A Potent Lignan from Prunes Alleviates Inflammation and Oxidative Stress in Lithium/Pilocarpine-Induced Epileptic Seizures in Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Drugs
2.2. Plant Material
2.3. Preparation of the Plant Extract
2.4. Isolation and Identification of Pinoresinol-4-O-β-d-glucopyranoside
2.4.1. Isolation of Pinoresinol-4-O-β-d-glucopyranoside
2.4.2. Identification of Pinoresinol-4-O-β-d-glucopyranoside
Nuclear Magnetic Resonance Spectroscopy (NMR)
Pinoresinol-4-O-β-d-glucopyranoside
2.5. Evaluation of the Biological Activity In Vitro
2.5.1. Determination of the Antioxidant Activity using Diphenyl-1-picrylhydrazyl Scavenging Capacity Assay
2.5.2. Determination of the Anti-Inflammatory Activity using Lipoxygenase Inhibition Assay
2.6. Evaluation of the Anti-Epileptic Activity In Vivo
2.6.1. Animals and Animal Treatment
2.6.2. Experimental Design of Status Epilepticus in a Rat Model
2.6.3. Evaluation of the Biochemical Parameters
Estimation of Tissue Malondialdehyde (MDA)
Estimation of Catalase Activity
2.6.4. Histological Examination
2.6.5. Immunohistochemical Expression of COX-2 and iNOS Proteins
2.6.6. Statistical Analysis
2.7. Molecular Modelling Studies
3. Results
3.1. Isolation and Identification of Pinoresinol-4-O-β-d-glucopyranoside
3.2. Determination of the Antioxidant Activity In Vitro
3.3. Determination of the Anti-Inflammatory Activity
3.4. Effect of Pretreatment with Pinoresinol-4-O-β-d-glucopyranoside on LiCl/Pilocarpine-Induced Seizures
3.5. Effect of Pretreatment with Pinoresinol-4-O-β-d-glucopyranoside on Oxidative Stress Markers
3.6. Effect of Pretreatment with Pinoresinol-4-O-β-d-glucopyranoside on Neuronal Histology
3.7. Effect of Pretreatment with Pinoresinol-4-O-β-d-glucopyranoside on Neuroinflammation Manifested by COX-2, iNOS, and GFAP Immunohistochemical Expression
3.8. Molecular Modelling Studies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hema, B.; Bhupendra, S.; Saleem, T.M.; Gauthaman, K. Anticonvulsant effect of Drosera burmannii Vahl. Int. J. Appl. Res. Nat. Prod. 2009, 2, 1–4. [Google Scholar]
- Alexopoulos, A.V. Pharmacoresistant epilepsy: Definition and explanation. Epileptology 2013, 1, 38–42. [Google Scholar] [CrossRef]
- González-Reyes, S.; Santillán-Cigales, J.J.; Jiménez-Osorio, A.S.; Pedraza-Chaverri, J.; Guevara-Guzmán, R. Glycyrrhizin ameliorates oxidative stress and inflammation in hippocampus and olfactory bulb in lithium/pilocarpine-induced status epilepticus in rats. Epilepsy Res. 2016, 126, 126–133. [Google Scholar] [CrossRef]
- Lu, Y.M.; Mansuy, I.M.; Kandel, E.R.; Roder, J. Calcineurin-mediated LTD of GABAergic inhibition underlies the increased excitability of CA1 neurons associated with LTP. Neuron 2000, 26, 197–205. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Baghotia, A.; Kumar, S. Anticonvulsant effect of the ethanol extract of Caesalpinia pulcherrima (L.) Sw., Fabaceae, leaves. Rev. Bras. Farmacogn. 2010, 20, 751–755. [Google Scholar] [CrossRef]
- Quintans-Júnior, L.; Souza, T.; Leite, B.; Lessa, N.; Bonjardim, L.; Santos, M.; Alves, P.; Blank, A.; Antoniolli, A. Phythochemical screening and anticonvulsant activity of Cymbopogon winterianus Jowitt (Poaceae) leaf essential oil in rodents. Phytomedicine 2008, 15, 619–624. [Google Scholar] [CrossRef]
- Fathy, S.; Emam, M.; Agwa, S.A.; Zahra, F.A.; Youssef, F.; Sami, R. The antiproliferative effect of Origanum majorana on human hepatocarcinoma cell line: Suppression of NF-kB. Cell. Mol. Biol. 2016, 62, 80–84. [Google Scholar]
- Bouayed, J.; Rammal, H.; Dicko, A.; Younos, C.; Soulimani, R. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J. Neurolog. Sci. 2007, 262, 77–84. [Google Scholar] [CrossRef]
- Kim, M.-R.; Moon, H.T.; Lee, D.G.; Woo, E.-R. A new lignan glycoside from the stem bark of Styrax japonica. Arch. Pharm. Res. 2007, 30, 425–430. [Google Scholar] [CrossRef]
- Nenadis, N.; Lazaridou, O.; Tsimidou, M.Z. Use of reference compounds in antioxidant activity assessment. J. Agric. Food Chem. 2007, 55, 5452–5460. [Google Scholar] [CrossRef]
- Youssef, F.; Ashour, M.; Sobeh, M.; El-Beshbishy, H.; Singab, A.; Wink, M. Eremophila maculata-isolation of a rare naturally-occurring lignan glycoside and the hepatoprotective activity of the leaf extract. Phytomedicine 2016, 23, 1484–1493. [Google Scholar] [CrossRef]
- Wu, H. Affecting the activity of soybean lipoxygenase-1. J. Mol. Graph. 1996, 14, 331–337. [Google Scholar] [CrossRef]
- Ashour, M.L.; Youssef, F.S.; Gad, H.A.; El-Readi, M.Z.; Bouzabata, A.; Abuzeid, R.M.; Sobeh, M.; Wink, M. Evidence for the anti-inflammatory activity of Bupleurum marginatum (Apiaceae) extracts using in vitro and in vivo experiments supported by virtual screening. J. Pharm. Pharmacol. 2018, 70, 952–963. [Google Scholar] [CrossRef] [PubMed]
- Racine, R.J. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 1972, 32, 281–294. [Google Scholar] [CrossRef]
- Okaichi, Y.; Ishikura, Y.; Akimoto, K.; Kawashima, H.; Toyoda-Ono, Y.; Kiso, Y.; Okaichi, H. Arachidonic acid improves aged rats’ spatial cognition. Physiol. Behav. 2005, 84, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Banchroft, J.; Stevens, A.; Turner, D. Theory and Practice of Histological Techniques; Churchill Livingstone: New York, NY, USA; London, UK; San Francisco, CA, USA; Tokyo, Japan, 1996. [Google Scholar]
- Curtis, M.J.; Alexander, S.; Cirino, G.; Docherty, J.R.; George, C.H.; Giembycz, M.A.; Hoyer, D.; Insel, P.A.; Izzo, A.A.; Ji, Y. Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. Br. J. Pharmacol. 2018, 175, 987–993. [Google Scholar] [CrossRef] [PubMed]
- Janibekov, A.A.; Youssef, F.S.; Ashour, M.L.; Mamadalieva, N.Z. New flavonoid glycosides from two Astragalus species (Fabaceae) and validation of their antihyperglycaemic activity using molecular modelling and in vitro studies. Ind. Crops Prod. 2018, 118, 142–148. [Google Scholar] [CrossRef]
- Thabet, A.A.; Youssef, F.S.; El-Shazly, M.; El-Beshbishy, H.A.; Singab, A.N.B. Validation of the antihyperglycaemic and hepatoprotective activity of the flavonoid rich fraction of Brachychiton rupestris using in vivo experimental models and molecular modelling. Food Chem. Toxicol. 2018, 114, 302–310. [Google Scholar] [CrossRef]
- Ali, A.E.; Mahdy, H.M.; Elsherbiny, D.M.; Azab, S.S. Rifampicin ameliorates lithium-pilocarpine-induced seizures, consequent hippocampal damage and memory deficit in rats: Impact on oxidative, inflammatory and apoptotic machineries. Biochem. Pharmacol. 2018, 156, 431–443. [Google Scholar] [CrossRef]
- Aguiar, C.C.T.; Almeida, A.B.; Araújo, P.V.P.; De Abreu, R.N.D.C.; Chaves, E.M.C.; Do Vale, O.C.; Macêdo, D.S.; Woods, D.J.; Fonteles, M.M.D.F.; Vasconcelos, S.M.M. Oxidative stress and epilepsy: Literature review. Oxid. Med. Cell. Long. 2012, 2012. [Google Scholar] [CrossRef]
- Shin, E.-J.; Jeong, J.H.; Chung, Y.H.; Kim, W.-K.; Ko, K.-H.; Bach, J.-H.; Hong, J.-S.; Yoneda, Y.; Kim, H.-C. Role of oxidative stress in epileptic seizures. Neurochem. Int. 2011, 59, 122–137. [Google Scholar] [CrossRef]
- Golechha, M.; Sarangal, V.; Bhatia, J.; Chaudhry, U.; Saluja, D.; Arya, D.S. Naringin ameliorates pentylenetetrazol-induced seizures and associated oxidative stress, inflammation, and cognitive impairment in rats: Possible mechanisms of neuroprotection. Epilepsy Behav. 2014, 41, 98–102. [Google Scholar] [CrossRef]
- Reynolds, I.J.; Hastings, T.G. Glutamate induces the production of reactive oxygen species in cultured forebrain neurons following NMDA receptor activation. J. Neurosci. 1995, 15, 3318–3327. [Google Scholar] [CrossRef]
- Korkina, L. Phenylpropanoids as naturally occurring antioxidants: From plant defense to human health. Cell. Mol. Biol. 2007, 53, 15–25. [Google Scholar]
- Youssef, F.S.; Ashour, M.L.; Ebada, S.S.; Sobeh, M.; El-Beshbishy, H.A.; Singab, A.N.; Wink, M. Antihyperglycaemic activity of the methanol extract from leaves of Eremophila maculata (Scrophulariaceae) in streptozotocin-induced diabetic rats. J. Pharm. Pharmacol. 2017, 69, 733–742. [Google Scholar] [CrossRef]
- Li, J.; Liang, X.; Zhou, B.; Chen, X.; Xie, P.; Jiang, H.; Jiang, Z.; Yang, Z.; Pan, X. (+)-pinoresinol-O-β-D-glucopyranoside from Eucommia ulmoides Oliver and its anti-inflammatory and antiviral effects against influenza A (H1N1) virus infection. Mol. Med. Rep. 2019, 19, 563–572. [Google Scholar] [CrossRef]
- Kunz, T.; Oliw, E.H. The selective cyclooxygenase-2 inhibitor rofecoxib reduces kainate-induced cell death in the rat hippocampus. Eur. J. Neurosci. 2001, 13, 569–575. [Google Scholar] [CrossRef]
- Payandemehr, B.; Khoshneviszadeh, M.; Varastehmoradi, B.; Gholizadeh, R.; Bahremand, T.; Attar, H.; Bahremand, A.; Dehpour, A.R. A COX/5-LOX inhibitor licofelone revealed anticonvulsant properties through iNOS diminution in mice. Neurochem. Res. 2015, 40, 1819–1828. [Google Scholar] [CrossRef]
- Sobeh, M.; Mahmoud, M.F.; Petruk, G.; Rezq, S.; Ashour, M.L.; Youssef, F.S.; El-Shazly, A.M.; Monti, D.M.; Abdel-Naim, A.B.; Wink, M. Syzygium aqueum: A polyphenol-rich leaf extract exhibits antioxidant, hepatoprotective, pain-killing and anti-inflammatory activities in animal models. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef]
- In, S.-J.; Seo, K.-H.; Song, N.-Y.; Lee, D.-S.; Kim, Y.-C.; Baek, N.-I. Lignans and neolignans from the stems of Vibrunum erosum and their neuroprotective and anti-inflammatory activity. Arch. Pharm. Res. 2015, 38, 26–34. [Google Scholar] [CrossRef]
- Yang, E.-J.; Lee, J.-Y.; Park, S.-H.; Lee, T.; Song, K.-S. Neuroprotective effects of neolignans isolated from Magnoliae cortex against glutamate-induced apoptotic stimuli in HT22 cells. Food Chem. Toxicol. 2013, 56, 304–312. [Google Scholar] [CrossRef]
Seizure Occurrence | Mortality | ||||||
---|---|---|---|---|---|---|---|
Group | No of Animals and | Convulsed | Non-Convulsed | %Convulsed | Survived | Dead | %Mortality |
Control | 6 | 0 | 6 | 0% | 6 | 0 | 0% |
Pilo + Li | 6 | 6 | 0 | 100% | 3 | 3 | 50% |
PGu (25 mg/kg) | 6 | 5 | 1 | 83% | 4 | 2 | 33% |
PGu (50 mg/kg) | 6 | 2 | 4 | 33% | 6 | 0 | 0% |
Group | MDA (nmol/g tissue) | % Change | Catalase (U/g tissue) | %Change |
---|---|---|---|---|
Control | 58.7 ± 3.3 | −53.41% b | 44.6 ± 1.9 | +54.86% b |
Pilo + Li | 126 # ± 6.3 | +114.7% a | 28.8 # ± 0.7 | −35.4% a |
PGu (25 mg/kg) | 109.3 ± 5.8 | −13.3% b | 34.4 ± 1.8 | +19.4% b |
PGu (50 mg/kg) | 95.5 * ± 5.9 | −24.2% b | 41.6 * ± 1.3 | +44.4% b |
Histopathological Parameter | Control | LiCl/pilo | PGu (25 mg/kg) | PGu (50 mg/kg) |
---|---|---|---|---|
Nuclear pyknosis | − | +++ | +++ | − |
Edema | − | +++ | ++ | + |
Vascular congestion | − | +++ | ++ | + |
Degeneration | − | +++ | +++ | − |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, F.S.; Menze, E.T.; Ashour, M.L. A Potent Lignan from Prunes Alleviates Inflammation and Oxidative Stress in Lithium/Pilocarpine-Induced Epileptic Seizures in Rats. Antioxidants 2020, 9, 575. https://doi.org/10.3390/antiox9070575
Youssef FS, Menze ET, Ashour ML. A Potent Lignan from Prunes Alleviates Inflammation and Oxidative Stress in Lithium/Pilocarpine-Induced Epileptic Seizures in Rats. Antioxidants. 2020; 9(7):575. https://doi.org/10.3390/antiox9070575
Chicago/Turabian StyleYoussef, Fadia S., Esther T. Menze, and Mohamed L. Ashour. 2020. "A Potent Lignan from Prunes Alleviates Inflammation and Oxidative Stress in Lithium/Pilocarpine-Induced Epileptic Seizures in Rats" Antioxidants 9, no. 7: 575. https://doi.org/10.3390/antiox9070575
APA StyleYoussef, F. S., Menze, E. T., & Ashour, M. L. (2020). A Potent Lignan from Prunes Alleviates Inflammation and Oxidative Stress in Lithium/Pilocarpine-Induced Epileptic Seizures in Rats. Antioxidants, 9(7), 575. https://doi.org/10.3390/antiox9070575