, 10, 439. https://doi.org/10.3390/vaccines10030439
Azzolini E, Canziani LM, Voza A, Desai A, Pepys J, De Santis M, Ceribelli A, Pozzi C, Turato M, Badalamenti S, et al. Short-Term Adverse Events and Antibody Response to the BNT162b2 SARS-CoV-2 Vaccine in 4156 Health Care Professionals. Vaccines. 2022; 10(3):439. https://doi.org/10.3390/vaccines10030439
Chicago/Turabian StyleAzzolini, Elena, Lorenzo Maria Canziani, Antonio Voza, Antonio Desai, Jack Pepys, Maria De Santis, Angela Ceribelli, Chiara Pozzi, Massimo Turato, Salvatore Badalamenti, and et al. 2022. "Short-Term Adverse Events and Antibody Response to the BNT162b2 SARS-CoV-2 Vaccine in 4156 Health Care Professionals" Vaccines 10, no. 3: 439. https://doi.org/10.3390/vaccines10030439