Evaluation of Simple Lateral Flow Immunoassays for Detection of SARS-CoV-2 Neutralizing Antibodies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Antibody Assays
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Khoury, D.S.; Wheatley, A.K.; Ramuta, M.D.; Reynaldi, A.; Cromer, D.; Subbarao, K.; O’Connor, D.H.; Kent, S.J.; Davenport, M.P. Measuring immunity to SARS-CoV-2 infection: Comparing assays and animal models. Nat. Rev. Immunol. 2020, 20, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Tong, C.; Ha, X.; Zeng, C.; Chen, X.; Xu, F.; Yang, J.; Du, H.; Chen, Y.; Cai, J.; et al. Development and clinical evaluation of a rapid antibody lateral flow assay for the diagnosis of SARS-CoV-2 infection. BMC Infect. Dis. 2021, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fulford, T.S.; Van, H.; Gherardin, N.A.; Zheng, S.; Ciula, M.; Drummer, H.E.; Redmond, S.; Tan, H.-X.; Boo, I.; Center, R.J.; et al. A point-of-care lateral flow assay for neutralising antibodies against SARS-CoV-2. eBioMedicine 2021, 74, 103729. [Google Scholar] [CrossRef]
- Yun, S.; Ryu, J.H.; Jang, J.H.; Bae, H.; Yoo, S.-H.; Choi, A.-R.; Jo, S.J.; Lim, J.; Lee, J.; Ryu, H.; et al. Comparison of SARS-CoV-2 Antibody Responses and Seroconversion in COVID-19 Patients Using Twelve Commercial Immunoassays. Ann. Lab. Med. 2021, 41, 577–587. [Google Scholar] [CrossRef]
- Bond, K.; Nicholson, S.; Lim, S.M.; Karapanagiotidis, T.; Williams, E.; Johnson, D.; Hoang, T.; Sia, C.; Purcell, D.; Mordant, F.; et al. Evaluation of Serological Tests for SARS-CoV-2: Implications for Serology Testing in a Low-Prevalence Setting. J. Infect. Dis. 2020, 222, 1280–1288. [Google Scholar] [CrossRef]
- Bourgonje, A.R.; Abdulle, A.E.; Timens, W.; Hillebrands, J.L.; Navis, G.J.; Gordijn, S.J.; Bolling, M.C.; Dijkstra, G.; Voors, A.A.; Osterhaus, A.D.; et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV -2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol. 2020, 251, 228–248. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280 e8. [Google Scholar] [CrossRef]
- Tikellis, C.; Thomas, M.C. Angiotensin-Converting Enzyme 2 (ACE2) Is a Key Modulator of the Renin Angiotensin System in Health and Disease. Int. J. Pept. 2012, 2012, 256294. [Google Scholar] [CrossRef]
- Mittal, A.; Manjunath, K.; Ranjan, R.K.; Kaushik, S.; Kumar, S.; Verma, V. COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLoS Pathog 2020, 16, e1008762. [Google Scholar] [CrossRef]
- Piccoli, L.; Park, Y.-J.; Tortorici, M.A.; Czudnochowski, N.; Walls, A.C.; Beltramello, M.; Silacci-Fregni, C.; Pinto, D.; Rosen, L.E.; Bowen, J.E.; et al. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell 2020, 183, 1024–1042.e21. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Zhang, N.; Richardson, S.A.; Wu, J.V. Rapid lateral flow tests for the detection of SARS-CoV-2 neutralizing antibodies. Expert Rev. Mol. Diagn. 2021, 21, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Lake, D.F.; Roeder, A.J.; Kaleta, E.; Jasbi, P.; Pfeffer, K.; Koelbela, C.; Periasamy, C.K.S.; Kuzmina, N.; Bukreyev, A.; Grys, T.E.; et al. Development of a rapid point-of-care test that measures neutralizing antibodies to SARS-CoV-2. J. Clin. Virol. 2021, 145, 105024. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.; Frew, E.; Cooper, J.; Humphrey, J.; Holden, M.; Mand, A.; Li, J.; Anderson, S.; Bi, M.; Hatler, J.; et al. Use of Lateral Flow Immunoassay to Characterize SARS-CoV-2 RBD-Specific Antibodies and Their Ability to React with the UK, SA and BR P.1 Variant RBDs. Diagnostics 2021, 11, 1190. [Google Scholar] [CrossRef]
- Rockstroh, A.; Wolf, J.; Fertey, J.; Kalbitz, S.; Schroth, S.; Lübbert, C.; Ulbert, S.; Borte, S. Correlation of humoral immune responses to different SARS-CoV-2 antigens with virus neutralizing antibodies and symptomatic severity in a German COVID-19 cohort. Emerg. Microbes Infect. 2021, 10, 774–781. [Google Scholar] [CrossRef]
- Mahmoudinobar, F.; Britton, D.; Montclare, J.K. Protein-based lateral flow assays for COVID-19 detection. Protein Eng. Des. Sel. 2021, 34, gzab010. [Google Scholar] [CrossRef]
- Diani, E.; Piccaluga, P.P.; Lotti, V.; Di Clemente, A.; Ligozzi, M.; De Nardo, P.; Lambertenghi, L.; Pizzolo, F.; Friso, S.; Cascio, G.L.; et al. Assessment of SARS-CoV-2 IgG and IgM antibody detection with a lateral flow immunoassay test. Heliyon 2021, 7, e08192. [Google Scholar] [CrossRef]
- Cann, A.H.; Clarke, C.L.; Brown, J.C.; Thomson, T.; Prendecki, M.; Moshe, M.; Badhan, A.; Elliott, P.; Darzi, A.; Riley, S.; et al. SARS-CoV-2 Antibody Lateral Flow Assay for antibody prevalence studies following vaccine roll out: A Diagnostic Accuracy Study. medRxiv 2021. preprint. [Google Scholar] [CrossRef]
- RECOVERY Collaborative Group; Horby, P.W.; Mafham, M.; Peto, L.; Campbell, M.; Pessoa-Amorim, G.; Spata, E.; Staplin, N.; Emberson, J.R.; Prudon, B.; et al. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. medRXiv 2021. preprint. [Google Scholar] [CrossRef]
- Wang, Q.; Feng, L.; Zhang, H.; Gao, J.; Mao, C.; Landesman-Bollag, E.; Mostoslavsky, G.; Lunderberg, J.M.; Zheng, W.; Hao, S.; et al. Longitudinal waning of mRNA vaccine-induced neutralizing antibodies against SARS-CoV-2 detected by an LFIA rapid test. Antib. Ther. 2022, 15, 55–62. [Google Scholar] [CrossRef]
- Jung, J.; Sung, H.; Kim, S.H. Covid-19 Breakthrough Infections in Vaccinated Health Care Workers. N. Engl. J. Med. 2021, 385, 1629–1631. [Google Scholar] [CrossRef] [PubMed]
- Ju, B.; Zhang, Q.; Ge, J.; Wang, R.; Sun, J.; Ge, X.; Yu, J.; Shan, S.; Zhou, B.; Song, S.; et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 2020, 584, 115–119. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, F.; Shen, C.; Peng, W.; Li, D.; Zhao, C.; Li, Z.; Li, S.; Bi, Y.; Yang, Y.; et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science 2020, 368, 1274–1278. [Google Scholar] [CrossRef] [PubMed]
Test | Baseline (V1) | κ | V2 | κ | V3 | κ | V4 * | κ |
---|---|---|---|---|---|---|---|---|
IgG anti-SARS-CoV-2 NP | 0.65 (0.22–1.00) | n/a | n/a | 0.38 (0.00–0.91) | ||||
Sensitivity% (CI95%) | - | - | - | - | ||||
Specificity% (CI95%) | 99.1 (94.1–99.9) | n/a | n/a | 97.6 (85.6–99.9) | ||||
LT-NP | ||||||||
Sensitivity% (CI95%) | - | - | - | - | ||||
Specificity% (CI95%) | 99.1 (94.1–99.9) | 98.1 (92.6–99.7) | 98.1 (92.6–99.7) | 100 (89.6–100) | ||||
IgG anti-SARS-CoV-2 S1 | 0.79 (0.41–1.00) | 0.79 (0.41–1.00) | 1.00 (1.00–1.00) | 1.00 (1.00–1.00) | ||||
Sensitivity% (CI95%) | - | 98.1 (92.8–99.7) | 100 (95.6–100) | 100 (90.0–100) | ||||
Specificity% (CI95%) | 100 (95.6–100) | - | - | - | ||||
LT-S1 | ||||||||
Sensitivity% (CI95%) | - | 97.2 (91.4–99.3) | 100 (95.6–100) | 100 (90.0–100) | ||||
Specificity% (CI95%) | 99.0 (94.1-99.9) | - | - | - | ||||
SARS-CoV-2 FRNT (90%) | 1.00 (1.00–1.00) | 0.49 (0.33–0.66) | 1.00 (1.00–1.00) | 0.03 (0.00–0.17) | ||||
Sensitivity% (CI95%) | - | 56.1 (46.2–65.5) | 100 (95.6–100) | 95.5 (83.3–99.2) | ||||
Specificity% (CI95%) | 100 (95.6–100) | - | - | - | ||||
LT-nRBD | ||||||||
Sensitivity% (CI95%) | - | 53.3 (43.4–62.9) | 100 (95.6–100) | 25.0 (13.7–40.6) | ||||
Specificity% (CI95%) | 100 (95.6–100) | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nickel, O.; Rockstroh, A.; Borte, S.; Wolf, J. Evaluation of Simple Lateral Flow Immunoassays for Detection of SARS-CoV-2 Neutralizing Antibodies. Vaccines 2022, 10, 347. https://doi.org/10.3390/vaccines10030347
Nickel O, Rockstroh A, Borte S, Wolf J. Evaluation of Simple Lateral Flow Immunoassays for Detection of SARS-CoV-2 Neutralizing Antibodies. Vaccines. 2022; 10(3):347. https://doi.org/10.3390/vaccines10030347
Chicago/Turabian StyleNickel, Olaf, Alexandra Rockstroh, Stephan Borte, and Johannes Wolf. 2022. "Evaluation of Simple Lateral Flow Immunoassays for Detection of SARS-CoV-2 Neutralizing Antibodies" Vaccines 10, no. 3: 347. https://doi.org/10.3390/vaccines10030347
APA StyleNickel, O., Rockstroh, A., Borte, S., & Wolf, J. (2022). Evaluation of Simple Lateral Flow Immunoassays for Detection of SARS-CoV-2 Neutralizing Antibodies. Vaccines, 10(3), 347. https://doi.org/10.3390/vaccines10030347