How do Vaccinators Experience the Pandemic? Lifestyle Behaviors in a Sample of Italian Public Health Workers during the COVID-19 Era
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Setting
2.2. Questionnaire
2.2.1. Personal Information
2.2.2. Self-Reported Current Behaviors
2.2.3. Self-Reported Current Behaviors Changes during the Pandemic
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 10 December 2021).
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease (COVID-19) Dashboard. Italy. Available online: https://covid19.who.int/region/euro/country/it (accessed on 12 December 2021).
- Istituto Superiore di Sanità. Epidemia COVID-19. Aggiornamento Nazionale. Available online: https://www.epicentro.iss.it/coronavirus/sars-cov-2-dashboard (accessed on 12 December 2021).
- Presidency of the Italian Council of Ministries. Decreto del Presidente del Consiglio dei Ministri 13 Ottobre 2020. Ulteriori Disposizioni Attuative del Decreto-Legge 25 Marzo 2020, n. 19, Convertito, con Modificazioni, dalla Legge 25 Maggio 2020, n. 35, Recante «Misure Urgenti per Fronteggiare L’emergenza Epidemiologica da COVID-19», e del Decreto-Legge 16 Maggio 2020, n. 33, Convertito, con Modificazioni, dalla Legge 14 Luglio 2020, n. 74, Recante «Ulteriori Misure Urgenti per Fronteggiare L’emergenza Epidemiologica da COVID-19». (20A05563) (GU Serie Generale n.253 del 13-10-2020). Available online: https://www.gazzettaufficiale.it/eli/id/2020/10/13/20A05563/sg (accessed on 12 December 2021).
- Napoli, C.; Riccardo, F.; Declich, S.; Dente, M.G.; Pompa, M.G.; Rizzo, C.; Rota, M.C.; Bella, A.; National Working Group. An early warning system based on syndromic surveillance to detect potential health emergencies among migrants: Results of a two-year experience in Italy. Int. J. Environ. Res. Public Health 2014, 11, 8529–8541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gola, M.; Caggiano, G.; de Giglio, O.; Napoli, C.; Diella, G.; Carlucci, M.; Carpagnano, L.F.; D’Alessandro, D.; Joppolo, C.M.; Capolongo, S.; et al. SARS-CoV-2 indoor contamination: Considerations on anti-COVID-19 management of ventilation systems, and finishing materials in healthcare facilities. Ann. Ig. 2021, 33, 381–392. [Google Scholar] [PubMed]
- Caggiano, G.; Napoli, C.; Coretti, C.; Lovero, G.; Scarafile, G.; de Giglio, O.; Montagna, M.T. Mold contamination in a controlled hospital environment: A 3-year surveillance in southern Italy. BMC Infect. Dis. 2014, 14, 595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonaccio, M.; Costanzo, S.; Bracone, F.; Gialluisi, A.; Di Castelnuovo, A.; Ruggiero, E.; Esposito, S.; Olivieri, M.; Persichillo, M.; Cerletti, C.; et al. Moli-LOCK Study Investigators. Psychological distress resulting from the COVID-19 confinement is associated with unhealthy dietary changes in two Italian population-based cohorts. Eur. J. Nutr. 2021, 1–15. [Google Scholar] [CrossRef]
- Catucci, A.; Scognamiglio, U.; Rossi, L. Lifestyle changes related to eating habits, physical activity, and weight status during COVID-19 quarantine in Italy and some European countries. Front. Nutr. 2021, 8, 718877. [Google Scholar] [CrossRef]
- Mansueto, G.; Lopes, F.L.; Grassi, L.; Cosci, F. Impact of COVID-19 outbreak on Italian healthcare workers versus general population: Results from an online survey. Clin. Psychol. Psychother. 2021, 28, 1334–1345. [Google Scholar] [CrossRef]
- De Sio, S.; La Torre, G.; Buomprisco, G.; Lapteva, E.; Perri, R.; Corbosiero, P.; Ferraro, P.; GiovannettI, A.; Greco, E.; Cedrone, F. Consequences of COVID19-pandemic lockdown on Italian occupational physicians’ psychosocial health. PLoS ONE 2021, 16, e0243194. [Google Scholar] [CrossRef]
- Lasalvia, A.; Bodini, L.; Amaddeo, F.; Porru, S.; Carta, A.; Poli, R.; Bonetto, C. The Sustained Psychological Impact of the COVID-19 Pandemic on Health Care Workers One Year after the Outbreak-A Repeated Cross-Sectional Survey in a Tertiary Hospital of North-East Italy. Int. J. Environ. Res. Public Health 2021, 18, 13374. [Google Scholar] [CrossRef]
- Magnavita, N.; Soave, P.M.; Antonelli, M. A One-Year Prospective Study of Work-Related Mental Health in the Intensivists of a COVID-19 Hub Hospital. Int. J. Environ. Res. Public Health 2021, 18, 9888. [Google Scholar] [CrossRef]
- Di Mattei, V.E.; Perego, G.; Milano, F.; Mazzetti, M.; Taranto, P.; di Pierro, R.; de Panfilis, C.; Madeddu, F.; Preti, E. The “Healthcare Workers’ Wellbeing (Benessere Operatori)” Project: A Picture of the Mental Health Conditions of Italian Healthcare Workers during the First Wave of the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 5267. [Google Scholar] [CrossRef] [PubMed]
- Tebar, W.R.; Christofaro, D.; Diniz, T.A.; Lofrano-Prado, M.C.; Botero, J.P.; Correia, M.A.; Cucato, G.G.; Ritti-Dias, R.M.; do Prado, W.L. Increased screen time is associated with alcohol desire and sweetened foods consumption during the COVID-19 pandemic. Front. Nutr. 2021, 8, 630586. [Google Scholar] [CrossRef] [PubMed]
- Colley, R.C.; Bushnik, T.; Langlois, K. Exercise and screen time during the COVID-19 pandemic. Health Rep. 2020, 31, 3–11. [Google Scholar] [PubMed]
- Gallè, F.; Sabella, E.A.; Ferracuti, S.; de Giglio, O.; Caggiano, G.; Protano, C.; Valeriani, F.; Parisi, E.A.; Valerio, G.; Liguori, G.; et al. Sedentary behaviors and physical activity of Italian undergraduate students during lockdown at the time of CoViD-19 pandemic. Int. J. Environ. Res. Public Health 2020, 17, 6171. [Google Scholar] [CrossRef]
- World Health Organization. Body Mass Index—BMI. Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 30 November 2021).
- Nunnally, J.C. Psychometric Theory, 2nd ed.; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Taber, K.S. The use of Cronbach’s alpha when developing and reporting research instruments in science education. Res. Sci. Ed. 2018, 48, 1273–1296. [Google Scholar] [CrossRef]
- Do, B.N.; Tran, T.V.; Phan, D.T.; Nguyen, H.C.; Nguyen, T.; Nguyen, H.C.; Ha, T.H.; Dao, H.K.; Trinh, M.V.; Do, T.V.; et al. Health literacy, ehealth literacy, adherence to infection prevention and control procedures, lifestyle changes, and suspected COVID-19 symptoms among health care workers during lockdown: Online survey. J. Med. Internet Res. 2020, 22, e22894. [Google Scholar] [CrossRef]
- Istituto Italiano di Statistica. Aspetti della Vita Quotidiana. Indagine 2020. Available online: http://dati.istat.it/Index.aspx?QueryId=15512 (accessed on 21 December 2021).
- Kua, Z.; Hamzah, F.; Tan, P.T.; Ong, L.J.; Tan, B.; Huang, Z. Physical activity levels and mental health burden of healthcare workers during COVID-19 lockdown. Stress Health 2021, 38, 171–179. [Google Scholar] [CrossRef]
- Gallè, F.; Sabella, E.A.; Roma, P.; Ferracuti, S.; Da Molin, G.; Diella, G.; Montagna, M.T.; Orsi, G.B.; Liguori, G.; Napoli, C. Knowledge and lifestyle behaviors related to COVID-19 pandemic in people over 65 years old from southern Italy. Int. J. Environ. Res. Public Health 2021, 18, 10872. [Google Scholar] [CrossRef]
- Vanderbruggen, N.; Matthys, F.; van Laere, S.; Zeeuws, D.; Santermans, L.; van den Ameele, S.; Crunelle, C.L. Self-reported alcohol, tobacco, and cannabis use during COVID-19 lockdown measures: Results from a web-based survey. Eur. Addict. Res. 2020, 26, 309–315. [Google Scholar] [CrossRef]
- Watanabe, M.; Balena, A.; Tuccinardi, D.; Tozzi, R.; Risi, R.; Masi, D.; Caputi, A.; Rossetti, R.; Spoltore, M.E.; Filippi, V.; et al. Central obesity, smoking habit, and hypertension are associated with lower antibody titres in response to COVID-19 mRNA vaccine. Diabetes Metab. Res. Rev. 2021, 38, e3465. [Google Scholar] [CrossRef]
- Qiu, F.; Liang, C.L.; Liu, H.; Zeng, Y.Q.; Hou, S.; Huang, S.; Lai, X.; Dai, Z. Impacts of cigarette smoking on immune responsiveness: Up and down or upside down? Oncotarget 2017, 8, 268–284. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Rebholz, C.M.; Hegde, S.; LaFiura, C.; Raghavan, M.; Lloyd, J.F.; Cheng, S.; Seidelmann, S.B. Plant-based diets, pescatarian diets and COVID-19 severity: A population-based case-control study in six countries. BMJ Nutr. Prev. Health 2021, 4, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Nutrition, immunity and COVID-19. BMJ Nutr. Prev. Health 2020, 3, 74–92. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, A.M.; Thompson, S.V.; Edwards, C.G.; Musaad, S.M.A.; Khan, N.A.; Holscher, H.D. Associations among diet, the gastrointestinal microbiota, and negative emotional states in adults. Nutr. Neurosci. 2020, 23, 983–992. [Google Scholar] [CrossRef]
- Rajkumar, R.P. Harnessing the neurobiology of resilience to protect the mental well-being of healthcare workers during the COVID-19 pandemic. Front. Psychol. 2021, 12, 621853. [Google Scholar] [CrossRef]
- Woods, J.A.; Hutchinson, N.T.; Powers, S.K.; Roberts, W.O.; Gomez-Cabrera, M.C.; Radak, Z.; Ji, L.L.; Boros, A.; Boldogh, I.; Leeuwenburgh, C.; et al. The COVID-19 pandemic and physical activity. Sports Med. Health Sci. 2020, 2, 55–64. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Willumsen, J.F.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Brit. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Montagna, M.T.; de Giglio, O.; Napoli, C.; Fasano, F.; Diella, G.; Donnoli, R.; Caggiano, G.; Tafuri, S.; Lopalco, P.L.; Agodi, A.; et al. Adherence to vaccination policy among public health professionals: Results of a national survey in Italy. Vaccines 2020, 8, 379. [Google Scholar] [CrossRef]
- Werneck, A.O.; Silva, D.R.; Malta, D.C.; Souza-Júnior, P.; Azevedo, L.O.; Barros, M.; Szwarcwald, C.L. Changes in the clustering of unhealthy movement behaviors during the COVID-19 quarantine and the association with mental health indicators among Brazilian adults. Transl. Behav. Med. 2021, 11, 323–331. [Google Scholar] [CrossRef]
- Christofaro, D.; Werneck, A.O.; Tebar, W.R.; Lofrano-Prado, M.C.; Botero, J.P.; Cucato, G.G.; Malik, N.; Correia, M.A.; Ritti-Dias, R.M.; Prado, W.L. Physical activity is associated with improved eating habits during the COVID-19 pandemic. Front. Psychol. 2021, 12, 664568. [Google Scholar] [CrossRef] [PubMed]
- Breiner, C.E.; Miller, M.L.; Hormes, J.M. Changes in eating and exercise behaviors during the COVID-19 pandemic in a community sample: A retrospective report. Eat. Behav. 2021, 42, 101539. [Google Scholar] [CrossRef] [PubMed]
- Mata, J.; Wenz, A.; Rettig, T.; Reifenscheid, M.; Möhring, K.; Krieger, U.; Friedel, S.; Fikel, M.; Cornesse, C.; Blom, A.G.; et al. Health behaviors and mental health during the COVID-19 pandemic: A longitudinal population-based survey in Germany. Soc. Sci. Med. 2021, 287, 114333. [Google Scholar] [CrossRef] [PubMed]
- Balletto, G.; Borruso, G.; Milesi, A.; Ladu, M.; Castiglia, P.; Dettori, M.; Arghittu, A. Sport-City Planning. A Proposal for an Index to Support Decision-Making Practice: Principles and Strategies. In Computational Science and Its Applications—ICCSA 2021; ICCSA 2021, Lecture Notes in Computer Science; Gervasi, O., Ed.; Springer: Cham, Switzerland, 2021; Volume 12952. [Google Scholar] [CrossRef]
Variable | Participants |
---|---|
Gender n (%) | |
men | 365 (36.5) |
women | 635 (63.5) |
Age (years) mean ± SD (range) | 40 ± 13.1 (23–79) |
Work institution n (%) | |
research | 581 (58.1) |
healthcare | 419 (41.9) |
Living conditions | |
n (%) | |
alone | 202 (20.2) |
with parents | 198 (19.8) |
with friends/colleagues | 104 (10.4) |
with partner | 210 (21) |
with parents and underage children | 169 (16.9) |
with parents and adult children | 117 (11.7) |
Lifestyle Variable | Whole Sample n = 1000 n (%) | Men n = 365 | Women n = 635 | p-Value |
---|---|---|---|---|
BMI category | <0.001 | |||
underweight | 64 (6.4) | 1 (0.3) | 63 (9.9) | |
normal weight | 665 (66.5) | 214 (58.6) | 451 (71) | |
overweight | 216 (21.6) | 126 (34.5) | 90 (14.2) | |
obese | 55 (5.5) | 24 (6.6) | 31 (4.9) | |
Smoking habit | 0.027 | |||
no | 819 (81.9) | 286 (78.4) | 533 (84) | |
yes | 181 (18.1) | 79 (21.6) | 102 (16) | |
Weekly days of sweet food consumption | 0.955 | |||
0 | 27 (2.7) | 10 (2.7) | 17 (2.7) | |
1 | 97 (9.7) | 37 (10.1) | 60 (9.4) | |
2 | 158 (15.8) | 55 (15.1) | 102 (16.1) | |
3 | 145 (14.5) | 48 (13.2) | 97 (15.3) | |
4 | 97 (9.7) | 33 (9) | 64 (10.1) | |
5 | 112 (11.2) | 43 (11.8) | 69 (10.9) | |
6 | 64 (6.4) | 23 (6.3) | 41 (6.4) | |
7 | 300 (30) | 116 (31.8) | 185 (29.1) | |
Physical activity engagement | 0.001 | |||
no | 346 (34.6) | 105 (28.8) | 241 (38) | |
walking/cycling for commuting | 215 (21.5) | 97 (26.6) | 118 (18.6) | |
walking/cycling for leisure | 60 (6) | 28 (7.7) | 32 (5) | |
exercise/sport outdoors | 87 (8.7) | 38 (10.4) | 49 (7.7) | |
exercise/sport in indoor facilities | 220 (22) | 78 (21.4) | 142 (22.4) | |
exercise/sport at home | 72 (7.2) | 19 (5.2) | 53 (8.3) | |
Time spent watching TV hours/day | 0.111 | |||
<1 | 407 (40.7) | 143 (39.2) | 264 (41.6) | |
1 | 258 (25.8) | 99 (27.1) | 159 (25) | |
2 | 208 (20.8) | 78 (21.4) | 130 (20.5) | |
3 | 89 (8.9) | 25 (6.8) | 64 (10.1) | |
4 | 22 (2.2) | 10 (2.7) | 12 (1.9) | |
≥5 | 16 (1.6) | 10 (2.7) | 6 (0.9) | |
Time spent using smartphone hours/day | 0.734 | |||
<1 | 61 (6.1) | 26 (7.1) | 35 (5.5) | |
1 | 203 (20.3) | 77 (21.1) | 126 (19.8) | |
2 | 233 (23.3) | 87 (23.8) | 146 (23) | |
3 | 215 (21.5) | 76 (20.8) | 139 (21.9) | |
4 | 139 (13.9) | 44 (12.1) | 95 (15) | |
≥5 | 149 (14.9) | 55 (15.1) | 94 (14.8) | |
Time spent using tablet/PC hours/day | 0.004 | |||
<1 | 63 (6.3) | 22 (6) | 41 (6.5) | |
1 | 90 (9) | 42 (11.6) | 48 (7.5) | |
2 | 128 (12.8) | 50 (13.7) | 78 (12.3) | |
3 | 124 (12.4) | 49 (13.4) | 75 (11.8) | |
4 | 120 (12) | 56 (15.3) | 64 (10.1) | |
≥5 | 475 (47.5) | 146 (40) | 329 (51.8) | |
Total screen time hours/day | 0.078 | |||
<1 | 3 (0.3) | 2 (0.5) | 1 (0.2) | |
1 | 7 (0.7) | 0 (0) | 7 (1.1) | |
2 | 33 (3.3) | 14 (3.8) | 19 (3) | |
3 | 53 (5.3) | 25 (6.8) | 28 (4.4) | |
4 | 73 (7.3) | 28 (7.7) | 45 (7.1) | |
≥5 | 831 (83.1) | 296 (81.1) | 535 (84.2) | |
Sleep time hours/night | 0.073 | |||
≤5 | 113 (11.3) | 41 (11.2) | 72 (11.3) | |
6 | 288 (28.8) | 117 (32.1) | 171 (26.9) | |
7 | 351 (35.1) | 118 (32.3) | 233 (36.7) | |
8 | 221 (22.1) | 81 (22.2) | 140 (22.1) | |
≥9 | 27 (2.7) | 8 (2.2) | 19 (3) | |
Doses of COVID-19 vaccine | 0.005 | |||
0 | 5 (0.5) | 0 (0) | 5 (0.8) | |
1 | 23 (2.3) | 9 (2.5) | 14 (2.2) | |
2 | 715 (71.5) | 241 (66) | 474 (74.6) | |
3 | 257 (25.7) | 115 (31.5) | 142 (22.4) |
Lifestyle Variable | Whole Sample n = 1000 n (%) | Men n = 365 n (%) | Women n = 635 n (%) | p-Value |
---|---|---|---|---|
Work activity | ||||
no change | 476 (47.6) | 187 (51.2) | 289 (45.5) | 0.205 |
more remote | 262 (26.2) | 91 (24.9) | 171 (26.9) | |
more onsite | 262 (26.2) | 87 (23.8) | 175 (27.6) | |
Smoking habit | 0.273 | |||
stopped | 21 (2.1) | 9 (2.5) | 12 (1.9) | |
decreased | 17 (1.7) | 8 (2.2) | 9 (1.4) | |
no change | 106 (10.6) | 40 (10.9) | 65 (10.2) | |
started | 18 (1.8) | 10 (2.7) | 8 (1.2) | |
increased | 40 (4) | 21 (5.8) | 19 (3) | |
Dietary habits | ||||
improved | 164 (16.4) | 46 (12.6) | 118 (18.6) | 0.021 |
no change | 592 (59.2) | 234 (64.1) | 358 (56.4) | |
worsened | 244 (24.4) | 85 (23.3) | 159 (25) | |
Sweet food consumption | ||||
decreased | 115 (11.5) | 37 (10.1) | 78 (12.3) | 0.039 |
no change | 650 (65) | 258 (70.7) | 392 (61.7) | |
started | 18 (1.8) | 5 (1.4) | 13 (2.1) | |
increased | 217 (21.7) | 65 (17.8) | 152 (23.9) | |
Body weight | 0.216 | |||
decreased | 201 (20.1) | 65 (17.8) | 136 (21.4) | |
no change | 502 (50.2) | 180 (49.3) | 322 (50.7) | |
increased | 297 (29.7) | 120 (32.9) | 177 (27.9) | |
Physical activity | 0.413 | |||
started | 16 (1.6) | 5 (1.4) | 11 (1.7) | |
increased | 205 (20.5) | 65 (17.8) | 140 (22) | |
no change | 390 (39) | 147 (40.3) | 243 (38.3) | |
decreased | 389 (38.9) | 148 (40.5) | 241 (38) | |
Time spent watching TV | 0.013 | |||
decreased | 245 (24.5) | 72 (19.7) | 173 (27.2) | |
no change | 636 (63.6) | 257 (70.4) | 379 (59.7) | |
increased | 119 (11.9) | 36 (9.9) | 83 (13.1) | |
Time spent using smartphone | 0.008 | |||
decreased | 45 (4.5) | 9 (2.5) | 36 (5.7) | |
no change | 503 (50.3) | 204 (55.9) | 298 (46.9) | |
increased | 452 (45.2) | 152 (41.6) | 301 (47.4) | |
Time spent using tablet/PC | 0.215 | |||
decreased | 41 (4.1) | 21 (5.8) | 20 (3.2) | |
no change | 393 (39.3) | 144 (22.6) | 249 (39.2) | |
increased | 566 (56.6) | 200 (54.8) | 366 (57.6) | |
Sleep time | 0.029 | |||
increased | 59 (5.9) | 13 (3.6) | 46 (7.3) | |
no change | 614 (61.4) | 238 (65.2) | 376 (59.2) | |
decreased | 327 (32.7) | 114 (31.2) | 213 (33.5) |
Independent Variables | Smoking | Diet | Sweet Food Consumption | Weight | PA | Watching TV | Smartphone Use | Tablet/PC Use | Sleep |
---|---|---|---|---|---|---|---|---|---|
Odds Ratios (95% Confidence Intervals) | |||||||||
Gender | |||||||||
women | 1.261 (0.845–1.882) | 1.038 (0.757–1.422) | 1.456 (1.059–2.026) * | 0.827 (0.620–1.103) | 0.860 (0.655–1.129) | 1.399 (0.908–2.155) | 1.126 (0.861–1.473) | 1 (0.760–1.315) | 1.102 (0.828–1.467) |
men | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference |
Age | |||||||||
<35 years | 0.792 (0.476–1.319) | 1.874 (1.261–2.784) * | 1.670 (1.126–2.478) * | 2.004 (1.381–2.909) ** | 1.590 (1.118–2.263) * | 1.213 (0.711–2.071) | 1.251 (0.890–1.759) | 1.332 (0.939–1.890) | 1.143 (0.798–1.638) |
≥35 years | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference |
Work institution | |||||||||
research | 0.945 (0.589–1.517) | 0.587 (0.409–0.843) * | 0.608 (0.424–871) * | 0.711 (0.509–0.992) * | 0.550 (0.402–0.752) ** | 0.790 (0.500–1.251) | 1.020 (0.752–1.382) | 0.765 (0.619–1.154) | 0.681 (0.494–0.939) * |
healthcare | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference |
Living conditions | |||||||||
with parents | 1.022 (0.564–1.852) | 1.004 (0.629–1.602) | 1.001 (0.631–1.588) | 1.236 (0.798–1.914) | 1.035 (0.673–1.590) | 0.787 (0.413–1.501) | 1.158 (0.765–1.751) | 0.730 (0.477–1.118) | 0.932 (0.601–1.446) |
with friends/colleagues | 0.623 (0.322–1.206) | 0.780 (0.433–1.404) | 0.577 (0.316–1.056) | 0.428 (0.232–0.790) * | 1.664 (1.002–2.761) * | 0.673 (0.309–1.466) | 1.545 (0.934–2.555) | 1.074 (0.640–1.801) | 0.693 (0.399–1.205) |
with partner | 1.010 (0.570–1.789) | 0.993 (0.636–1.553) | 0.788 (0.502–1.237) | 1.309 (0.863–1.985) | 1.110 (0.740–1.665) | 0.931 (0.505–1.716) | 0.710 (0.476–1.057) | 0.865 (0.579–1.291) | 0.844 (0.556–1.283) |
with partner and underage children | 3.023 (1.299–7.034) * | 0.919 (0.552–1.528) | 0.823 (0.497–1.366) | 0.856 (0.521–1.406) | 1.422 (0.909–2.223) | 0.532 (0.259–1.093) | 1.121 (0.726–1.730) | 1.684 (1.065–2.663) * | 1.039 (0.660–1.635) |
with partner and adult children | 1.777 (0.771–4.096) | 0.326 (0.159–0.667) * | 0.364 (0.183–0.726) * | 1.032 (0.594–1.792) | 0.836 (0.497–1.407) | 1.021 (0.486–2.144) | 0.721 (0.437–1.190) | 0.872 (0.528–1.441) | 0.547 (0.317–0.942) * |
alone | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference |
Work activity | |||||||||
more remote | 0.617 (0.382–0.996) * | 1.982 (1.385–2.838) ** | 1.265 (0.876–1.827) | 0.950 (0.672–1.345) | 1.306 (0.945–1.804) | 1.264 (0.712–2.241) | 1.346 (0.977–1.854) | 3.314 (2.358–4.656) ** | 2.065 (1.482–2.877) ** |
more onsite | 0.718 (0.447–1.152) | 0.977 (0.664–1.439) | 0.980 (0.670–1.431) | 0.959 (0.677–1.357) | 1.088 (0.788–1.502) | 4.609 (2.883–7.370) ** | 1.649 (1.205–2.258) ** | 2.223 (1.614–3.060) ** | 1.268 (0.903–1.781) |
no change | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference | Reference |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallé, F.; Quaranta, A.; Napoli, C.; Diella, G.; De Giglio, O.; Caggiano, G.; Di Muzio, M.; Stefanizzi, P.; Orsi, G.B.; Liguori, G.; et al. How do Vaccinators Experience the Pandemic? Lifestyle Behaviors in a Sample of Italian Public Health Workers during the COVID-19 Era. Vaccines 2022, 10, 247. https://doi.org/10.3390/vaccines10020247
Gallé F, Quaranta A, Napoli C, Diella G, De Giglio O, Caggiano G, Di Muzio M, Stefanizzi P, Orsi GB, Liguori G, et al. How do Vaccinators Experience the Pandemic? Lifestyle Behaviors in a Sample of Italian Public Health Workers during the COVID-19 Era. Vaccines. 2022; 10(2):247. https://doi.org/10.3390/vaccines10020247
Chicago/Turabian StyleGallé, Francesca, Alessia Quaranta, Christian Napoli, Giusy Diella, Osvalda De Giglio, Giuseppina Caggiano, Marco Di Muzio, Pasquale Stefanizzi, Giovanni Battista Orsi, Giorgio Liguori, and et al. 2022. "How do Vaccinators Experience the Pandemic? Lifestyle Behaviors in a Sample of Italian Public Health Workers during the COVID-19 Era" Vaccines 10, no. 2: 247. https://doi.org/10.3390/vaccines10020247
APA StyleGallé, F., Quaranta, A., Napoli, C., Diella, G., De Giglio, O., Caggiano, G., Di Muzio, M., Stefanizzi, P., Orsi, G. B., Liguori, G., & Montagna, M. T. (2022). How do Vaccinators Experience the Pandemic? Lifestyle Behaviors in a Sample of Italian Public Health Workers during the COVID-19 Era. Vaccines, 10(2), 247. https://doi.org/10.3390/vaccines10020247