You are currently viewing a new version of our website. To view the old version click .
Antioxidants
  • Review
  • Open Access

16 March 2020

Nitrates/Nitrites in Food—Risk for Nitrosative Stress and Benefits

and
Department of Meat Technology and Food Quality, University of Life Sciences in Lublin, ul. Skromna 8, 20-704 Lublin, Poland
*
Author to whom correspondence should be addressed.
This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress

Abstract

In the context of impact on human health, nitrite/nitrate and related nitrogen species such as nitric oxide (NO) are a matter of increasing scientific controversy. An increase in the content of reactive nitrogen species may result in nitrosative stress—a deleterious process, which can be an important mediator of damage to cell structures, including lipids, membranes, proteins and DNA. Nitrates and nitrites are widespread in the environment and occur naturally in foods of plant origin as a part of the nitrogen cycle. Additionally, these compounds are used as additives to improve food quality and protect against microbial contamination and chemical changes. Some vegetables such as raw spinach, beets, celery and lettuce are considered to contain high concentrations of nitrates. Due to the high consumption of vegetables, they have been identified as the primary source of nitrates in the human diet. Processed meats are another source of nitrites in our diet because the meat industry uses nitrates/nitrites as additives in the meat curing process. Although the vast majority of consumed nitrates and nitrites come from natural vegetables and fruits rather than food additives, there is currently a great deal of consumer pressure for the production of meat products free of or with reduced quantities of these compounds. This is because, for years, the cancer risks of nitrates/nitrites have been considered, since they potentially convert into the nitrosamines that have carcinogenic effects. This has resulted in the development and rapid expansion of meat products processed with plant-derived nitrates as nitrite alternatives in meat products. On the other hand, recently, these two ions have been discussed as essential nutrients which allow nitric oxide production and thus help cardiovascular health. Thus, this manuscript reviews the main sources of dietary exposure to nitrates and nitrites, metabolism of nitrites/nitrates, and health concerns related to dietary nitrites/nitrates, with particular emphasis on the effect on nitrosative stress, the role of nitrites/nitrates in meat products and alternatives to these additives used in meat products.

1. Introduction

Nitrate and nitrite ions are widespread in the environment and occur naturally in plant foods (vegetables) and water. The contribution of drinking-water to nitrate intake is usually low (less than 14%). However, due to the use of inorganic fertilizer, nitrate levels in water resources have increased in many places of the world, recently. In this context, in a situation where nitrate concentrations in drinking-water are below 10 mg/L, food (mainly vegetables) will be the main source of nitrate for the human. In the reverse situation, when the nitrate level in drinking-water is high (exceeding 50 mg L−1), water will definitely be the main source of exposure to nitrates [1,2].
Nitrates/nitrites can also be used as additives in food of animal origin. Nitrites (sodium nitrite—E249, potassium nitrite—E250) and nitrates (sodium nitrate—E251, potassium nitrate—E252) are authorized as food additives in the European Union under Commission Regulation (EU) No 1129/2011. They are used in food to stabilize processed meat and cheese. The regulation determines the maximum amount of nitrites and nitrates that may be added as a food additive during food processing. The amount of nitrite permitted for use in processed meat is currently 150 mg kg−1, with the exception of sterilized meat products for which the limit is 100 mg kg−1. The addition of sodium nitrate is allowed only in uncooked meat, to a maximum amount of 150 mg kg−1. Nitrites can also be present in dairy products from exogenous sources. The maximum concentration of nitrite allowed in the regulation for cheese is 150 mg kg−1.
Due to these sources of nitrates/nitrites, humans are exposed to these compounds. Some studies have estimated exposure to nitrites and nitrates [3,4,5]. According to the European Commission’s former Scientific Committee for Food (SCF) and the Joint FAO/WHO Expert Committee on Food Additives (JECFA), the current acceptable daily intake (ADI) for nitrites are 0.06 and 0.07 milligrams per kilogram of body weight per day, respectively. In the case of nitrates, both organizations establish the ADI at 3.7 mg/kg bw/day.
Nitrate intake with food is associated with some health risks. When these compounds are consumed, about 60%–70% is easily absorbed and rapidly excreted in urine. In humans, about 3% of nitrate appears in urine as urea and ammonia. Nitrates may also survive passage through the stomach and enter the circulatory system. A variety of highly bioactive reactive nitrogen oxide species are formed under acidic gastric conditions or in blood and tissues. These may be involved in the generation of nitrosamines of toxicological importance when there are secondary amines present in the stomach [6]. According to Ding et al. [6], the presence of dietary antioxidants inhibits the generation of nitrosamines. The process of nitrosamine formation was completely inhibited when the molar ratio of antioxidants and nitrite was higher than 2:1.
This manuscript on nitrates and nitrites in food will review the main sources of dietary exposure to nitrates and nitrites, metabolism of nitrites/nitrates, health concerns related to dietary nitrites/nitrates, the role of nitrites/nitrates in meat products and alternatives to these additives used in meat products.
A systematic and comprehensive article retrieval strategy that provided a general impression of the risk for nitrosative stress and benefits due to nitrate or nitrite consumption was conducted. The Web of Science was searched for articles of studies assessing the relationship between the risk of cancer the nitrate or nitrite consumption. Many relevant articles were obtained by combing the keywords (nitrate, nitrite, risk of nitrosative stress, cancer) in a more detailed retrieval strategy. Moreover, a manual search of the references of relevant articles has been done.

2. The Main Sources of Dietary Exposure to Nitrates and Nitrites

The largest amount of nitrates is accumulated in plants growing in a nitrate-rich environment [7]. Based on available data (Figure 1), the most important sources of dietary intake of nitrate are vegetables and fruit, contributing 50% to 75% to the overall dietary intake for both the UK and France [8]. Several factors affect accumulation of nitrates in plants. Generally, factors such as applications of fertilizers, nitrate reductase activity, growth rate and growth conditions, including intensity of light, level of rainfall, significantly affect the nitrate content in vegetables [9]. Research shows that leafy vegetables tend to have higher levels of nitrates compared to seeds or tubers. Therefore, rucola, lettuce and spinach have the highest nitrate content (Table 1). Beets and celery are also examples of vegetables containing a significant amount of nitrates. Moreover, as indicated by Lucarini et al. [10] the content of nitrates in vegetables is strongly influenced by seasonality and by the cultivation systems. Their findings indicated that lettuce biodynamically grown accumulated 1.3–2 times less nitrate than the respective organically grown plants.
Figure 1. General dietary exposure of nitrate and nitrite [8].
Table 1. Nitrate content in vegetables. EFSA: European Food Safety Authority.
Maximum levels for nitrate in vegetables, set in the EU has been amended several times. The current maximum levels are laid down in Regulation (EC) N. 1258/2011. The Regulation applies for the following foodstuff: spinach, lettuce, rocket and processed cereal-based foods and baby foods for infants and young children. All maximum levels are expressed as mg nitrate kg−1 fresh weight.
Studies have assessed that processing methods such as heat treatments and storage conditions cause the loss of nitrates. The effect of increased storage temperature on decreasing the nitrite content of vegetables has been indicated due to increased bacterial facilitated reduction of nitrates to nitrites [11]. Research carried out by Ding et al. [6] on the evaluation of nitrate and nitrite contents in pickled fruit and vegetable products indicated that nitrate content in pickled products (among others pickled beets, cauliflowers, carrots, Brussels sprouts) was generally lower compared to fresh fruits and vegetables. A reduction in nitrates was expected by these authors due to the production processes used (acidification, brining, pasteurization and shelf-stable).
According to WHO [12], humans generally consume between 1.2 and 3.0 mg of nitrite daily. Based on Nuñez de González et al. [13] research, approximately 80%–85% of human exposure to nitrates comes from vegetables. Other sources of nitrates in the human diet are fruits, cereals, water, meat products, and therapeutic treatments for angina and digital ischemia [13]. Larsson et al. [3] examined the intake of nitrates and nitrites in Swedish children. Based on their results, the mean intake of nitrites from cured meat among children in the age of 4–12 years was 0.007–0.13 mg kg−1 body weight per day while the mean intake of nitrates from several sources together including vegetables, fruit, cured meat and water was from 0.45 to 0.84 mg kg−1 body weight per day for the same groups of children. So, given the food sources, no child exceeded the ADI. However, when the total nitrite intake was included (an estimated 5% endogenous conversion of nitrates to nitrites) approximately 12% of the four-year-old children exceeded the nitrite ADI.
Temme et al. [4] assessed the dietary intake of nitrates and nitrites in Belgium. Processed vegetables, cheeses and meat products were taken into consideration as a source of nitrites/nitrates. In case of Belgian population, the mean usual daily intake of nitrates was 1.38 mg kg−1 bodyweight per day what means that exposure to nitrates at a mean intake constituted 38% of the ADI. The authors showed that half of the intake was from vegetables (especially lettuce), followed by from water and water-based drinks (20%). The average daily intake of nitrates and nitrites whose sources were cheese and meat products was 0.2% and 6% of the ADI, respectively. Research on nitrate/nitrite intakes by the Estonian population conducted by Tamme et al. [5] showed the highest mean values of nitrates in dill (2936 mg kg−1), spinach (2508 mg kg−1), lettuce (2167 mg kg−1) and beetroot (1446 mg kg−1). The mean intake of nitrates by the Estonian population was 58 mg day−1, while the average daily intake of nitrates by children (4–6 years) was 30 mg. The authors also estimated infants’ average daily intake of nitrates from consumption of foods based on vegetables—this was 7.8 mg.
Thus, the fact that the consumption of vegetables is increasing due to dietary recommendations requires reflection. The World Cancer Research Fund/American Institute for Cancer Research rates the evidence on diets high in vegetables and/or fruits in the context of protection against a variety of cancers. This research considered whether this effect is also related to high nitrite content [16].

4. The Use of Nitrites in Meat Processing

4.1. Role of Nitrites/Nitrates in Meat Products

The meat industry uses nitrates/nitrites as additives in the meat curing process during which the formation of nitric oxide from nitrites is a prerequisite step for reactions. The decrease in the amount of nitric oxide is due to its reactions with myoglobin and other substrates in meat, including amino acids such as cysteine [85]. About 10%–20% of originally added nitrites, referred to as residual nitrites, is typically present in meat products after production, and this amount of residual nitrites slowly declines during the storage period of cured meat products [15]. The average level of residual nitrites in meat products observed is: in France (50 mg kg−1) [86]; USA (4.7 mg kg−1) [13]; Denmark (6 mg kg−1); Belgium (4 mg kg−1) [87] and Iran (13.9 mg kg−1) [88].
In 2015, the International Agency for Research on Cancer (IARC) declared processed meat subjected to, inter alia, curing to be a Group 1 carcinogen based on data related to colorectal and stomach cancer. In this context, recent research has focused on finding alternatives for nitrates/nitrites in meat processing.
However, the multifunctional nature of nitrate means that no substance has been found that would fully replace the functions of nitrites or nitrates. The beneficial effects of nitrites/nitrates in cured meat products is related to the positive effect of color enhancement, the development of flavor typical of cured meat, the antimicrobial role and antioxidative effect [89]. Nitric oxide reaction with myoglobin (deoxymyoglobin and metmyoglobin) forms nitrosylmyoglobin complex, which outline the unique cured meat color. The role of nitrite/nitrate in the development of unique cured meat flavor is not fully understood. According to Jira [90], several compounds are formed when nitrite is bound to lipids and proteins. For example, when nitrites are bound to sulfur-containing amino acids of meat proteins, SH-residues with a specific aroma and flavor are formed and contribute to the unique flavor of cured meat. Antimicrobial effect of nitrite is related to inhibiting metabolic enzymes of bacteria, limiting oxygen uptake, and breaking the proton gradient. Nitrite is also well known to suppress the outgrowth of spores of Clostriduium botulinum [89]. Moreover, nitrite and nitrate act against lipid oxidation through the oxygen deletion [85]. Nitric oxide can react with radicals (hydroxyl radical, alkoxy radicals, and peroxyl radicals) interrupting radical chain reactions and bind to transitional metals.

4.2. Alternatives to Nitrites/Nitrates in Meat Products

Many studies have stated that vegetables and drinking-water contribute in larger amounts to nitrate and nitrite levels in the diet than cured meat [4,84]; however, the meat industry is particularly focused on reducing sodium nitrate levels. The reduction of food additives, especially nitrates, as expected by consumers is one of the most important difficulties faced in the meat industry. Consumers prefer natural additives instead of chemicals in meat product formulations due to health risks related to nitroso compounds. Therefore, studies on the reduction or elimination nitrites or nitrates and the use of natural compounds as nitrite/nitrate alternatives have increased in recent years. Thus, manufacturers of some processed meats have begun to use ‘natural’ sources of nitrates, such as celery juice, or beetroot or spinach extract. However, the nitrates present in vegetables are reduced to nitrites with bacterial cultures and as a result contribute to nitrosamine formation [84]. The reduction of nitrates to nitrites is carried out mainly by bacteria possessing nitrate reductase activity (staphylococci and micrococci), which are naturally present in meat or added during processing [91]. In the process of natural curing with natural sources of nitrate (natural juices, dried fruit and vegetable concentrates) starter culture with nitrate reductase activity to subsequently produce nitrite, e.g., Staphylococcus carnosus, are also used.
Several studies have shown that it is both feasible and possibly beneficial to use natural alternatives to nitrates and nitrites in meat products (Table 3). Sindelar et al. [92] conducted research using vegetable juice powder and starter culture as a nitrite replacer in cooked frankfurter-style sausage. They concluded that meat products manufactured with vegetable juice powder and a starter culture (containing Staphylococcus carnosus) addition were characterized by the quality and sensory attributes similar to traditionally cured products. Similarly, research performed by Kononiuk and Karwowska [93,94] showed a positive effect of the nitrite substitute used on the quality characteristics of the meat product. They indicated that the addition of acid whey had a similar effect on the tested parameters as nitrate/nitrite in fermented sausages.
Table 3. Alternatives to nitrites/nitrates used in meat products.

5. Conclusions

Nitrates and nitrites have recently become two of the most controversial substances present in food, both naturally occurring and derived from the additives used during processing. The majority of nitrates are consumed through vegetables. Nitrate levels in vegetables vary greatly, although leafy vegetables (especially rucola and spinach) contain the highest level of nitrates. Nitrate ion is not toxic, but due to the action of anaerobic bacteria (in gastrointestinal tract) 5%–20% of ingested nitrate is converted to nitrite, which is more toxic. The conversion to nitrite and further metabolism of nitrogen compounds to nitrosamines is related to negative effects of nitrate to consumers since is associated with the risk of gastrointestinal cancer. On the other hand, many reports point to benefits with nitric oxide formed as a result of nitrate conversion, including the control of blood pressure, improving cardiovascular health. The meat industry is particularly associated with the use of nitrates and nitrites as these substances are considered as a multifunctional food-additives in meat curing. Due to potential carcinogenic effect, nitrates and nitrites should be limited in the meat industry. However, finding the perfect alternative to nitrates/nitrites in meat processing is very difficult due to its multifunctional nature.

Author Contributions

Conceptualization, M.K.; methodology, M.K. and A.K.; writing—original draft preparation, M.K. and A.K.; writing—review and editing, M.K.; supervision, M.K. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. WHO. Nitrate and Nitrite in Drinking-Water. Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2016. [Google Scholar]
  2. Ward, M.H.; Jones, R.R.; Brender, J.D.; De Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; Van Breda, S.G. Drinking Water Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar]
  3. Larsson, K.; Darnerud, P.O.; Ilbäck, N.G.; Merino, L. Estimated dietary intake of nitrite and nitrate in Swedish children. Food Addit. Contam. Part A 2011, 28, 659–666. [Google Scholar] [CrossRef] [PubMed]
  4. Temme, E.H.M.; Vandevijvere, S.; Vinkx, C.; Huybrechts, I.; Goeyens, L.; Van Oyen, H. Average daily nitrate and nitrite intake in the Belgian population older than 15 years. Food Addit. Contam. Part A 2011, 28, 1193–1204. [Google Scholar] [CrossRef] [PubMed]
  5. Tamme, T.; Reinik, M.; Roasto, M.; Juhkam, K.; Tenno, T.; Kiis, A. Nitrates and nitrites in vegetables and vegetable-based products and their intakes by the Estonian population. Food Addit. Contam. 2006, 23, 355–361. [Google Scholar] [CrossRef] [PubMed]
  6. Ding, Z.; Johanningsmeier, S.D.; Price, R.; Reynolds, R.; Truong, V.-D.; Payton, S.C.; Breidt, F. Evolution of nitrate and nitrite content in pickled fruit and vegetable products. Food Control 2018, 90, 304–311. [Google Scholar] [CrossRef]
  7. Griesenbeck, J.S.; Steck, M.D.; Huber, J.C.; Sharkey, J.R.; Rene, A.A.; Brender, J.D. Development of estimates of dietary nitrates, nitrites, and nitrosamines for use with the Short Willet Food Frequency Questionnaire. Nutr. J. 2009, 8, 16. [Google Scholar] [CrossRef]
  8. EFSA. Nitrate in vegetables. Scientific opinion of the panel on contaminants in the food chain. EFSA J. 2008, 689, 1–79. [Google Scholar]
  9. Hord, N.G.; Tang, Y.; Bryan, N.S. Food sources of nitrates and nitrites: The physiologic context for potential health benefits. Am. J. Clin. Nutr. 2009, 90, 1–10. [Google Scholar] [CrossRef]
  10. Lucarini, M.; D’Evoli, L.; Tufi, S.; Gabrielli, P.; Paoletti, S.; Di Ferdinando, S.; Lombardi-Boccia, G. Influence of growing system on nitrate accumulation in two varieties of lettuce and red radicchio of Treviso. J. Sci. Food Agric. 2012, 92, 2796–2799. [Google Scholar] [CrossRef]
  11. Prasad, S.; Chetty, A.A. Flow injection assessment of nitrate contents in fresh and cooked fruits and vegetables grown in Fiji. J. Food Sci. 2011, 76, C1143–C1148. [Google Scholar] [CrossRef]
  12. World Health Organization. Nitrate and Nitrite in Drinking Water Development of WHO Guidelines for Drinking Water Quality; World Health Organization: Geneva, Switzerland, 2007; pp. 1–21. [Google Scholar]
  13. Nuñez de González, M.T.; Osburn, W.N.; Hardin, M.D.; Longnecker, M.; Garg, H.K.; Bryan, N.S.; Keeton, J.T. A Survey of nitrate and nitrite concentrations in conventional and organic-labeled raw vegetables at retail. J. Food Sci. 2015, 80, C942–C949. [Google Scholar] [CrossRef] [PubMed]
  14. Roila, R.; Branciari, R.; Staccini, B.; Ranucci, D.; Miraglia, D.; Altissimo, M.S.; Mercuri, M.L.; Haouet, N.M. Contribution of vegetables and cured meat to dietary nitrate and nitrite intake in Italian population: Safe level for cured meat and controversial role of vegetables. Italian J. Food Saf. 2018, 7, 7692. [Google Scholar] [CrossRef] [PubMed]
  15. Sindelar, J.J.; Milkowski, A.L. Human safety controversies surrounding nitrate and nitrite in the diet. Nitric Oxide 2012, 26, 259–266. [Google Scholar] [CrossRef] [PubMed]
  16. Merino, L.; Darnerud, P.O.; Toldrá, F.; Ilbäck, N.-G. Time-dependent depletion of nitrite in pork/beef and chicken meat products and its effect on nitrite intake estimation. Food Additiv. Contam. 2016, 33, 186–192. [Google Scholar] [CrossRef] [PubMed]
  17. Qin, L.; Liu, X.; Sun, Q.; Fan, Z.; Xia, D.; Ding, G.; Qi, S. Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane. Proc. Natl. Acad. Sci. USA 2012, 109, 13434–13439. [Google Scholar] [CrossRef] [PubMed]
  18. Qu, X.M.; Wu, Z.F.; Pang, B.X.; Jin, L.Y.; Qin, L.Z.; Wang, S.L. From nitrate to nitric oxide: The role of salivary glands and oral bacteria. J. Den. Res. 2016, 95, 1452–1456. [Google Scholar] [CrossRef]
  19. Lundberg, J.O.; Weitzberg, E.; Gladwin, M.T. The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 2008, 7, 156. [Google Scholar] [CrossRef]
  20. Leaf, C.D.; Wishnok, J.S.; Tannenbaum, S.R. L-arginine is a precursor for nitrate biosynthesis in humans. Bioch. Bioph. Res. Commun. 1989, 163, 1032–1037. [Google Scholar] [CrossRef]
  21. Van Faassen, E.E.; Bahrami, S.; Feelisch, M.; Hogg, N.; Kelm, M.; Kim-Shapiro, D.B.; Nohl, H. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med. Res. Rev. 2009, 29, 683–741. [Google Scholar] [CrossRef]
  22. Bryan, N.S.; Ivy, J.L. Inorganic nitrite and nitrate: Evidence to support consideration as dietary nutrients. Nutr. Res. 2015, 35, 643–654. [Google Scholar] [CrossRef]
  23. Doel, J.J.; Benjamin, N.; Hector, M.P.; Rogers, M.; Allaker, R.P. Evaluation of bacterial nitrate reduction in the human oral cavity. Eur. J. Oral Sci. 2005, 113, 14–19. [Google Scholar] [CrossRef] [PubMed]
  24. Hyde, E.R.; Andrade, F.; Vaksman, Z.; Parthasarathy, K.; Jiang, H.; Parthasarathy, D.K.; Bryan, N.S. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: Implications for nitric oxide homeostasis. PLoS ONE 2014, 9, e88645. [Google Scholar] [CrossRef] [PubMed]
  25. Lundberg, J.O.; Govoni, M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Rad. Biol. Med. 2004, 37, 395–400. [Google Scholar] [CrossRef] [PubMed]
  26. Tripatara, P.; Patel, N.S.; Webb, A.; Rathod, K.; Lecomte, F.M.; Mazzon, E.; Thiemermann, C. Nitrite-derived nitric oxide protects the rat kidney against ischemia/reperfusion injury in vivo: Role for xanthine oxidoreductase. J. Am. Soc. Nephrol. 2007, 18, 570–580. [Google Scholar] [CrossRef]
  27. Rassaf, T.; Flögel, U.; Drexhage, C.; Hendgen-Cotta, U.; Kelm, M.; Schrader, J. Nitrite reductase function of deoxymyoglobin: Oxygen sensor and regulator of cardiac energetics and function. Circ. Res. 2007, 100, 1749–1754. [Google Scholar] [CrossRef]
  28. Pereira, C.; Ferreira, N.R.; Rocha, B.S.; Barbosa, R.M.; Laranjinha, J. The redox interplay between nitrite and nitric oxide: From the gut to the brain. Redox Biol. 2013, 1, 276–284. [Google Scholar] [CrossRef]
  29. Ignarro, L.J.; Byrns, R.E.; Sumi, D.; de Nigris, F.; Napoli, C. Pomegranate juice protects nitric oxide against oxidative destruction and enhances the biological actions of nitric oxide. Nitric Oxide 2006, 15, 93–102. [Google Scholar] [CrossRef]
  30. Ma, L.; Hu, L.; Feng, X.; Wang, S. Nitrate and nitrite in health and disease. Aging Dis. 2018, 9, 938. [Google Scholar] [CrossRef]
  31. Ohshima, H.; Bartsch, H. Quantitative estimation of endogenous nitrosation in humans by monitoring N-nitrosoproline excreted in the urine. Canc. Res. 1981, 41, 3658–3662. [Google Scholar]
  32. Shephard, S.E.; Schlatter, C.H.; Lutz, W.K. Assessment of the risk of formation of carcinogenic N-nitroso compounds from dietary precursors in the stomach. Food Chem. Toxic. 1987, 25, 91–108. [Google Scholar] [CrossRef]
  33. Tricker, A.R. N-nitroso compounds and man: Sources of exposure, endogenous formation and occurrence in body fluids. Eur. J. Cancer Prev. Off. J. Eur. Canc. Prev. Org. 1997, 6, 226–268. [Google Scholar] [CrossRef]
  34. De La Pomélie, D.; Santé-Lhoutellier, V.; Gatellier, P. Mechanisms and kinetics of tryptophan N-nitrosation in a gastro-intestinal model. Food Chem. 2017, 218, 487–495. [Google Scholar] [CrossRef] [PubMed]
  35. Bartsch, H.; Pignatelli, B.; Calmels, S.; Ohshima, H. Inhibition of nitrosation. In Antimutagenesis and Anticarcinogenesis Mechanisms III; Springer: Boston, MA, USA, 1993. [Google Scholar]
  36. Lunn, J.C.; Kuhnle, G.; Mai, V.; Frankenfeld, C.; Shuker, D.E.G.; Glen, R.C.; Bingham, S.A. The effect of haem in red and processed meat on the endogenous formation of N-nitroso compounds in the upper gastrointestinal tract. Carcinogenesis 2007, 28, 685–690. [Google Scholar] [CrossRef] [PubMed]
  37. D’Ischia, M.; Napolitano, A.; Manini, P.; Panzella, L. Secondary targets of nitrite-derived reactive nitrogen species: Nitrosation/nitration pathways, antioxidant defense mechanisms and toxicological implications. Chem. Res. Toxicol. 2011, 24, 2071–2092. [Google Scholar] [CrossRef] [PubMed]
  38. Dalle-Donne, I.; Rossi, R.; Colombo, R.; Giustarini, D.; Milzani, A. Biomarkers of oxidative damage in human disease. Clin. Chem. 2006, 52, 601–623. [Google Scholar] [CrossRef] [PubMed]
  39. Calcerrada, P.; Peluffo, G.; Radi, R. Nitric oxide-derived oxidants with a focus on peroxynitrite: Molecular targets, cellular responses and therapeutic implications. Curr. Pharm. Des. 2011, 17, 3905–3932. [Google Scholar] [CrossRef]
  40. Li, X.; Tao, R.R.; Hong, L.J.; Cheng, J.; Jiang, Q.; Lu, Y.M.; Hu, Y.Z. Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury. J. Am. Chem. Soc. 2015, 137, 12296–12303. [Google Scholar] [CrossRef]
  41. Alhasawi, A.; Legendre, F.; Jagadeesan, S.; Appanna, V.; Appanna, V. Chapter 10-Biochemical strategies to counter nitrosative stress: Nanofactories for value-added products. In Microbial Diversity in the Genomic Era; Academic Press: Cambridge, MA, USA, 2019; pp. 153–169. [Google Scholar]
  42. Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef]
  43. Trostchansky, A.; Rubbo, H. Nitrated fatty acids: Mechanisms of formation, chemical characterization, and biological properties. Free Rad. Biol. Med. 2008, 44, 1887–1896. [Google Scholar] [CrossRef]
  44. White, P.J.; Charbonneau, A.; Cooney, G.J.; Marette, A. Nitrosative modifications of protein and lipid signaling molecules by reactive nitrogen species. Am. J. Physiol. 2010, 299, E868–E878. [Google Scholar] [CrossRef]
  45. Kurutas, E.B. The importance of antioxidants which play the role in cellular response of against oxidative/nitrosative stress: Current state. Nutr. J. 2016, 15, 71. [Google Scholar] [CrossRef] [PubMed]
  46. Yang, T.; Zhang, X.M.; Tarnawski, L.; Peleli, M.; Zhuge, Z.; Terrando, N.; Lundberg, J.O. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress. Redox Biol. 2017, 13, 320–330. [Google Scholar] [CrossRef] [PubMed]
  47. Kim, H.J.; Lee, S.S.; Choi, B.Y.; Kim, M.K. Nitrate intake relative to antioxidant vitamin intake affects gastric cancer risk: A case-control study in Korea. Nutr. Canc. 2007, 59, 185–191. [Google Scholar] [CrossRef] [PubMed]
  48. Ward, M.H.; Heineman, E.F.; Markin, R.S.; Weisenburger, D.D. Adenocarcinoma of the stomach and esophagus and drinking water and dietary sources of nitrate and nitrite. Int. J. Occup. Environ. Health 2008, 14, 193–197. [Google Scholar] [CrossRef] [PubMed]
  49. Keszei, A.P.; Goldbohm, R.A.; Schouten, L.J.; Jakszyn, P.; van den Brandt, P.A. Dietary N-nitroso compounds, endogenous nitrosation, and the risk of esophageal and gastric cancer subtypes in the Netherlands Cohort Study. Am. J. Clin. Nutr. 2012, 97, 135–146. [Google Scholar] [CrossRef] [PubMed]
  50. Weyer, P.J.; Cerhan, J.R.; Kross, B.C.; Hallberg, G.R.; Kantamneni, J.; Breuer, G.; Lynch, C.F. Municipal drinking water nitrate level and cancer risk in older women: The Iowa Women’s Health Study. Epidemiology 2001, 12, 327–338. [Google Scholar] [CrossRef] [PubMed]
  51. DellaValle, C.T.; Xiao, Q.; Yang, G.; Shu, X.O.; Aschebrook-Kilfoy, B.; Zheng, W.; Gao, Y.T. Dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women’s Health Study. Int. J. Cancer 2014, 134, 2917–2926. [Google Scholar] [CrossRef]
  52. Grieb, S.M.D.; Theis, R.P.; Burr, D.; Benardot, D.; Siddiqui, T.; Asal, N.R. Food groups and renal cell carcinoma: Results from a case-control study. J. Am. Diet. Assoc. 2009, 109, 656–667. [Google Scholar] [CrossRef]
  53. Dubrow, R.; Darefsky, A.S.; Park, Y.; Mayne, S.T.; Moore, S.C.; Kilfoy, B.; Ward, M.H. Dietary components related to N-nitroso compound formation: A prospective study of adult glioma. Cancer Epidemiol. Prev. Biomark. 2010, 19, 1709–1722. [Google Scholar] [CrossRef]
  54. De Roos, A.J.; Ray, R.M.; Gao, D.L.; Wernli, K.J.; Fitzgibbons, E.D.; Ziding, F.; Checkoway, H. Colorectal cancer incidence among female textile workers in Shanghai, China: A case-cohort analysis of occupational exposures. Cancer Causes Control 2005, 16, 1177–1188. [Google Scholar] [CrossRef]
  55. Cross, A.J.; Ferrucci, L.M.; Risch, A.; Graubard, B.I.; Ward, M.H.; Park, Y.; Sinha, R. A large prospective study of meat consumption and colorectal cancer risk: An investigation of potential mechanisms underlying this association. Cancer Res. 2010, 70, 2406–2414. [Google Scholar] [CrossRef] [PubMed]
  56. Bahadoran, Z.; Mirmiran, P.; Ghasemi, A.; Kabir, A.; Azizi, F.; Hadaegh, F. Is dietary nitrate/nitrite exposure a risk factor for development of thyroid abnormality? A systematic review and meta-analysis. Nitric Oxide 2015, 47, 65–76. [Google Scholar] [CrossRef] [PubMed]
  57. Song, P.; Wu, L.; Guan, W. Dietary nitrates, nitrites, and nitrosamines intake and the risk of gastric cancer: A meta-analysis. Nutrients 2015, 7, 9872–9895. [Google Scholar] [CrossRef] [PubMed]
  58. Hu, J.; Mao, Y.; White, K. Diet and vitamin or mineral supplements and risk of renal cell carcinoma in Canada. Cancer Causes Control 2003, 14, 705–714. [Google Scholar] [CrossRef] [PubMed]
  59. Aschebrook-Kilfoy, B.; Shu, X.O.; Gao, Y.T.; Ji, B.T.; Yang, G.; Li, H.L.; Ward, M.H. Thyroid cancer risk and dietary nitrate and nitrite intake in the Shanghai women’s health study. Int. J. Cancer 2013, 132, 897–904. [Google Scholar] [CrossRef] [PubMed]
  60. Van Hecke, T.; Vossen, E.; Hemeryck, L.Y.; Bussche, J.V.; Vanhaecke, L.; De Smet, S. Increased oxidative and nitrosative reactions during digestion could contribute to the association between well-done red meat consumption and colorectal cancer. Food Chem. 2015, 187, 29–36. [Google Scholar] [CrossRef]
  61. Bastide, N.M.; Chenni, F.; Audebert, M.; Santarelli, R.L.; Taché, S.; Naud, N.; Kuhnle, G.G. A central role for heme iron in colon carcinogenesis associated with red meat intake. Cancer Res. 2015, 75, 870–879. [Google Scholar] [CrossRef]
  62. Zheng, J.; Stuff, J.; Tang, H.; Hassan, M.M.; Daniel, C.R.; Li, D. Dietary N-nitroso compounds and risk of pancreatic cancer: Results from a large case–control study. Carcinogenesis 2018, 40, 254–262. [Google Scholar] [CrossRef]
  63. Chan, T.Y. Vegetable-borne nitrate and nitrite and the risk of methaemoglobinaemia. Toxicol. Lett. 2011, 200, 107–108. [Google Scholar] [CrossRef]
  64. Weitzberg, E.; Lundberg, J.O. Novel aspects of dietary nitrate and human health. Ann. Rev. Nutr. 2013, 33, 129–159. [Google Scholar] [CrossRef]
  65. Kapil, V.; Khambata, R.S.; Robertson, A.; Caulfield, M.J.; Ahluwalia, A. Dietary nitrate provides sustained blood pressure lowering in hypertensive patients: A randomized, phase 2, double-blind, placebo-controlled study. Hypertension 2015, 65, 320–327. [Google Scholar] [CrossRef] [PubMed]
  66. Berry, M.J.; Justus, N.W.; Hauser, J.I.; Case, A.H.; Helms, C.C.; Basu, S.; Miller, G.D. Dietary nitrate supplementation improves exercise performance and decreases blood pressure in COPD patients. Nitric Oxide 2015, 48, 22–30. [Google Scholar] [CrossRef] [PubMed]
  67. Ashworth, A.; Mitchell, K.; Blackwell, J.R.; Vanhatalo, A.; Jones, A.M. High-nitrate vegetable diet increases plasma nitrate and nitrite concentrations and reduces blood pressure in healthy women. Public Health Nutr. 2015, 18, 2669–2678. [Google Scholar] [CrossRef] [PubMed]
  68. Montenegro, M.F.; Amaral, J.H.; Pinheiro, L.C.; Sakamoto, E.K.; Ferreira, G.C.; Reis, R.I.; Tanus-Santos, J.E. Sodium nitrite downregulates vascular NADPH oxidase and exerts antihypertensive effects in hypertension. Free Rad. Biol. Med. 2011, 51, 144–152. [Google Scholar] [CrossRef]
  69. Amaral, J.H.; Ferreira, G.C.; Pinheiro, L.C.; Montenegro, M.F.; Tanus-Santos, J.E. Consistent antioxidant and antihypertensive effects of oral sodium nitrite in DOCA-salt hypertension. Redox Biol. 2015, 5, 340–346. [Google Scholar] [CrossRef]
  70. Ling, W.C.; Mustafa, M.R.; Vanhoutte, P.M.; Murugan, D.D. Chronic administration of sodium nitrite prevents hypertension and protects arterial endothelial function by reducing oxidative stress in angiotensin II-infused mice. Vasc. Pharmacol. 2018, 102, 11–20. [Google Scholar] [CrossRef]
  71. Siervo, M.; Lara, J.; Ogbonmwan, I.; Mathers, J.C. Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: A systematic review and meta-analysis. J. Nutr. 2013, 143, 818–826. [Google Scholar] [CrossRef]
  72. Ghasemi, A.; Gheibi, S. Effect of oral nitrate administration on glucose metabolism and inflammation in obese type 2 diabetic rats. In 19th European Congress of Endocrinology; BioScientifica: Bristol, UK, 2017. [Google Scholar]
  73. Khalifi, S.; Rahimipour, A.; Jeddi, S.; Ghanbari, M.; Kazerouni, F.; Ghasemi, A. Dietary nitrate improves glucose tolerance and lipid profile in an animal model of hyperglycemia. Nitric Oxide 2015, 44, 24–30. [Google Scholar] [CrossRef]
  74. Gilchrist, M.; Winyard, P.G.; Fulford, J.; Anning, C.; Shore, A.C.; Benjamin, N. Dietary nitrate supplementation improves reaction time in type 2 diabetes: Development and application of a novel nitrate-depleted beetroot juice placebo. Nitric Oxide 2014, 40, 67–74. [Google Scholar] [CrossRef]
  75. Cermak, N.M.; Hansen, D.; Kouw, I.W.; van Dijk, J.W.; Blackwell, J.R.; Jones, A.M.; van Loon, L.J. A single dose of sodium nitrate does not improve oral glucose tolerance in patients with type 2 diabetes mellitus. Nutr. Res. 2015, 35, 674–680. [Google Scholar] [CrossRef]
  76. Zand, J.; Lanza, F.; Garg, H.K.; Bryan, N.S. All-natural nitrite and nitrate containing dietary supplement promotes nitric oxide production and reduces triglycerides in humans. Nutr. Res. 2011, 31, 262–269. [Google Scholar] [CrossRef] [PubMed]
  77. Rammos, C.; Hendgen-Cotta, U.B.; Sobierajski, J.; Bernard, A.; Kelm, M.; Rassaf, T. Dietary nitrate reverses vascular dysfunction in older adults with moderately increased cardiovascular risk. J. Am. Coll. Cardiol. 2014, 63, 1584–1585. [Google Scholar] [CrossRef] [PubMed]
  78. Bondonno, C.P.; Blekkenhorst, L.C.; Prince, R.L.; Ivey, K.L.; Lewis, J.R.; Devine, A.; Hodgson, J.M. Association of vegetable nitrate intake with carotid atherosclerosis and ischemic cerebrovascular disease in older women. Stroke 2017, 48, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
  79. Burnley-Hall, N.; Abdul, F.; Androshchuk, V.; Morris, K.; Ossei-Gerning, N.; Anderson, R.; James, P.E. Dietary nitrate supplementation reduces circulating platelet-derived extracellular vesicles in coronary artery disease patients on clopidogrel therapy: A randomised, double-blind, placebo-controlled study. Thromb. Haemost. 2018, 118, 112–122. [Google Scholar] [CrossRef]
  80. Lefer, D.J.; Bryan, N.S.; Organ, C.L. Nitrite and Nitrate in Ischemia–Reperfusion Injury. In Nitrite and Nitrate in Human Health and Disease; Humana Press: Totowa, NJ, USA, 2017; pp. 217–234. [Google Scholar]
  81. Coggan, A.R.; Leibowitz, J.L.; Spearie, C.A.; Kadkhodayan, A.; Thomas, D.P.; Ramamurthy, S.; Peterson, L.R. Acute dietary nitrate intake improves muscle contractile function in patients with heart failure: A double-blind, placebo-controlled, randomized trial. Circ. Heart Fail. 2015, 8, 914–920. [Google Scholar] [CrossRef]
  82. Coggan, A.R.; Leibowitz, J.L.; Kadkhodayan, A.; Thomas, D.P.; Ramamurthy, S.; Spearie, C.A.; Peterson, L.R. Effect of acute dietary nitrate intake on maximal knee extensor speed and power in healthy men and women. Nitric Oxide 2015, 48, 16–21. [Google Scholar] [CrossRef]
  83. Xie, L.; Mo, M.; Jia, H.X.; Liang, F.; Yuan, J.; Zhu, J. Association between dietary nitrate and nitrite intake and site-specific cancer risk: Evidence from observational studies. Oncotarget 2016, 7, 56915. [Google Scholar] [CrossRef]
  84. Cantwell, M.; Elliott, C. Nitrates, Nitrites and Nitrosamines from Processed Meat Intake and Colorectal Cancer Risk. J. Clin. Nutr. Diet. 2017, 3, 27. [Google Scholar] [CrossRef]
  85. Honikel, K.O. Chemical analysis of specific components curing agents. In Encyclopedia of Meat Sciences, 2nd ed.; Devine, C., Ed.; Academic Press: Oxford, UK, 2014; pp. 200–205. [Google Scholar]
  86. Menard, C.; Heraud, F.; Volatier, J.L.; Leblanc, J.C. Assessment of dietary exposure of nitrate and nitrite in France. Food Addit. Contam. 2008, 25, 971–988. [Google Scholar] [CrossRef]
  87. Herrmann, S.S.; Duedahl-Olesen, L.; Granby, K. Occurrence of volatile and nonvolatile N-nitrosamines in processed meat products and the role of heat treatment. Food Control 2015, 48, 163–169. [Google Scholar] [CrossRef]
  88. Bedale, W.; Sindelar, J.J.; Milkowski, A.L. Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions. Meat Sci. 2016, 120, 85–92. [Google Scholar] [CrossRef] [PubMed]
  89. Alahakoon, A.U.; Jayasena, D.D.; Ramachandra, S.; Jo, C. Alternatives to nitrite in processed meat: Up to date. Trends Food Sci. Technol. 2015, 45, 37–40. [Google Scholar] [CrossRef]
  90. Jira, W. Chemical reaction of curing and smoking-Part 1: Curing. Fleischwirtstchaft 2004, 84, 235–239. [Google Scholar]
  91. Hammes, P.W. Metabolism of nitrate in fermented meats: The characteristic feature of a specific group of fermented foods. Food Microbiol. 2012, 29, 151–156. [Google Scholar] [CrossRef] [PubMed]
  92. Sindelar, J.J.; Cordray, J.C.; Sebranek, J.G.; Love, J.A.; Ahn, D.U. Effects of varying levels of vegetable juice powder and incubation time on color, residual nitrate and nitrite, pigment, pH, and trained sensory attributes of ready-to-eat uncured ham. J. Food Sci. 2007, 72, S388–S395. [Google Scholar] [CrossRef] [PubMed]
  93. Kononiuk, A.; Karwowska, M. Physicochemical, proteolytic and sensory changes during long-term storage of dry-fermented sausages made from fallow deer meat in comparison to beef. Food Technol. Sci. Qual. 2019, 26, 137–154. [Google Scholar]
  94. Kononiuk, A.; Karwowska, M. Comparison of selected parameters related to food safety of fallow deer and beef uncured fermented sausages with freeze-dried acid whey addition. Meat Sci. 2020, 161, 108015. [Google Scholar] [CrossRef]
  95. Sucu, C.; Turp, G.Y. The investigation of the use of beetroot powder in Turkish fermented beef sausage (sucuk) as nitrite alternative. Meat Sci. 2018, 140, 158–166. [Google Scholar] [CrossRef]
  96. Bianchin, M.; Pereira, D.; Dos Reis, A.S.; De Florio Almeida, J.; Dangui, L.; Da Silva, C.D.M.; Carpes, S.T. Research Article Rosemary Essential Oil and Lyophilized Extract as Natural Antioxidant Source to Prevent Lipid Oxidation in Pork Sausage. Adv. J. Food Sci. Technol. 2017, 13, 210–217. [Google Scholar] [CrossRef]
  97. Karwowska, M.; Dolatowski, Z.J. Effect of acid whey and freeze-dried cranberries on lipid oxidation and fatty acid composition of nitrite-/nitrate-free fermented sausage made from deer meat. Asian-Austral. J. Anim. Sci. 2017, 30, 85. [Google Scholar] [CrossRef]
  98. Kim, T.K.; Hwang, K.E.; Lee, M.A.; Paik, H.D.; Kim, Y.B.; Choi, Y.S. Quality characteristics of pork loin cured with green nitrite source and some organic acids. Meat Sci. 2019, 152, 141–145. [Google Scholar] [CrossRef] [PubMed]
  99. Gajowiecki, L.; Kotowicz, M.; Lachowicz, K.; Dabrowski, W.; Koronkiewicz, A.; Zochowska-Kujawska, J.; Zych, A. Zastosowanie mleczanow do produkcji wyrobow drobiowych niezawierajacych dodatku azotanu [III] sodu. Food Technol. Sci. Qual. 2006, 13, 86–99. [Google Scholar]
  100. Huang, L.; Zeng, X.; Sun, Z.; Wu, A.; He, J.; Dang, Y.; Pan, D. Production of a safe cured meat with low residual nitrite using nitrite substitutes. Meat Sci. 2019, 162, 108027. [Google Scholar] [CrossRef] [PubMed]
  101. Zarringhalami, S.; Sahari, M.A.; Hamidi-Esfehani, Z. Partial replacement of nitrite by annatto as a colour additive in sausage. Meat Sci. 2009, 81, 281–284. [Google Scholar] [CrossRef] [PubMed]

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.