Association of Human Leucocyte Antigen Polymorphism with Coronavirus Disease 19 in Renal Transplant Recipients
Abstract
:1. Introduction
2. Material and Methods
2.1. Patient Recruitment
2.2. Blood Sample Collection and Anti-Spike Protein Analysis
2.3. Human Leucocyte Antigen Analysis
2.4. Statistical Analysis
3. Result
3.1. Demographic and Clinical Characteristics of Patients
3.2. HLA Class 1 Alleles and Association with COVID-19 Symptoms
3.3. HLA Class 2 Alleles and Association with COVID-19 Symptoms
3.4. Anti-Spike Protein IgG Antibody Titer
3.5. Association of HLA with the Severity of COVID-19
3.6. Other Predictors of Asymptomatic and Symptomatic Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 12 August 2022).
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostami, A.; Sepidarkish, M.; Leeflang, M.M.G.; Riahi, S.M.; Nourollahpour Shiadeh, M.; Esfandyari, S.; Mokdad, A.H.; Hotez, P.J.; Gasser, R.B. SARS-CoV-2 seroprevalence worldwide: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Grupper, A.; Rabinowich, L.; Schwartz, D.; Schwartz, I.F.; Ben-Yehoyada, M.; Shashar, M.; Katchman, E.; Halperin, T.; Turner, D.; Goykhman, Y.; et al. Reduced humoral response to mRNA SARS-CoV-2 BNT162b2 vaccine in kidney transplant recipients without prior exposure to the virus. Am. J. Transpl. 2021, 21, 2719–2726. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.H.; Hirsch, J.S.; Wanchoo, R.; Sachdeva, M.; Sakhiya, V.; Hong, S.; Jhaveri, K.D.; Fishbane, S. Outcomes of patients with end-stage kidney disease hospitalized with COVID-19. Kidney Int. 2020, 98, 1530–1539. [Google Scholar] [CrossRef] [PubMed]
- Ovsyannikova, I.G.; Dhiman, N.; Jacobson, R.M.; Poland, G.A. Human leukocyte antigen polymorphisms: Variable humoral immune responses to viral vaccines. Expert Rev. Vaccines 2006, 5, 33–43. [Google Scholar] [CrossRef]
- Migliorini, F.; Torsiello, E.; Spiezia, F.; Oliva, F.; Tingart, M.; Maffulli, N. Association between HLA genotypes and COVID-19 susceptibility, severity and progression: A comprehensive review of the literature. Eur. J. Med. Res. 2021, 26, 84. [Google Scholar] [CrossRef]
- Zakharova, M.Y.; Belyanina, T.A.; Sokolov, A.V.; Kiselev, I.S.; Mamedov, A.E. The Contribution of Major Histocompatibility Complex Class II Genes to an Association with Autoimmune Diseases. Acta Nat. 2019, 11, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Soto, M.E.; Vargas-Alarcón, G.; Cicero-Sabido, R.; Ramírez, E.; Alvarez-León, E.; Reyes, P.A. Comparison distribution of HLA-B alleles in mexican patients with takayasu arteritis and tuberculosis. Hum. Immunol. 2007, 68, 449–453. [Google Scholar] [CrossRef]
- Wieczorek, M.; Abualrous, E.T.; Sticht, J.; Álvaro-Benito, M.; Stolzenberg, S.; Noé, F.; Freund, C. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front. Immunol. 2017, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Zavala-Ruiz, Z.; Strug, I.; Anderson, M.W.; Gorski, J.; Stern, L.J. A polymorphic pocket at the P10 position contributes to peptide binding specificity in class II MHC proteins. Chem. Biol. 2004, 11, 1395–1402. [Google Scholar] [CrossRef]
- Dutta, M.; Dutta, P.; Medhi, S.; Borkakoty, B.; Biswas, D. Polymorphism of HLA class I and class II alleles in influenza A(H1N1)pdm09 virus infected population of Assam, Northeast India. J. Med. Virol. 2018, 90, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Albayrak, A.; Ertek, M.; Tasyaran, M.A.; Pirim, I. Role of HLA allele polymorphism in chronic hepatitis B virus infection and HBV vaccine sensitivity in patients from eastern Turkey. Biochem. Genet. 2011, 49, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Mosaad, Y.M.; Farag, R.E.; Arafa, M.M.; Eletreby, S.; El-Alfy, H.A.; Eldeek, B.S.; Tawhid, Z.M. Association of human leucocyte antigen Class I (HLA-A and HLA-B) with chronic hepatitis C virus infection in Egyptian patients. Scand. J. Immunol. 2010, 72, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Stephens, H.A.F. HLA and other gene associations with dengue disease severity. Curr. Top. Microbiol. Immunol. 2010, 338, 99–114. [Google Scholar]
- Hendel, H.; Caillat-Zucman, S.; Lebuanec, H.; Carrington, M.; O’Brien, S.; Andrieu, J.M.; Schächter, F.; Zagury, D.; Rappaport, J.; Winkler, C.; et al. New class I and II HLA alleles strongly associated with opposite patterns of progression to AIDS. J. Immunol. 1999, 162, 6942–6946. [Google Scholar]
- Abraham, P.; Aggarwa, N.; Babu, G.R.; Barani, S.; Bhargava, B.; Bhatnagar, T.; Dhama, A.S.; Gangakhedkar, R.R.; Giri, S.; ICMR COVID Study Group; et al. Laboratory surveillance for SARS-CoV-2 in India: Performance of testing & descriptive epidemiology of detected COVID-19, January 22–April 30, 2020. Indian J. Med. Res. 2020, 151, 424–437. [Google Scholar]
- Available online: https://www.mohfw.gov.in/pdf/UpdatedDetailedClinicalManagementProtocolforCOVID19adultsdated24052021.pdf (accessed on 12 August 2022).
- Prasad, N.; Yadav, B.; Singh, M.; Gautam, S.; Bhadauria, D.; Patel, M.; Kushwaha, R.; Yadav, D.; Singh, A.; Yachha, M.; et al. Humoral Immune Response of SARS-CoV-2 Infection and Anti-SARS-CoV-2 Vaccination in Renal Transplant Recipients. Vaccines 2022, 10, 385. [Google Scholar] [CrossRef]
- Abbott Laboratories. SARS-CoV-2 IgG [Package Insert]. 2020. Available online: https://www.fda.gov/media/137383/download (accessed on 12 August 2022).
- Knezevic, I.; Mattiuzzo, G.; Page, M.; Minor, P.; Griffiths, E.; Nuebling, M.; Moorthy, V. WHO International Standard for evaluation of the antibody response to COVID-19 vaccines: Call for urgent action by the scientific community. Lancet Microbe 2022, 3, e235–e240. [Google Scholar] [CrossRef]
- Cafiero, C.; Rosapepe, F.; Palmirotta, R.; Re, A.; Ottaiano, M.P.; Benincasa, G.; Perone, R.; Varriale, E.; D’Amato, G.; Cacciamani, A.; et al. Angiotensin System Polymorphisms’ in SARS-CoV-2 Positive Patients: Assessment Between Symptomatic and Asymptomatic Patients: A Pilot Study. Pharmgenomics Pers. Med. 2021, 14, 621–629. [Google Scholar] [CrossRef]
- Lin, M.; Tseng, H.K.; Trejaut, J.A.; Lee, H.L.; Loo, J.H.; Chu, C.C.; Chen, P.; Su, Y.; Lim, K.H.; Tsai, Z.; et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med. Genet. 2003, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, A.; David, J.K.; Maden, S.K.; Wood, M.A.; Weeder, B.R.; Nellore, A.; Thompson, R.F. Human Leukocyte Antigen Susceptibility Map for Severe Acute Respiratory Syndrome Coronavirus 2. J. Virol. 2020, 94, e00510-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikolich-Zugich, J.; Fremont, D.H.; Miley, M.J.; Messaoudi, I. The role of mhc polymorphism in anti-microbial resistance. Microbes Infect. 2004, 6, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Llewelyn, M.; Sriskandan, S.; Peakman, M.; Ambrozak, D.R.; Douek, D.C.; Kwok, W.W.; Cohen, J.; Altmann, D.M. HLA class II polymorphisms determine responses to bacterial superantigens. J. Immunol. 2004, 172, 1719–1726. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur. J. Hum. Genet. 2020, 28, 715–718. [Google Scholar] [CrossRef]
- Novelli, A.; Andreani, M.; Biancolella, M.; Liberatoscioli, L.; Passarelli, C.; Colona, V.L.; Rogliani, P.; Leonardis, F.; Campana, A.; Carsetti, R.; et al. HLA allele frequencies and susceptibility to COVID-19 in a group of 99 Italian patients. HLA 2020, 96, 610–614. [Google Scholar] [CrossRef]
- Romero-López, J.P.; Carnalla-Cortés, M.; Pacheco-Olvera, D.L.; Ocampo-Godínez, J.M.; Oliva-Ramírez, J.; Moreno-Manjón, J.; Bernal-Alferes, B.; López-Olmedo, N.; García-Latorre, E.; Domínguez-López, M.L.; et al. A bioinformatic prediction of antigen presentation from SARS-CoV-2 spike protein revealed a theoretical correlation of HLA-DRB1*01 with COVID-19 fatality in Mexican population: An ecological approach. J. Med. Virol. 2021, 93, 2029–2038. [Google Scholar] [CrossRef]
- Naemi, F.M.A.; Al-Adwani, S.; Al-Khatabi, H.; Al-Nazawi, A. Frequency of HLA alleles among COVID-19 infected patients: Preliminary data from Saudi Arabia. Virology 2021, 560, 1–7. [Google Scholar] [CrossRef]
- Benotmane, I.; Gautier, G.; Perrin, P.; Olagne, J.; Cognard, N.; Fafi-Kremer, S.; Caillard, S. Antibody Response After a Third Dose of the mRNA-1273 SARS-CoV-2 Vaccine in Kidney Transplant Recipients with Minimal Serologic Response to 2 Doses. JAMA 2021, 326, 1063–1065. [Google Scholar] [CrossRef]
- Kamar, N.; Abravanel, F.; Marion, O.; Couat, C.; Izopet, J.; del Bello, A. Three Doses of an mRNA COVID-19 Vaccine in Solid-Organ Transplant Recipients. N. Engl. J. Med. 2021, 385, 661–662. [Google Scholar] [CrossRef]
- Prasad, N.; Bansal, S.B.; Yadav, B.; Manhas, N.; Yadav, D.; Gautam, S.; Kushwaha, R.; Singh, A.; Bhadauria, D.; Yachha, M.; et al. Seroconversion Rate After SARS-CoV-2 Infection and Two Doses of Either ChAdOx1-nCOV COVISHIELDTM or BBV-152 COVAXINTM Vaccination in Renal Allograft Recipients: An Experience of Two Public and Private Tertiary Care Center. Front. Immunol. 2022, 13, 911738. [Google Scholar] [CrossRef]
- Bhadauria, D.S.; Katiyar, H.; Goel, A.; Tiwari, P.; Kishore, R.V.K.; Aggarwal, A.; Verma, A.; Khetan, D.; Kaul, A.; Yachha, M.; et al. Antibody Response to ChAdOx1 nCoV-19 (AZD1222) Vaccine in Kidney Transplant Recipients. Vaccines 2022, 10, 1693. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.S.; Evans, S.E. The paradox of immunosuppressants and COVID-19. Eur. Respir. J. 2022, 59, 2102828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhao, Y.; Zhang, F.; Wang, Q.; Li, T.; Liu, Z.; Wang, J.; Qin, Y.; Zhang, X.; Yan, X.; et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin. Immunol. 2020, 214, 108393. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020, 8, 420–422. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, J.; Zhang, D.; Xu, Z.; Ji, J.; Wen, C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front. Immunol. 2020, 11, 1708. [Google Scholar] [CrossRef]
- Yadav, B.; Prasad, N.; Agarwal, V.; Agarwal, V.; Jain, M. Hidden Granzyme B-Mediated Injury in Chronic Active Antibody-Mediated Rejection. Exp. Clin. Transpl. 2020, 18, 778–784. [Google Scholar] [CrossRef]
- Yadav, B.; Prasad, N.; Agrawal, V.; Jain, M.; Agarwal, V.; Jaiswal, A.; Bhadauria, D.; Sharma, R.K.; Gupta, A. T-bet-positive mononuclear cell infiltration is associated with transplant glomerulopathy and interstitial fibrosis and tubular atrophy in renal allograft recipients. Exp. Clin. Transpl. 2015, 13, 145–151. [Google Scholar]
- Yadav, B.; Prasad, N.; Agrawal, V.; Jain, M.; Agarwal, V. Role of pathogenic T-helper cells-17 in chronic antibody-mediated rejection in renal allograft recipients. Indian J. Transpl. 2022, 16, 88–95. [Google Scholar]
Characteristics | Asymptomatic (n = 341) | Symptomatic (n = 173) | p-Value | |
---|---|---|---|---|
Patients Age (Years) | 42.53 ± 11.35 | 39.76 ± 11.64 | 0.01 | |
Gender | M (%) | 300 (87.97) | 148 (85.54) | 0.48 |
F (%) | 41 (12.02) | 25 (14.45) | ||
Post-transplant interval (months) | 84.92 ± 65.58 | 86.41 ± 65.14 | 0.80 | |
BMI (kg/m2) | 23.20 ± 5.22 | 24.56 ± 5.19 | 0.01 | |
Hemoglobin (mg/dL) | 12.74 ± 1.81 | 12.74 ± 1.94 | 0.99 | |
TLC (×103/µL) | 7.14 ± 2.44 | 7.79 ± 2.59 | 0.005 | |
Baseline serum creatinine (mg/dL) | 0.89 ± 0.37 | 0.83 ± 0.34 | 0.10 | |
Serum creatinine (mg/dL) | 1.57 ± 0.78 | 1.62 ± 0.48 | 0.44 | |
BUN (mg/dL) | 23.20 ± 9.58 | 24.29 ± 12.66 | 0.27 | |
Tacrolimus level (µg/L) | 5.55 ± 2.03 | 5.91 ± 2.73 | 0.09 | |
eGFR (mL/min/1.73 m²) | 64.96 ± 31.75 | 58.98 ± 21.37 | 0.026 | |
Induction | Basiliximab | 78 | 57 | 0.046 |
ATG | 85 | 35 | ||
No Induction | 178 | 81 | ||
Patient blood group | A+ve | 79 | 44 | 0.76 |
B+ve | 142 | 64 | ||
AB+ve | 34 | 17 | ||
O+ve | 86 | 48 | ||
Immunosuppression | Tacrolimus | 320 | 169 | 0.055 |
Cyclosporin | 21 | 4 |
HLA Alleles | Asymptomatic n = 341 (%) | Symptomatic n = 173 (%) | p-Value |
A*01 | 7 (2.052) | 3 (1.73) | 0.8 |
A*02 | 12 (3.51) | 10 (5.78) | 0.22 |
A*03 | 22 (6.45) | 10 (5.78) | 0.76 |
A*09 | 1 (0.29) | 0 (0) | 0.47 |
A*11 | 78 (22.87) | 23 (13.29) | 0.09 |
A*13 | 1 (0.29) | 0 (0) | 0.47 |
A*20 | 1 (0.29) | 0 (0) | 0.47 |
A*23 | 1 (0.29) | 0 (0) | 0.47 |
A*24 | 78 (22.87) | 26 (15.02) | 0.03 |
A*25 | 10 (2.93) | 2 (1.15) | 0.2 |
A*26 | 17 (4.98) | 10 (5.78) | 0.7 |
A*28 | 1 (0.29) | 0 (0) | 0.47 |
A*29 | 2 (0.58) | 6 (3.46) | 0.01 |
A*30 | 2 (0.58) | 3 (1.73) | 0.2 |
A*31 | 4 (1.173) | 5 (2.89) | 0.16 |
A*32 | 7 (2.05) | 6 (3.46) | 0.33 |
A*33 | 57 (16.71) | 45 (26.01) | 0.01 |
A*34 | 1 (0.29) | 0 (0) | 0.47 |
A*36 | 0 (0) | 1 (0.57) | 0.16 |
A*38 | 0 (0) | 1 (0.57) | 0.16 |
A*66 | 2 (0.58) | 0 (0) | 0.31 |
A*68 | 36 (10.55) | 21 (12.13) | 0.59 |
A*74 | 1 (0.29) | 0 (0) | 0.47 |
A*80 | 0 (0) | 1 (0.57) | 0.16 |
B*04 | 9 (2.63) | 7 (4.04) | 0.38 |
B*05 | 3 (0.87) | 0 (0) | 0.21 |
B*07 | 40 (11.73) | 8 (4.62) | 0.09 |
B*08 | 8 (2.34) | 5 (2.89) | 0.7 |
B*12 | 1 (0.29) | 0 (0) | 0.47 |
B*13 | 10 (2.93) | 18 (10.40) | <0.0001 |
B*14 | 3 (0.87) | 0 (0) | 0.21 |
B*15 | 42 (12.31) | 23 (13.29) | 0.75 |
B*18 | 9 (2.63) | 6 (3.46) | 0.59 |
B*27 | 16 (4.69) | 6 (3.46) | 0.51 |
B*33 | 1 (0.29) | 0 (0) | 0.47 |
B*35 | 70 (20.52) | 32 (18.49) | 0.58 |
B*37 | 13 (3.81) | 8 (4.62) | 0.66 |
B*38 | 4 (1.17) | 3 (1.73) | 0.6 |
B*39 | 7 (2.052) | 1 (0.57) | 0.2 |
B*40 | 33 (9.67) | 24 (13.87) | 0.15 |
B*41 | 2 (0.58) | 1 (0.57) | 0.98 |
B*44 | 25 (7.33) | 13 (7.51) | 0.94 |
B*48 | 1 (0.29) | 0 (0) | 0.47 |
B*50 | 5 (1.46) | 1 (0.57) | 0.37 |
B*51 | 6 (1.75) | 3 (1.73) | 0.98 |
B*52 | 15 (4.39) | 3 (1.73) | 0.12 |
B*53 | 2 (0.58) | 0 (0) | 0.31 |
B*55 | 3 (0.87) | 2 (1.15) | 0.75 |
B*56 | 2 (0.58) | 0 (0) | 0.31 |
B*57 | 2 (0.58) | 1 (0.57) | 0.98 |
B*58 | 3 (0.87) | 0 (0) | 0.21 |
B*70 | 5 (1.46) | 7 (4.04) | 0.06 |
B*80 | 1 (0.29) | 1 (0.57) | 0.62 |
HLA-Alleles | Asymptomatic n = 155 (%) | Symptomatic n = 84 (%) | p-Value |
C*01 | 5 (3.22) | 1 (1.19) | 0.33 |
C*02 | 7 (4.51) | 0 (0) | 0.04 |
C*03 | 22 (14.19) | 19 (22.61) | 0.09 |
C*04 | 24 (15.48) | 16 (19.04) | 0.48 |
C*05 | 4 (2.58) | 5 (5.95) | 0.19 |
C*06 | 29 (18.70) | 10 (11.90) | 0.17 |
C*07 | 39 (25.16) | 22 (26.19) | 0.86 |
C*08 | 3 (1.93) | 2 (2.38) | 0.81 |
C*12 | 12 (7.74) | 7 (8.33) | 0.87 |
C*14 | 3 (1.93) | 0 (0) | 0.2 |
C*15 | 4 (2.58) | 2 (2.38) | 0.92 |
C*17 | 1 (0.64) | 0 (0) | 0.46 |
C*20 | 1 (0.64) | 0 (0) | 0.46 |
C*70 | 1 (0.64) | 0 (0) | 0.46 |
HLA Alleles | Asymptomatic n = 341 (%) | Symptomatic n = 173 (%) | p-Value |
DRB1*01 | 8 (2.34) | 4 (2.31) | 0.98 |
DRB1*03 | 4 (1.17) | 0 (0) | 0.15 |
DRB1*04 | 11 (3.22) | 9 (5.20) | 0.27 |
DRB1*07 | 24 (7.03) | 14 (8.09) | 0.66 |
DRB1*08 | 9 (2.63) | 1 (0.57) | 0.10 |
DRB1*10 | 3 (0.87) | 8 (4.62) | 0.005 |
DRB1*11 | 33 (9.67) | 15 (8.67) | 0.72 |
DRB1*12 | 37 (10.85) | 7 (4.04) | 0.014 |
DRB1*13 | 43 (12.60) | 24 (13.87) | 0.78 |
DRB1*14 | 35 (10.26) | 14 (8.09) | 0.43 |
DRB1*15 | 120 (35.19) | 68 (39.30) | <0.001 |
DRB1*16 | 7 (2.05) | 3 (1.73) | 0.80 |
DRB1*30 | 0 (0) | 2 (1.15) | 0.047 |
DRB1*40 | 1 (0.29) | 2 (1.15) | 0.22 |
DRB1*70 | 4 (1.17) | 2 (1.15) | 0.98 |
DRB1*80 | 2 (0.58) | 0 (0) | 0.31 |
HLA-Alleles | Asymptomatic n = 155 (%) | Symptomatic n = 84 (%) | p-Value |
DQA1*02 | 43 (27.74) | 12 (14.28) | 0.018 |
DQA1*03 | 66 (42.58) | 37 (44.04) | 0.82 |
DQA1*04 | 3 (1.93) | 3 (3.57) | 0.43 |
DQA1*05 | 28 (18.06) | 18 (21.42) | 0.53 |
DQA1*06 | 14 (9.03) | 8 (9.52) | 0.9 |
DQA1*20 | 1 (0.64) | 2 (2.38) | 0.24 |
DQA1*50 | 0 (0) | 1 (1.19) | 0.17 |
DQA1*60 | 0 (0) | 3 (3.57) | 0.01 |
Asymptomatic (n = 137) | Symptomatic (n = 173) | p-Value | |||
---|---|---|---|---|---|
Seroconversion | Yes (%) | 118 (86.13%) | 148 (85.54%) | 0.88 | |
No (%) | 19 (13.86%) | 25 (14.45%) | |||
Median Antibody titer (au/mL) (IQR) | 647.80 (167.75–2524.25) | 400.00 (154.10–1670.10) | 0.13 | ||
Symptomatic Infection (n = 173) | |||||
HQ (n = 137, 79.2%) | HSP (n = 36, 20.80%) | p-Value | |||
Seroconversion | Yes | No | Yes | No | |
113 (82.48%) | 24 (17.51%) | 35 (97.22%) | 1 (2.77%) | 0.030 |
HLA | Mild (n = 26) | Moderate (n = 7) | Severe (n = 3) | p-Value |
---|---|---|---|---|
DRB1*07 (%) | 1 (3.84) | 0 (0) | 0 (0) | 0.005 |
DRB1*11 (%) | 5 (19.23) | 0 (0) | 0 (0) | |
DRB1*13 (%) | 4 (15.38) | 4 (57.14) | 0 (0) | |
DRB1*14 (%) | 4 (15.38) | 0 (0) | 0 (0) | |
DRB1*15 (%) | 11 (42.30) | 3 (42.85) | 1 (33.3) | |
DRB1*16 (%) | 0 (0) | 0 (0) | 1 (33.3) | |
DRB1*30 (%) | 1 (3.84) | 0 (0) | 0 (0) | |
DRB1*40 (%) | 0 (0) | 0 (0) | 1 (33.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, N.; Yadav, B.; Prakash, S.; Yadav, D.; Singh, A.; Gautam, S.; Bhadauria, D.; Kaul, A.; Patel, M.R.; Behera, M.R.; et al. Association of Human Leucocyte Antigen Polymorphism with Coronavirus Disease 19 in Renal Transplant Recipients. Vaccines 2022, 10, 1840. https://doi.org/10.3390/vaccines10111840
Prasad N, Yadav B, Prakash S, Yadav D, Singh A, Gautam S, Bhadauria D, Kaul A, Patel MR, Behera MR, et al. Association of Human Leucocyte Antigen Polymorphism with Coronavirus Disease 19 in Renal Transplant Recipients. Vaccines. 2022; 10(11):1840. https://doi.org/10.3390/vaccines10111840
Chicago/Turabian StylePrasad, Narayan, Brijesh Yadav, Swayam Prakash, Deependra Yadav, Ankita Singh, Sonam Gautam, Dharmendra Bhadauria, Anupama Kaul, Manas Ranjan Patel, Manas Ranjan Behera, and et al. 2022. "Association of Human Leucocyte Antigen Polymorphism with Coronavirus Disease 19 in Renal Transplant Recipients" Vaccines 10, no. 11: 1840. https://doi.org/10.3390/vaccines10111840
APA StylePrasad, N., Yadav, B., Prakash, S., Yadav, D., Singh, A., Gautam, S., Bhadauria, D., Kaul, A., Patel, M. R., Behera, M. R., Kushwaha, R. S., & Yachha, M. (2022). Association of Human Leucocyte Antigen Polymorphism with Coronavirus Disease 19 in Renal Transplant Recipients. Vaccines, 10(11), 1840. https://doi.org/10.3390/vaccines10111840