Influence of Accelerated Solvent Extraction Conditions on the LC-ESI-MS/MS Polyphenolic Profile, Triterpenoid Content, and Antioxidant and Anti-lipoxygenase Activity of Rhododendron luteum Sweet Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Apparatus
2.2. Plant Material
2.3. Extraction
2.4. Total Phenolic Content
2.5. Total Flavonoid Content
2.6. Total Triterpene Content
2.7. LC-ESI-MS/MS Analysis of Phenolic Compounds
2.8. Determination of Antiradical Potential with DPPH• Assay
2.9. Determination of Antiradical Capacity with ABTS•+ Assay
2.10. Metal Chelating Activity
2.11. Oxygen Radical Absorbance Capacity (ORAC) Assay
2.12. Lipoxygenase Inhibitor Screening Assay
2.13. Statistical Analysis
3. Results and Discussion
3.1. Chemical Profiles of Different R. luteum Extracts
3.2. Results of Bioassays
3.3. Correlation between the Antioxidant and Anti-LOX Activities and the Content of Secondary Metabolites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pietta, P.-G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- González, Y.; Torres-Mendoza, D.; Jones, G.E.; Fernandez, P.L. Marine diterpenoids as potential anti-inflammatory agents. Mediat. Inflamm. 2015, 2015, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.P.; Son, K.H.; Chang, H.W.; Kang, S.S. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 2004, 96, 229–245. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, K.A.; De Pascual-Teresa, S.; Needs, P.W.; Bao, Y.-P.; O’Brien, N.M.; Williamson, G. Effect of flavonoids and Vitamin E on cyclooxygenase-2 (COX-2) transcription. Mutat. Res. Fundam. Mol. Mech. Mutagenes. 2004, 551, 245–254. [Google Scholar] [CrossRef]
- Chen, G.-L.; Fan, M.-X.; Wu, J.-L.; Li, N.; Guo, M. Antioxidant and anti-inflammatory properties of flavonoids from lotus plumule. Food Chem. 2019, 277, 706–712. [Google Scholar] [CrossRef]
- Chung, I.; Kim, Y.-O.; Ali, M.; Kim, S.-H.; Park, I.; Kim, E.-H.; Yang, Y.-S.; Park, H.-R.; Son, E.-S.; Ahmad, A. Triterpene glycosides from red ginseng marc and their anti-inflammatory activities. Bioorgan. Med. Chem. Lett. 2014, 24, 4203–4208. [Google Scholar] [CrossRef]
- Youn, U.J.; Park, E.-J.; Kondratyuk, T.P.; Sripisut, T.; Laphookhieo, S.; Pezzuto, J.M.; Chang, L.C. Anti-inflammatory triterpenes from the apical bud of Gardenia sootepensis. Fitoterapia 2016, 114, 92–97. [Google Scholar] [CrossRef]
- Zhou, J.; Wei, X.-H.; Chen, F.; Li, C.-J.; Yang, J.-Z.; Ma, J.; Bao, X.-Q.; Zhang, D.; Zhang, D.-M. Anti-inflammatory pentacyclic triterpenes from the stems of Euonymus carnosus. Fitoterapia 2017, 118, 21–26. [Google Scholar] [CrossRef]
- Xiong, H.; Zheng, Y.; Yang, G.; Wang, H.; Mei, Z. Triterpene saponins with anti-inflammatory activity from the stems of Entada phaseoloides. Fitoterapia 2015, 103, 33–45. [Google Scholar] [CrossRef]
- Verhoff, M.; Seitz, S.; Paul, M.; Noha, S.M.; Jauch, J.; Schuster, D.; Werz, O. Tetra- and pentacyclic triterpene acids from the ancient anti-inflammatory remedy frankincense as inhibitors of microsomal prostaglandin E2 synthase-1. J. Nat. Prod. 2014, 77, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- Mahomoodally, M.; Sieniawska, E.; Sinan, K.I.; Picot-Allain, M.C.N.; Yerlikaya, S.; Baloglu, M.C.; Altunoglu, Y.C.; Senkardes, I.; Rengasamy, K.R.; Dall’Acqua, S. Utilisation of Rhododendron luteum Sweet bioactive compounds as valuable source of enzymes inhibitors, antioxidant, and anticancer agents. Food Chem. Toxicol. 2020, 135, 111052. [Google Scholar] [CrossRef] [PubMed]
- Qiang, Y.; Zhou, B.; Gao, K. Chemical constituents of plants from the genus Rhododendron. Chem. Biodivers. 2011, 8, 792–815. [Google Scholar] [CrossRef] [PubMed]
- Popescu, R.; Kopp, B. The genus Rhododendron: An ethnopharmacological and toxicological review. J. Ethnopharmacol. 2013, 147, 42–62. [Google Scholar] [CrossRef] [PubMed]
- Alan, S.; Kürkçüoǧlu, M.; Göger, F.; Başer, K.H.C. Morphological, chemical and indumentum characteristics of Rhododendron luteum sweet (Ericaceae). Pak. J. Bot. 2010, 42, 3729–3737. [Google Scholar]
- Demir, S.; Turan, I.; Aliyazicioglu, Y. Selective cytotoxic effect of Rhododendron luteum extract on human colon and liver cancer cells. J. BUON 2016, 21, 883–888. [Google Scholar]
- Usta, A.; Yayli, B.; Kahrinman, N.; Yayli, N.; Karaoglu, S.A. Composition and antimicrobial activity of essential oil from the flower of Rhododendron luteum Sweet. Asian J. Chem. 2012, 24, 1091–1093. [Google Scholar]
- Ertürk, Ö.; Karakaş, F.P.; Pehlivan, D.; Nas, N. The antibacterial and antifungal effects of rhododendron derived mad honey and extracts of four rhododendron species. Turk. J. Biol. 2009, 33, 151–158. [Google Scholar] [CrossRef]
- Tasdemir, D.; Demirci, B.; Demirci, F.; Dönmez, A.A.; Başer, K.H.C.; Rüedia, P. Analysis of the volatile components of five Turkish Rhododendron species by headspace solid-phase microextraction and GC-MS (HS-SPME-GC-MS). Z. Nat. C 2003, 58, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Olech, M.; Nowak, R. Influence of different extraction procedures on the antiradical activity and phenolic profile of Rosa rugosa petals. Acta Pol. Pharm. 2012, 69, 501–507. [Google Scholar]
- Lamaison, J.L.; Carnart, A. Teneurs en principaux flavonoids des fleurs de Crataegus monogyna Jacq et de Crataegus laevigata (Poiret) DC. En fonction de la vegetation. Plantes Med. Phyther. 1991, 25, 12–16. [Google Scholar]
- Zhang, L.; Yang, J.; Chen, X.-Q.; Zan, K.; Wen, X.-D.; Chen, H.; Wang, Q.; Lai, M.-X. Antidiabetic and antioxidant effects of extracts from Potentilla discolor Bunge on diabetic rats induced by high fat diet and streptozotocin. J. Ethnopharmacol. 2010, 132, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Oniszczuk, A.; Wójtowicz, A.; Oniszczuk, T.; Olech, M.; Nowak, R.; Wojtunik-Kulesza, K.A.; Klimek, M.; Krawczyk, W.; Hajnos, M. Extruded corn gruels containing linden flowers: Quantitation of phenolic compounds and selected quality characteristics. Open Chem. 2015, 13, 2391–5420. [Google Scholar] [CrossRef]
- Bogucka-Kocka, A.; Vorobets, N.; Chrząszcz, M.; Pietrzak, W.; Szewczyk, K. Polyphenol composition of extracts of the fruits of Laserpitium krapffii Crantz and their antioxidant and cytotoxic activity. Antioxidants 2019, 8, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olech, M.; Pietrzak, W.; Nowak, R. Characterization of free and bound phenolic acids and flavonoid aglycones in Rosa rugosa Thunb. leaves and achenes using LC-ESI-MS/MS-MRM methods. Molecules 2020, 25, 1804. [Google Scholar] [CrossRef] [Green Version]
- Olech, M.; Nowacka, N.; Masłyk, M.; Martyna, A.; Pietrzak, W.; Kubiński, K.; Załuski, D.; Nowak, R. Polysaccharide-rich fractions from Rosa rugosa Thunb—Composition and chemopreventive potential. Molecules 2019, 24, 1354. [Google Scholar] [CrossRef] [Green Version]
- Gawlik-Dziki, U.; Dziki, D.; Baraniak, B.; Lin, R. The effect of simulated digestion in vitro on bioactivity of wheat bread with Tartary buckwheat flavones addition. LWT Food Sci. Technol. 2009, 42, 137–143. [Google Scholar] [CrossRef]
- Dienaitė, L.; Pukalskas, A.; Pukalskienė, M.; Pereira, C.V.; Matias, A.A.; Venskutonis, P.R. Phytochemical composition, antioxidant and antiproliferative activities of defatted sea buckthorn (Hippophaë rhamnoides L.) berry pomace fractions consecutively recovered by pressurized ethanol and water. Antioxidants 2020, 9, 274. [Google Scholar] [CrossRef] [Green Version]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free. Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- De La Guardia, M.; Armenta, S. Greening Sample Treatments. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2011; pp. 87–120. [Google Scholar]
- Jing, L.; Ma, H.; Fan, P.; Gao, R.; Jia, Z. Antioxidant potential, total phenolic and total flavonoid contents of Rhododendron anthopogonoides and its protective effect on hypoxia-induced injury in PC12 cells. BMC Complement. Altern. Med. 2015, 15, 287. [Google Scholar] [CrossRef] [Green Version]
- Demir, S.; Turan, I.; Aliyazicioglu, Y. Cytotoxic effect of Rhododendron luteum leaf extract on human cancer cell lines. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Doğa Derg. 2018, 21, 950–956. [Google Scholar] [CrossRef]
- Harborne, J. Introduction to Ecological Biochemistry, 4th ed.; Academic Press: London, UK, 1993; pp. 1–35. [Google Scholar]
- Takahashi, H.; Hirata, S.; Minami, H.; Fukuyama, Y. Triterpene and flavanone glycoside from Rhododendron simsii. Phytochemistry 2001, 56, 875–879. [Google Scholar] [CrossRef]
- Choi, Y.H.; Zhou, W.; Oh, J.; Choe, S.; Kim, D.W.; Lee, S.H.; Na, M. Rhododendric acid A, a new ursane-type PTP1B inhibitor from the endangered plant Rhododendron brachycarpum G. Don. Bioorgan. Med. Chem. Lett. 2012, 22, 6116–6119. [Google Scholar] [CrossRef] [PubMed]
- Jäger, S.; Trojan, H.; Kopp, T.; Laszczyk, M.N.; Scheffler, A. Pentacyclic triterpene distribution in various plants—rich sources for a new group of multi-potent plant extracts. Molecules 2009, 14, 2016–2031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prakash, D.; Upadhyay, G.; Singh, B.N.; Dhakarey, R.; Sandeep, K.; Singh, K.K. Free-radical scavenging activities of Himalayan rhododendrons. Curr. Sci. 2007, 92, 526–532. [Google Scholar]
- Shrestha, A.; Said, I.H.; Grimbs, A.; Thielen, N.; Lansing, L.; Schepker, H.; Kuhnert, N. Determination of hydroxycinnamic acids present in Rhododendron species. Phytochemistry 2017, 144, 216–225. [Google Scholar] [CrossRef]
- Rateb, M.E.; Hassan, H.M.; Arafa, E.-S.; Jaspars, M.; Ebel, R. Decorosides A and B, cytotoxic flavonoid glycosides from the leaves of Rhododendron decorum. Nat. Prod. Commun. 2014, 9, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Mok, S.-Y.; Lee, S. Identification of flavonoids and flavonoid rhamnosides from Rhododendron mucronulatum for. albiflorum and their inhibitory activities against aldose reductase. Food Chem. 2013, 136, 969–974. [Google Scholar] [CrossRef]
- Harborne, J.; Williams, C.A. Leaf survey of flavonoids and simple phenols in the genus Rhododendron. Phytochemistry 1971, 10, 2727–2744. [Google Scholar] [CrossRef]
- Szewczyk, K.; Olech, M. Optimization of extraction method for LC–MS based determination of phenolic acid profiles in different Impatiens species. Phytochem. Lett. 2017, 20, 322–330. [Google Scholar] [CrossRef]
- Pietrzak, W.; Nowak, R.; Olech, M. Effect of extraction method on phenolic content and antioxidant activity of mistletoe extracts from Viscum album subsp. abietis. Chem. Pap. 2014, 68, 976–982. [Google Scholar] [CrossRef]
- Cai, Y.-Q.; Hu, J.-H.; Qin, J.; Sun, T.; Li, X. Rhododendron Molle (Ericaceae): Phytochemistry, pharmacology, and toxicology. Chin. J. Nat. Med. 2018, 16, 401–410. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.-Y.; Wang, S.-L.; Niu, X.-Y. Analysis of anthocyanins and flavonols in petals of 10 Rhododendron species from the Sygera Mountains in Southeast Tibet. Plant Physiol. Biochem. 2016, 104, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Gautam, V.; Kohli, S.K.; Arora, S.; Bhardwaj, R.; Kazi, M.; Ahmad, A.; Raish, M.; Ganaie, M.A.; Ahmad, P. Antioxidant and antimutagenic activities of different fractions from the leaves of Rhododendron arboreum Sm. and their GC-MS profiling. Molecules 2018, 23, 2239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tung, Y.-T.; Lin, L.-C.; Liu, Y.-L.; Ho, S.-T.; Lin, C.-Y.; Chiu, C.-C.; Wu, J.-H.; Chuang, H.-L.; Huang, C.-C. Antioxidative phytochemicals from Rhododendron oldhamii Maxim. leaf extracts reduce serum uric acid levels in potassium oxonate-induced hyperuricemic mice. BMC Complement. Altern. Med. 2015, 15, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.-M.; Hsu, Y.-M.; Jhan, Y.-L.; Tsai, S.-J.; Lin, S.-X.; Su, C.-H.; Chou, C.-H. Structure elucidation of procyanidins isolated from Rhododendron formosanum and their anti-oxidative and anti-bacterial activities. Molecules 2015, 20, 12787–12803. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Liu, T.; Zhang, H.; Zheng, G.; Qiu, Y.; Deng, M.; Zhang, C.; Yao, G. Anti-inflammatory grayanane diterpenoids from the leaves of Rhododendron molle. J. Nat. Prod. 2018, 81, 151–161. [Google Scholar] [CrossRef]
- Zhao, C.-N.; Tang, G.-Y.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Liu, Q.; Mao, Q.-Q.; Shang, A.; Li, H.-B. Phenolic profiles and antioxidant activities of 30 tea infusions from green, black, oolong, white, yellow and dark teas. Antioxidants 2019, 8, 215. [Google Scholar] [CrossRef] [Green Version]
- Sarikurkcu, C.; Locatelli, M.; Mocan, A.; Zengin, G.; Kirkan, B. Phenolic profile and bioactivities of Sideritis perfoliata L.: The plant, its most active extract, and its broad biological properties. Front. Pharmacol. 2020, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rocchetti, G.; Senizza, B.; Zengin, G.; Mahomoodally, M.; Senkardes, I.; Lobine, D.; Lucini, L. Untargeted metabolomic profiling of three Crataegus species (hawthorn) and their in vitro biological activities. J. Sci. Food Agric. 2020, 100, 1998–2006. [Google Scholar] [CrossRef]
- Park, J.-W.; Kwon, O.-K.; Kim, J.-H.; Oh, S.R.; Kim, J.-H.; Paik, J.-H.; Marwoto, B.; Widjhati, R.; Juniarti, F.; Irawan, D.; et al. Rhododendron album Blume inhibits iNOS and COX-2 expression in LPS-stimulated RAW264.7 cells through the downregulation of NF-κB signaling. Int. J. Mol. Med. 2015, 35, 987–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.-H.; Nugroho, A.; Choi, J.; Park, J.H.; Park, H.-J. Rhododendrin, an analgesic/anti-inflammatory arylbutanoid glycoside, from the leaves of Rhododendron aureum. Arch. Pharmacal Res. 2011, 34, 971–978. [Google Scholar] [CrossRef]
- Erdemoglu, N.; Akkol, E.K.; Yesilada, E.; Calış, I. Bioassay-guided isolation of anti-inflammatory and antinociceptive principles from a folk remedy, Rhododendron ponticum L. leaves. J. Ethnopharmacol. 2008, 119, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.-J.; Sah, S.K.; Yang, H.S.; Lee, J.H.; Shin, J.; Kim, T.-Y. Rhododendrin inhibits toll-like receptor-7-mediated psoriasis-like skin inflammation in mice. Exp. Mol. Med. 2017, 49, e349. [Google Scholar] [CrossRef] [Green Version]
- Nisar, M.; Ali, S.; Muhammad, N.; Gillani, S.N.; Shah, M.R.; Khan, H.; Maione, F. Antinociceptive and anti-inflammatory potential of Rhododendron arboreum bark. Toxicol. Ind. Health 2014, 32, 1254–1259. [Google Scholar] [CrossRef]
- Ribeiro, D.; Freitas, M.; Tomé, S.M.; Silva, A.; Porto, G.; Cabrita, E.J.; Marques, M.M.B.; Fernandes, E. Inhibition of LOX by flavonoids: A structure-activity relationship study. Eur. J. Med. Chem. 2014, 72, 137–145. [Google Scholar] [CrossRef]
- Ng, C.H.; Rullah, K.; Abas, F.; Lam, K.W.; Ismail, I.S.; Jamaludin, F.; Shaari, K. Hits-to-lead optimization of the natural compound 2,4,6-trihydroxy-3-geranyl-acetophenone (tHGA) as a potent LOX inhibitor: Synthesis, structure-activity relationship (SAR) study, and computational assignment. Molecules 2018, 23, 2509. [Google Scholar] [CrossRef] [Green Version]
- Olech, M.; Nowak, R.; Loś, R.; Rzymowska, J.; Malm, A.; Chrusciel, K. Biological activity and composition of teas and tinctures prepared from Rosa rugosa Thunb. Open Life Sci. 2012, 7, 172–182. [Google Scholar] [CrossRef]
- Cano, A.; Alcaraz, O.; Acosta, M.; Arnao, M.B. On-line antioxidant activity determination: Comparison of hydrophilic and lipophilic antioxidant activity using the ABTS•+ assay. Redox Rep. 2002, 7, 103–109. [Google Scholar] [CrossRef]
- Abdykerimova, S.; Sakipova, Z.; Nakonieczna, S.; Koch, W.; Biernasiuk, A.; Grabarska, A.; Malm, A.; Kozhanova, K.; Kukula-Koch, W. Superior antioxidant capacity of Berberis iliensis—HPLC-Q-TOF-MS based phytochemical studies and spectrophotometric determinations. Antioxidants 2020, 9, 504. [Google Scholar] [CrossRef]
- Hider, R.C.; Liu, Z.D.; Khodr, H.H. Metal chelation of polyphenols. Methods Enzymol. 2001, 335, 190–203. [Google Scholar] [CrossRef] [PubMed]
Sample | EX (g d.e./g d.w.) | TPC (mg of Gallic acid/g d.e.) | TFC (mg of Quercetin/g d.e.) | TTC (mg of Oleanolic acid/g d.e.) |
---|---|---|---|---|
RL40C-M | 0.12 ± 0.01 a | 5.88 ± 0.15 a | 1.79 ± 0.07 a | 140.17 ± 6.73 a |
RL80C-M | 0.19 ± 0.09 b | 10.96 ± 0.14 b | 3.54 ± 0.14 b | 186.79 ± 0.41 b |
RL140C-M | 0.29 ± 0.04 c | 16.11 ± 0.04 c | 6.17 ± 0.48 c | 213.96 ± 13.73 c |
RL40C-80M | 0.16 ± 0.01 b | 7.67 ± 0.16 a | 2.15 ± 0.16 b | 158.33 ± 12.37 a |
RL80C-80M | 0.26 ± 0.00 c | 12.49 ± 0.53 b | 4.45 ± 0.16 c | 220.38 ± 0.29 c |
RL140C-80M | 0.40 ± 0.00 d | 23.18 ± 0.22 d | 6.66 ± 0.21 c | 220.38 ± 0.29 c |
RL40C-W | 0.18 ± 0.02 b | 9.66 ± 0.24 b | 2.16 ± 0.07 b | 152.67 ± 5.66 a |
RL80C-W | 0.29 ± 0.06 c | 15.47 ± 0.20 c | 4.13 ± 0.13 c | 157.13 ± 0.18 a |
RL140C-W | 0.47 ± 0.05 d | 25.64 ± 0.74 d | 7.59 ± 0.95 d | 163.48 ± 5.54 b |
Sample | RL40C-M | RL80C-M | RL140C-M | RL40C-80M | RL80C-80M | RL140C-80M | RL40C-W | RL80C-W | RL140C-W |
---|---|---|---|---|---|---|---|---|---|
Hydroxybenzoic acids | |||||||||
Gallic | 227.0 ± 4.2 b | 172.4 ± 3.1 a | 251.0 ± 7.1 b | 173.3 ± 2.4 a | 177.3 ± 1.0 b | 348.0 ± 5.7 c | 86.7 ± 0.1 a | 227.1 ± 4.20 b | 273.0 ± 4.2 c |
Protocatechuic | 785.0 ± 24.0 b | 736.0± 5.7 b | 731.0 ± 9.9 b | 922.0 ± 14.1 c | 652.0 ± 11.3 b | 878.0 ± 2.8 c | 485.1 ± 4.2 a | 855.0 ± 9.9 c | 939.2 ± 7.1 c |
4-hydroxy-benzoic | BQL | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 |
Gentisic | 0 ± 0 | 0 ± 0 | 10.6 ± 0.1 c | 0 ± 0 | 0 ± 0 | 8.2 ± 0.0 c | 0 ± 0 | 2.8 ± 0.0 a | 6.8 ± 0.1 b |
Salicylic | BQL | 0 ± 0 | 0 ± 0 | BQL | BQL | 0 ± 0 | 0 ± 0 | BQL | BQL |
Hydroxycinnamic acids | |||||||||
5-O-caffeoylquinic | 9060.0 ± 56.6 c | 8810.0 ± 155.6 c | 8590.0 ± 14.1 c | 10,580.0 ± 141.4c | 10,030.0 ± 127.3 c | 8080.0 ± 46.6 b | 6720.0 ± 56.6 b | 6910.0 ± 99.0 b | 4239.0 ± 86.3 a |
Caffeic | 126.1 ± 2.4 c | 107.9 ± 0.4 c | 19.7 ± 0.2 a | 83.7 ± 0.4 b | 55.1 ± 0.7 a | BQL | BQL | 28.4 ± 0.28 a | BQL |
p-coumaric | 247.0 ± 7.1 c | 175.5 ± 3.5 b | 91.2 ± 1.7 a | 244.0 ± 5.7 c | 130.6 ± 2.0 b | 116.7 ± 1.0 b | 47.1 ± 2.7 a | 94.7 ± 3.8 a | 105.8 ± 0.3 a |
Ferulic | BQL | BQL | 0 ± 0 | BQL | BQL | BQL | BQL | BQL | BQL |
Isoferulic | BQL | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | 0 ± 0 | BQL | 0 ± 0 |
Dihydroflavonols | |||||||||
Taxifolin | 45.6 ± 0.3 c | 38.3 ± 0.1 b | 34.7 ± 1.3 b | 46.3 ± 0.7 c | 37.2 ± 0.6 b | 30.3 ± 1.0 a | 23.8 ± 0.3 a | 28.0 ± 0.7 a | BQL |
Flavan-3-ols | |||||||||
Catechin | 934.0 ± 14.1 a | 839.0 ± 15.6 a | 3460.0 ± 28.3 c | 1689.0 ± 55.2 a | 3470.0 ± 70.7 c | 2050.0 ± 42.4 b | 1938.0 ± 36.8 b | 2120.0 ± 0.2 b | 2520.0 ± 28.3 b |
Flavanones | |||||||||
Eriodictyol 7-O-glucopyranoside | BQL | BQL | BQL | BQL | BQL | BQL | BQL | BQL | BQL |
Naringenin 7-glucoside | BQL | BQL | 0 ± 0 | BQL | BQL | 0 ± 0 | BQL | BQL | 0 ± 0 |
Eriodictyol | 23.3 ± 0.7 c | 24.1 ± 0.7 c | 23.3 ± 1.0 c | 22.0 ± 0.6 c | 19.1 ± 0.5 c | 20.0 ± 0.7 c | 7.4 ± 0.2 a | 15.7 ± 0.2 b | 15.2 ± 5.7 b |
Flavonols | |||||||||
Hyperoside | 5005.0 ± 21.2 b | 7750.0 ± 70.7 c | 3670.0 ± 14.1 a | 7100.0 ± 84.9 c | 8600.0 ± 56.6 c | 3205.0 ± 21.2 a | 2780.0 ± 28.3 a | 3080.0 ± 56.6 a | 2038.5 ± 6.4 a |
Isoquercetin | 2420.0 ± 56.6 b | 2980.0 ± 27.3 c | 1978.0 ± 2.8 b | 3809.0 ± 15.6 c | 2970.0 ± 42.4 c | 1639.0 ± 1.4 a | 1241.0 ± 4.2 a | 1780.0 ± 2.8 a | 1058.0 ± 2.8 a |
Astragalin | BQL | BQL | BQL | BQL | BQL | BQL | BQL | BQL | BQL |
Quercitrin | 1385.0 ± 9.9 b | 1512.0 ± 8.5 c | 1179.0 ± 7.1 b | 1912.0 ± 67.9 c | 1889.0 ± 15.6 c | 899.0 ± 4.2 a | 847.0 ± 7.1 a | 943.0 ± 1.4 a | 623.0 ± 7.1 a |
Myricetin | 0 ± 0 | 0 ± 0 | 1567.0 ± 12.7 a | 0 ± 0 | BQL | 2150.0 ± 14.1 b | 0 ± 0 | 0 ± 0 | BQL |
Quercetin | 466.0 ± 8.5 c | 467.0 ± 7.1 c | 2695.0 ± 63.6 d | 394.5 ± 9.2 b | 301.0 ± 4.2 b | 2210.0 ± 42.4 d | BQL | 95.6 ± 7.1 a | 588.0 ± 5.7 c |
3-O-methyloquercetin | BQL | BQL | 4.7 ± 0.1 a | BQL | BQL | BQL | 0 ± 0 | BQL | BQL |
Flavones | |||||||||
Luteolin | BQL | BQL | BQL | 0 ± 0 | 0 ± 0 | BQL | 0 ± 0 | 0 ± 0 | 0 ± 0 |
Sample | DPPH (mg TE/g) | ABTS (mg TE/g) | ORAC (mg TE/g) | Chelating Power (mg Na2EDTA/g) |
---|---|---|---|---|
RL40C-M | 275.00 ± 6.57 | 88.79 ± 2.15 | 758.65 ± 31.81 | 6.22 ± 0.29 |
RL80C-M | 287.39 ± 14.77 | 133.58 ± 7.23 | 1011.59 ± 50.93 | 5.28 ± 0.13 |
RL140C-M | 537.42 ± 31.32 | 232.56 ± 11.21 | 940.99 ± 25.08 | 5.84 ± 0.19 |
RL40C-80M | 300.69 ± 0.74 | 108.87 ± 5.06 | 495.77 ± 23.27 | 6.13 ± 0.22 |
RL80C-80M | 414.48 ± 23.43 | 312.83 ± 4.87 | 987.42 ± 38.74 | 7.08 ± 0.13 |
RL140C-80M | 528.29 ± 7.04 | 217.74 ± 9.11 | 985.72 ± 33.93 | 6.44 ± 0.06 |
RL40C-W | 234.18 ± 0.50 | 285.71 ± 0.86 | 602.80 ± 27.68 | 2.76 ± 0.12 |
RL80C-W | 621.90 ± 1.67 | 349.41 ± 12.73 | 704.45 ± 26.15 | 4.13 ± 0.21 |
RL140C-W | 457.37 ± 17.00 | 312.73 ± 8.98 | 686.54 ± 19.94 | 2.78 ± 0.02 |
Sample | % LOX Inhibition |
---|---|
RL40C-M | 23.07 ± 0.65 a |
RL80C-M | 25.18 ± 0.31 a |
RL140C-M | 51.17 ± 0.82 b |
RL40C-80M | 58.93 ± 0.77 b |
RL80C-80M | 80.66 ± 1.10 d |
RL140C-80M | 67.45 ± 0.77 b |
RL40C-W | 67.50 ± 1.09 b |
RL80C-W | 90.13 ± 0.07 d |
RL140C-W | 73.49 ± 1.14 c |
Standard—NGDA (100 μM/well) | 100.00 ± 0.00 |
DPPH | ABTS | ORAC | Chelating Power | % LOX Inhibition | |
---|---|---|---|---|---|
TPC | 0.689 | 0.551 | nd | nd | 0.482 |
TFC | 0.715 | 0.492 | 0.374 | nd | 0.379 |
TTC | 0.440 | nd | 0.755 | 0.541 | nd |
Sum of phenolic acids | nd | nd | nd | 0.889 | nd |
Sum of flavonoid aglycones | 0.619 | nd | 0.401 | 0.326 | nd |
Sum of flavonoid glycosides | nd | nd | nd | 0.691 | nd |
Gallic acid | 0.683 | nd | 0.318 | nd | nd |
Protocatechuic acid | 0.430 | nd | nd | nd | nd |
5-O-caffeoylquinic acid | nd | nd | nd | 0.863 | nd |
p-coumaric acid | nd | nd | nd | 0.553 | nd |
Catechin | 0.561 | 0.663 | nd | nd | 0.624 |
Quercetin | 0.486 | nd | 0.451 | 0.367 | nd |
Hyperoside | nd | nd | 0.337 | 0.663 | nd |
Isoquercetin | nd | nd | nd | 0.686 | nd |
Quercitrin | nd | nd | 0.451 | 0.733 | nd |
Taxifolin | nd | nd | nd | 0.776 | nd |
Eriodictyol | nd | nd | 0.489 | 0.767 | nd |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olech, M.; Łyko, L.; Nowak, R. Influence of Accelerated Solvent Extraction Conditions on the LC-ESI-MS/MS Polyphenolic Profile, Triterpenoid Content, and Antioxidant and Anti-lipoxygenase Activity of Rhododendron luteum Sweet Leaves. Antioxidants 2020, 9, 822. https://doi.org/10.3390/antiox9090822
Olech M, Łyko L, Nowak R. Influence of Accelerated Solvent Extraction Conditions on the LC-ESI-MS/MS Polyphenolic Profile, Triterpenoid Content, and Antioxidant and Anti-lipoxygenase Activity of Rhododendron luteum Sweet Leaves. Antioxidants. 2020; 9(9):822. https://doi.org/10.3390/antiox9090822
Chicago/Turabian StyleOlech, Marta, Lena Łyko, and Renata Nowak. 2020. "Influence of Accelerated Solvent Extraction Conditions on the LC-ESI-MS/MS Polyphenolic Profile, Triterpenoid Content, and Antioxidant and Anti-lipoxygenase Activity of Rhododendron luteum Sweet Leaves" Antioxidants 9, no. 9: 822. https://doi.org/10.3390/antiox9090822
APA StyleOlech, M., Łyko, L., & Nowak, R. (2020). Influence of Accelerated Solvent Extraction Conditions on the LC-ESI-MS/MS Polyphenolic Profile, Triterpenoid Content, and Antioxidant and Anti-lipoxygenase Activity of Rhododendron luteum Sweet Leaves. Antioxidants, 9(9), 822. https://doi.org/10.3390/antiox9090822