Study of Antioxidant Activity of Some Medicinal Plants Having High Content of Caffeic Acid Derivatives
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Chemicals
2.3. Extraction
2.4. HPLC Analysis of Caffeic Acid Derivatives
2.5. Antioxidant Activity (AA): Free-Radical-Scavenging Ability by the Use of an ABTS Radical Cation
2.6. Antioxidant Activity (AA): Free-Radical-Scavenging Ability by the Use of a DPPH Radical
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bordoloi, M.; Bordoloi, P.K.; Dutta, P.P.; Singh, V.; Nath, S.; Narzary, B.; Bhuyan, P.D.; Rao, P.G.; Barua, I.C. Studies on some edible herbs: Antioxidant activity, phenolic content, mineral content and antifungal properties. J. Funct. Foods 2016, 23, 220–229. [Google Scholar] [CrossRef]
- Patay, B.É.; Sali, N.; Köszegi, T.; Csepregi, R.; Balázs, V.L.; Németh, T.S.; Németh, T.; Papp, N. Antioxidant Potential, Tannin and Polyphenol Contents of Seed and Pericarp of Three Coffea Species. Asian Pac. J. Trop. Med. 2016, 9, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Csepregi, R.; Temesföi, V.; Das, S.; Alberti, A.; Tóth, C.A.; Herczeg, R.; Papp, N.; Köszegi, T. Cytotoxic, Antimicrobial, Antioxidant Properties and Effects on Cell Migration of Phenolic Compounds of Selected Transylvanian Medicinal Plants. Antioxidants 2020, 9, 166. [Google Scholar] [CrossRef]
- Vauzour, D.; Rodriguez-Mateos, A.; Corona, G.; Oruna-Concha, M.J.; Spencer, J.P.E. Polyphenols and Human Health: Prevention of Disease and Mechanisms of Action. Nutrients 2010, 2, 1106–1131. [Google Scholar] [CrossRef] [PubMed]
- Agunloye, O.M.; Oboh, G.; Ademiluyi, A.O.; Ademosun, A.O.; Akindahunsi, A.A.; Oyagbemi, A.A.; Akindahunsi, A.A.; Oyagbemi, A.A.; Omobowale, T.O.; Ajibade, T.O.; et al. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed. Pharmacother. 2019, 109, 450–458. [Google Scholar] [CrossRef]
- Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Rosario, A.C.R.S.; da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Front. Oncol. 2019. [Google Scholar] [CrossRef]
- Jaiswal, R.; Matei, M.F.; Deshpande, S.; Kuhnert, N. Strategies for Selective Classes of Compounds. Identification and Characterization of Hydroxycinnamates of Six Galium Species from the Rubiaceae Family. In Handbook of Chemical and Biological Plant Analytical Methods, 2nd ed.; Hostettmann, K., Chen, S., Marston, A., Stuppner, H., Eds.; John Wiley & Sons Ltd.: West Sussex, UK, 2014; Volume 2, pp. 505–524. [Google Scholar]
- Craig, A.P.; Fields, C.; Liang, N.; Kitts, D.; Erickson, D. Performance review of a fast HPLC-UV method for the quantification of chlorogenic acids in green coffee bean extracts. Talanta 2016, 154, 481–485. [Google Scholar] [CrossRef]
- Liang, N.; Kitts, D.D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2016, 8, 16. [Google Scholar] [CrossRef]
- Marques, V.; Farah, A. Chlorogenic acids and related compounds in medicinal plants and infusions. Food Chem. 2009, 113, 1370–1376. [Google Scholar] [CrossRef]
- Corso, M.P.; Vignoli, J.A.; de Toledo Benassi, M. Development of an instant coffee enriched with chlorogenic acids. J. Food Sci. Technol. 2016, 53, 1380–1388. [Google Scholar] [CrossRef]
- Rytel, E.; Tajner-Czopek, A.; Kita, A.; Aniołowska, M.; Kucharska, A.Z.; Sokół-Łętowska, A.; Hamouz, K. Content of polyphenols in coloured and yellow fleshed potaoes during dices processing. Food Chem. 2014, 161, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Ru, W.; Pang, Y.; Gan, Y.; Liu, Q.; Bao, J. Phenolic compounds and antioxidative activities of potato cultivars with white, yellow, red and purple flesh. Antioxidants 2019, 9, 419. [Google Scholar] [CrossRef]
- Silveira, A.C.; Falagán, N.; Aguayo, E.; Vilaró, F.; Escalona, V.H. Compositional changes on colored and light-yellow-fleshed potatoes subjected to two cooking processes. CYTA-J. Food 2017, 15, 241–248. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Malhorta, S.K. Caraway. In Handbook of Herbs and Spices, 2nd ed.; Peter, K.V., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2012; Volume 2, pp. 225–244. [Google Scholar]
- Vallverdú-Queralt, A.; Regueiro, J.; Alvarenga, J.F.R.; Martinez-Huelamo, M.; Leal, L.N.; Lamuela-Raventos, R.M. Characterization of the phenolic and antioxidant profiles of selected culinary herbs and spices: Caraway, turmeric, dill, marjoram and nutmeg. Food Sci. Technol. 2015, 35, 189–195. [Google Scholar] [CrossRef]
- Kim, M.R.; Lee, J.Y.; Lee, H.H.; Aryal, D.K.; Kim, Y.G.; Kim, S.K.; Woo, E.R.; Kang, K.W. Antioxidative effects of quercetin-glycosides isolated from the flower buds of Tussilago farfara L. Food Chem. Toxicol. 2006, 44, 1299–1307. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, S.; Du, M.; Zhu, M.J. Dandelion extract suppresses reactive oxidative species and inflammasome in intestinal epithelial cells. J. Funct. Foods 2017, 29, 10–18. [Google Scholar] [CrossRef]
- Martinez, M.; Poirrier, P.; Chamy, R.; Prufer, D.; Schulze-Gronover, C.; Jorquera, L.; Ruiz, G. Taraxacum officinale and related species—An ethnopharmacological review and its potential as a commercial medicinal plant. J. Ethnopharmacol. 2015, 169, 244–262. [Google Scholar] [CrossRef]
- Charles, D.J. Antioxidant Properties of Spices, Herbs and Other Sources, 1st ed.; Springer: New York, NY, USA, 2013; pp. 1–612. [Google Scholar]
- Chaleshtori, R.S.; Rokni, N.; Razavilar, V.; Kopae, M.R. The Evaluation of the Antibacterial and Antioxidant Activity of Tarragon (Artemisia dracunculus L.) Essential Oil and Its Chemical Composition. Jundishapur J. Microbiol. 2013, 6, e7877. [Google Scholar] [CrossRef]
- Pripdeevech, P.; Luang, M.F.; Wongpornchai, S.; Mai, C. Tarragon. In Handbook of Herbs and Spices, 2nd ed.; Peter, K.V., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2012; Volume 2, pp. 504–510. [Google Scholar]
- Munivand, H.; Babalar, M.; Tabrizi, L.; Craker, L.E.; Shokrpour, M.; Hadian, J. Antioxidant Properties and Principal Phenolic Phytochemicals of Iranian Tarragon(Artemisia dracunculus L.) Accessions. Hortic. Environ. Biotechnol. 2017, 58, 414–422. [Google Scholar] [CrossRef]
- Jeszka-Skowron, M.; Flaczyk, E.; Jeszka, J.; Krejpcio, Z.; Król, E.; Buchowski, M.S. Mulberry leaf extract intake reduces hyperglycaemia in streptozotocin(STZ)-induced diabetic rats fed high-fat diet. J. Funct. Foods 2014, 8C, 9–17. [Google Scholar] [CrossRef]
- Johnson, C.B.; Franz, C. Breading Research on Aromatic and Medicinal Plants, 1st ed.; The Haword Press, Inc.: New York, NY, USA, 2002; pp. 1–437. [Google Scholar]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Urbančič, S.; Kolar, M.H.; Dimitrijevic, D.; Demsar, L.; Vidrih, R. Stabilisation of sunflower oil and reduction of acrylamide formation of potato with rosemary extract during deep-fat frying. LWT Food Sci. Technol. 2014, 57, 671–678. [Google Scholar] [CrossRef]
- Morales, G.; Jimenez, M.; Garcia, O.; Mendoza, M.R.; Beristain, C.I. Effect on natural extracts on the formulation of acrylamide in fried potatoes. LWT Food Sci. Technol. 2014, 58, 587–593. [Google Scholar] [CrossRef]
- Kahkeshani, N.; Saeidnia, S.; Addollahi, M. Role of antioxidants and phytochemicals on acrylamide mitigation from food and reducing its toxicity. J. Food Sci. Technol. 2015, 52, 3169–3186. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Jokić, S.; Mujić, I.; Bilić, M.; Velić, D. Effect of Extraction Conditions on the Extractability of Phenolic Compounds from Lyophilised Fig Fruits (Ficus Carica L.). Pol. J. Food Nutr. Sci. 2011, 61, 195–199. [Google Scholar] [CrossRef]
- Kucharska, A.Z.; Sokół-Łętowska, A.; Oszmiański, J.; Piórecki, N.; Fecka, I. Iridoids, phenolic compounds and antioxidant activity of edible honeysuckle berries(Lonicera caerulea var. kamtschatica Sevast.). Molecules 2017, 22, 405. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Yen, G.C.; Chen, H.Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- StatSoft, (Electronic Version) Inc. Electronic Statistics Textbook; StatSoft: Tulsa, OK, USA, 2013. [Google Scholar]
- Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the Six Isomers of Dicaffeoylquinic Acid by LC-MSn. J. Agric. Food Chem. 2005, 53, 3821–3832. [Google Scholar] [CrossRef]
- Dobravalskytė, D.; Venskutonis, P.R.; Talou, T.; Zebib, B.; Merah, O.; Ragažinskiene, O. Antioxidant Properties and Composition of Deodorized Extracts of Tussilago farfara L. Rec. Nat. Prod. 2013, 7, 201–209. [Google Scholar]
- Ivanov, I.G. Polyphenols Content and Antioxidant Activities of Taraxacum officinale F.H. Wigg(Dandelion) leaves. Int. J. Phytochem. Pharmacol. Res. 2014, 6, 889–893. [Google Scholar]
- Tsai, Y.-L.; Chiou, S.-Y.; Chan, K.-C.; Sung, J.-M.; Lin, S.-D. Caffeic acid derivatives, total phenols, antioxidant and antimutagenic activities of Echinacea purpurea flower extracts. LWT Food Sci. Technol. 2012, 46, 169–176. [Google Scholar] [CrossRef]
- Mirjalili, M.H.; Beheshti, S.; Shiraz, J.J. Lovage. In Handbook of Herbs and Spices, 2nd ed.; Peter, K.V., Ed.; Woodhead Publishing Limited: Cambridge, UK, 2012; Volume 2, pp. 371–386. [Google Scholar]
- Lin, L.-Z.; Harnly, J.M. LC-PDA-ESI/MS Identification of the Phenolic Components of Three Compositae Spices: Chamomile, Tarragon, and Mexican Arnica. Nat. Prod. Commun. 2012, 7, 749–752, PDF–446KCitation. [Google Scholar] [CrossRef] [PubMed]
- Khezrilu, B.J.; Heidari, R. The evaluation of antioxidant activities and phenolic compounds in leaves and inflorescence of (Artemisia dracunculus L.) by HPLC. J. Med. Plant. Res. 2014, 13, 41–50. [Google Scholar]
- Chu, Q.; Lin, M.; Tian, X.; Ye, J. Study on capillary electrophoresis-amperometric detection profiles of different parts of Morus alba L. J. Chromatogr. A 2006, 1116, 286–290. [Google Scholar] [CrossRef]
- Memon, A.A.; Memon, N.; Luthria, D.L.; Bhanger, M.I.; Pitafi, A.A. Phenolic acids profiling and antioxidant potential of mulberry(Morus laevigata W., Morus nigra L., Morus alba L.) leaves and fruits grown in Pakistan. Pol. J. Food Nutr. Sci. 2010, 60, 25–32. [Google Scholar]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chem. 2006, 99, 835–841. [Google Scholar] [CrossRef]
- Tan, M.C.; Tan, C.P.; Ho, C.W. Effects of extraction solvent system, time and temperature on total phenolic content of henna(Lawsonia inermis) stems. Int. Food Res. J. 2013, 20, 3117–3123. [Google Scholar]
- Pudziuvelyte, L.; Liaudanskas, M.; Jekabsone, A.; Sadauskiene, I.; Bernatoniene, J. Elsholtzia ciliata(Thunb.) Hyl. Extracts from Different Plant Parts: Phenolic Composition. Molecules 2020, 25, 1153. [Google Scholar] [CrossRef]
- Biel, W.; Jaroszewska, A.; Łysoń, E.; Telesiński, A. The chemical composition and antioxidant properties of common dandelion leaves compared with sea buckthorn. Can. J. Plant. Sci. 2017, 97, 1165–1174. [Google Scholar] [CrossRef]
- Sepahpour, S.; Selamat, J.; Manap, M.Y.A.; Khatib, A.; Razis, A.F.A. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems. Molecules 2018, 23, 402. [Google Scholar] [CrossRef]
- Mariutti, L.R.B.; Mattos, B.G.P.; Bragagnolo, N.; Mercadante, A.Z. Free Radical Scavenging Activity of Ethanolic Extracts from Herbs and Spices Commercialized in Brazil. Braz. Arch. Biol. Technol. 2008, 51, 1225–1232. [Google Scholar] [CrossRef]
- Sotiropoulou, N.S.; Megremi, S.F.; Tarantilis, P. Evaluation of Antioxidant Activity, Toxicity, and Phenolic Profile of Aqueous Extracts of Chamomile(Matricaria chamomilla L.) and Sage(Salvia officinalis L.) Prepared at Different Temperatures. Appl. Sci. 2020, 10, 2270. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Y.; Cen, Y.; Yang, D.; Qi, Z.; Hou, Z.; Han, S.; Cai, Z.; Liu, K. Bivariate Correlation Analysis of the Chemometric Profiles of Chinese Wild Salvia miltiorrhiza Based on UPLC-Qqq-MS and Antioxidant Activities. Molecules 2018, 23, 538. [Google Scholar] [CrossRef]
- Alu’datt, M.H.; Rababah, T.; Alhamad, L.M.; Al-Ghzawi, L.A.A.; Ereifej, K.; Gammoh, S.; Almajwal, A.; Hussein, M.N.; Raweshadeh, M. Optimization, characterization and biological properties of phenolic compounds extracted from Rosmarinus officinalis. J. Essent. Oil Res. 2017, 29, 375–384. [Google Scholar] [CrossRef]
Compound | Medicinal Plant | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | Col | D | L | T | Wm | |||||||
W | W/E | W | W/E | W | W/E | W | W/E | W | W/E | W | W/E | |
3-CQA | 0.54 b ± 0.01 | 0.55 A ± 0.03 | 0.78 b ± 0.02 | 1.20 B ± 0.01 | n.d. | n.d. | 2.15 c ± 0.06 | 5.34 D ± 0.05 | n.d. | 2.82 C ± 0.01 | 0.02 a ± 0.01 | 1.58 B ± 0.03 |
4-CQA | 0.44 b ± 0.01 | 0.79 A ± 0.04 | 1.59 c ± 0.03 | 2.53 C ± 0.03 | n.d. | n.d. | 1.01 c ± 0.02 | 1.69 B ± 0.03 | n.d. | 3.86 D ± 0.03 | 0.02 a ± 0.01 | 1.97 BC ± 0.03 |
5-CQA | 1.17 b ± 0.06 | 2.23 A ± 0.09 | 9.41 d ± 0.10 | 20.58 D ± 0.11 | 0.52 a ± 0.02 | 4.40 B ± 0.04 | 4.16 c ± 0.03 | 11.66 C ± 0.10 | n.d. | 28.92 D ± 0.11 | 0.14 a ± 0.02 | 7.16 B ± 0.07 |
3,4-diCQA | 0.13 a ± 0.03 | 0.63 A ± 0.03 | 3.18 b ± 0.08 | 51.58 B ± 0.10 | n.d. | n.d. | n.d. | n.d. | n.d. | 1.16 A ± 0.03 | n.d. | n.d. |
3,5-diCQA | 0.28 a ± 0.03 | 1.83 A ± 0.05 | 1.62 b ± 0.06 | 12.01 B ± 0.09 | n.d. | n.d. | n.d. | n.d. | n.d. | 18.58 C ± 0.08 | n.d. | n.d. |
4,5-diCQA | 0.16 a ± 0.02 | 1.40 A ± 0.04 | 0.24 b ± 0.02 | 13.25 C ± 0.06 | n.d. | n.d. | n.d. | n.d. | n.d. | 5.47 B ± 0.04 | n.d. | n.d. |
CTA | n.d. | n.d. | n.d. | n.d. | 0.39 ± 0.01 | 11.97 ± 0.08 | n.d. | n.d. | n.d. | n.d | n.d. | n.d. |
CCA-1 | n.d. | n.d. | n.d. | n.d. | n.d. | 73.83 ± 0.12 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
CCA-2 | n.d. | n.d. | n.d. | n.d. | n.d. | 4.73 ± 0.06 | n.d | n.d | n.d. | n.d. | n.d. | n.d. |
TOTAL | 2.72 b | 7.43 A | 16.18 d | 101.15 D | 0.91 a | 94.93 D | 7.32 c | 18.69 B | n.d | 60.81 C | 0.18 a | 10.71 A |
Antioxidant Activity | Medicinal Plant | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | Col | D | L | T | Wm | |||||||
W | W/E | W | W/E | W | W/E | W | W/E | W | W/E | W | W/E | |
ABTS | 144.06 b ± 0.17 | 182.84 A ± 0.86 | 320.80 d ± 1.09 | 390.00 D ± 1.13 | 165.45 b ± 1.11 | 277.25 B ± 1.02 | 194.44 c ± 0.88 | 331.03 C ± 0.99 | 224.13 c ± 0.26 | 406.29 D ± 1.14 | 59.42 a ± 0.08 | 180.74 A ± 0.98 |
DPPH | 31.65 b ± 0.10 | 107.52 B ± 0.81 | 51.63 d ± 0.09 | 268.52 D ± 1.06 | 31.56 b ± 0.08 | 95.06 A ± 0.98 | 49.24 cd ± 0.07 | 182.19 C ± 0.32 | 42.99 c ± 0.07 | 117.51 B ± 1.01 | 18.83 a ± 0.05 | 87.77 A ± 0.07 |
Caffeic Acid Derivatives | Water-Ethanolic Extracts | Water Extracts | ||
---|---|---|---|---|
ABTS | DPPH | ABTS | DPPH | |
3-CQA | 0.653 ** | 0.593 * | 0.503 * | n.s |
4-CQA | 0.798 ** | 0.715 ** | 0.542 * | 0.502 * |
5-CQA | 0.995 ** | 0.858 ** | 0.623 ** | 0.601 * |
3,4-diCQA | 0.823 ** | 0.776 ** | n.s | n.s |
3,5-diCQA | 0.603 * | 0.759 ** | n.s | n.s |
4,5-diCQA | 0.673 ** | 0.574 * | n.s | n.s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tajner-Czopek, A.; Gertchen, M.; Rytel, E.; Kita, A.; Kucharska, A.Z.; Sokół-Łętowska, A. Study of Antioxidant Activity of Some Medicinal Plants Having High Content of Caffeic Acid Derivatives. Antioxidants 2020, 9, 412. https://doi.org/10.3390/antiox9050412
Tajner-Czopek A, Gertchen M, Rytel E, Kita A, Kucharska AZ, Sokół-Łętowska A. Study of Antioxidant Activity of Some Medicinal Plants Having High Content of Caffeic Acid Derivatives. Antioxidants. 2020; 9(5):412. https://doi.org/10.3390/antiox9050412
Chicago/Turabian StyleTajner-Czopek, Agnieszka, Mateusz Gertchen, Elżbieta Rytel, Agnieszka Kita, Alicja Z. Kucharska, and Anna Sokół-Łętowska. 2020. "Study of Antioxidant Activity of Some Medicinal Plants Having High Content of Caffeic Acid Derivatives" Antioxidants 9, no. 5: 412. https://doi.org/10.3390/antiox9050412
APA StyleTajner-Czopek, A., Gertchen, M., Rytel, E., Kita, A., Kucharska, A. Z., & Sokół-Łętowska, A. (2020). Study of Antioxidant Activity of Some Medicinal Plants Having High Content of Caffeic Acid Derivatives. Antioxidants, 9(5), 412. https://doi.org/10.3390/antiox9050412