Impact of Pleurotus ostreatus β-Glucans on Oxidative Stability of Active Compounds Encapsulated in Powders during Storage and In Vitro Digestion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. In Vitro Digestion
2.2.2. Oil Droplet Size Distribution
2.2.3. Accelerated Thermo-Oxidation
2.2.4. Oil Phase Extraction
2.2.5. Measurement of CD
2.2.6. Measurement of α-Toc Concentration
2.2.7. Statistical Analysis of Data
3. Results
3.1. Effect of In Vitro Digestion on Emulsion Structure
3.2. Effect of In Vitro Digestion on α-Toc Stability
3.3. Oxidative Stability during Storage
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Hernandez Sanchez, M.R.; Cuvelier, M.-E.; Turchiuli, C. Effect of α-tocopherol on oxidative stability of oil during spray drying and storage of dried emulsions. Food Res. Int. 2016, 88, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Wiktorowska-Owczarek, A.; Berezińska, M.; Nowak, J.Z. PUFAs: Structures, Metabolism and Functions. Adv. Clin. Exp. Med. 2015, 24, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, Y.; Choe, E. Temperature dependence of the autoxidation and antioxidants of soybean, sunflower, and olive oil. Eur. Food Res. Technol. 2007, 226, 239–246. [Google Scholar] [CrossRef]
- Lee, J.; Koo, N.; Min, D.B. Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr. Rev. Food Sci. Food Saf. 2004, 3, 21–33. [Google Scholar] [CrossRef]
- Shahidi, F.; de Camargo, A.C. Tocopherols and Tocotrienols in Common and Emerging Dietary Sources: Occurrence, Applications, and Health Benefits. Int. J. Mol. Sci. 2016, 17, 1745. [Google Scholar] [CrossRef]
- Chen, B.; McClements, D.J.; Decker, E.A. Design of foods with bioactive lipids for improved health. Annu. Rev. Food Sci. Technol. 2013, 4, 35–56. [Google Scholar] [CrossRef]
- Gallotti, F.; Lavelli, V.; Turchiuli, C. Application of Pleurotus ostreatus β-glucans for oil–in–water emulsions encapsulation in powder. Food Hydrocoll. 2020, 105, 105841. [Google Scholar] [CrossRef]
- Fernandes, R.V.B.; Borges, S.V.; Botrel, D.A. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr. Polym. 2014, 101, 524–532. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of spray drying in microencapsulation of food ingredients: An overview. Food Res.Int. 2007, 40, 1107–1121. [Google Scholar] [CrossRef]
- Turchiuli, C.; Jimenez Munguia, M.T.; Hernandez Sanchez, M.R.; Cortes Ferre, H.; Dumoulin, E. Use of different supports for oil encapsulation in powder by spray drying. Powder Technol. 2014, 255, 103–108. [Google Scholar] [CrossRef]
- Hong, J.H.; Jung, H.K. Antioxidant and antitumor activities of β-glucan-rich exopolysaccharides with different molecular weight from Paenibacillus polymyxa JB115. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 105–112. [Google Scholar] [CrossRef]
- Jayakumar, T.; Thomas, P.A.; Sheu, J.R.; Geraldine, P. In vitro and in vivo antioxidant effects of the oyster mushroom Pleurotus ostreatus. Food. Res. Int. 2011, 44, 851–861. [Google Scholar] [CrossRef]
- Nieva-Echevarría, B.; Goicoechea, E.; Guillén, M.D. Food lipid oxidation under gastrointestinal digestion conditions: A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 461–478. [Google Scholar] [CrossRef] [PubMed]
- Kenmogne-Domguia, H.B.; Moisan, S.; Viau, M.; Genot, C.; Meynier, A. The initial characteristics of marine oil emulsions and the composition of the media inflect lipid oxidation during in vitro gastrointestinal digestion. Food Chem. 2014, 152, 146–154. [Google Scholar] [CrossRef]
- Yang, Y.; McClements, D.J. Vitamin E bioaccessibility: Influence of carrier oil type on digestion and release of emulsified a-tocopherol acetate. Food Chem. 2013, 141, 473–481. [Google Scholar] [CrossRef]
- Jeanes, Y.M.; Hall, W.; Ellard, S.; Lee, E.; Lodge, J. The absorption of vitamin E is influenced by the amount of fat in a meal and the food matrix. Br. J. Nutr. 2004, 92, 575. [Google Scholar] [CrossRef] [Green Version]
- Ratnayake, W.M.N.; Galli, C. Fat and Fatty Acid Terminology, Methods of Analysis and Fat Digestion and Metabolism: A Background Review Paper. Ann. Nutr. Metab. 2009, 55, 8–43. [Google Scholar] [CrossRef]
- Singh, H.; Ye, A.; Horne, D. Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Prog. Lipid Res. 2009, 48, 92–100. [Google Scholar] [CrossRef]
- Bakala N’Goma, J.-C.; Amara, S.; Dridi, K.; Jannin, V.; Carriere, F. Understanding the lipid-digestion processes in the GI tract before designing lipid-based drug-delivery systems. Ther. Delivery 2012, 3, 105–124. [Google Scholar] [CrossRef]
- Carriere, F.; Barrowman, J.A.; Verger, R.; Laugier, R. Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology 1993, 105, 876–888. [Google Scholar] [CrossRef]
- Brobst, D.F. Pancreatic Function. In Clinical Biochemistry of Domestic Animals, 3rd ed.; Kaneko, J.J., Ed.; Academic Press: Cambridge, MA, USA, 1980; pp. 259–281. [Google Scholar]
- Porter, C.J.H.; Trevaskis, N.L.; Charman, W.N. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov. 2007, 6, 231–248. [Google Scholar] [CrossRef] [PubMed]
- Pouton, C.W.; Porter, C.J.H. Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Adv. Drug Deliv. Rev. 2008, 60, 625–637. [Google Scholar] [CrossRef] [PubMed]
- WHO/FAO. Available online: http://www.who.int/nutrition/publications/micronutrients/9241546123/en/ (accessed on 14 September 2020).
- Trucillo, P.; Campardelli, R.; Reverchon, E. Antioxidant loaded emulsions entrapped in liposomes produced using a supercritical assisted technique. J. Supercrit. Fluid 2019, 154, 104626. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chem. 2011, 129, 1139–1147. [Google Scholar] [CrossRef]
- Ahmad, M.; Ashraf, B.; Gani, A.; Gani, A. Microencapsulation of saffron anthocyanins using β glucan and β cyclodextrin: Microcapsule characterization, release behaviour & antioxidant potential during in-vitro digestion. Int. J. Biol. Macromol. 2018, 109, 435–442. [Google Scholar]
- Guillén, M.D.; Cabo, N. Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils. Food Chem. 2002, 77, 503–510. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and factors for edible oil oxidation. Compr. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Taneja, A.; Singh, H. Challenges for the delivery of long-chain n-3 fatty acids in functional foods. Annu. Rev. Food Sci. Technol. 2012, 3, 105–123. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Turchiuli, C.; Gallotti, F.; Hernandez Sanchez, M.R.; Cuvelier, M.-E. Improvement of oxidative stability of dry emulsion containing antioxidants by modifying process conditions. Chem. Eng. Trans. 2017, 57, 1915–1920. [Google Scholar]
- Gallotti, F.; Turchiuli, C.; Lavelli, V. Production of stable emulsions using β-glucans extracted from Pleurotus ostreatus to encapsulate oxidisable compounds. In Proceedings of the 4th I.C. FABE, Agia Pelagia, Greece, 31 May–2 June 2019; Petrotos, K., Leontopoulos, S., Eds.; University of Thessaly: Volos, Greece, 2019; pp. 201–208. [Google Scholar]
- Christensen, K.L.; Pedersen, G.P.; Kristensen, H.G. Preparation of redispersible dry emulsions by spray drying. Int. J. Pharm. 2001, 212, 187–194. [Google Scholar] [CrossRef]
- Helbig, A.; Silletti, E.; Timmerman, E.; Hamer, R.J.; Gruppen, H. In vitro study of intestinal lipolysis using pH-stat and gas chromatography. Food Hydrocoll. 2012, 28, 10–19. [Google Scholar] [CrossRef]
- Tan, Y. Factors impacting lipid digestion and nutraceutical bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): Emulsifier type. Food Res. Int. 2020, 137, 109739. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 2003, 17, 25–39. [Google Scholar] [CrossRef]
- Nakauma, M.; Funami, T.; Noda, S.; Ishihara, S.; Al-Assaf, S.; Nishinari, K.; Phillips, G.O. Comparison of sugar beet pectin, soybean soluble polysaccharide, and gum arabic as food emulsifiers. 1. Effect of concentration, pH, and salts on the emulsifying properties. Food Hydrocoll. 2008, 22, 1254–1267. [Google Scholar] [CrossRef]
- Gallier, S.; Cui, J.; Olson, T.D.; Rutherfurd, S.M.; Ye, A.; Moughan, P.J.; Singh, H. In vivo digestion of bovine milk fat globules: Effect of processing and interfacial structural changes. I. Gastric digestion. Food Chem. 2013, 141, 3273–3281. [Google Scholar] [CrossRef]
- Giang, T.M.; Le Feunteun, S.; Gaucel, S.; Brestaz, P.; Anton, M.; Meynier, A.; Trelea, I.C. Dynamic modeling highlights the major impact of droplet coalescence on the in vitro digestion kinetics of a whey protein stabilized submicron emulsion. Food Hydrocoll. 2015, 43, 66–72. [Google Scholar] [CrossRef]
- Frascareli, E.C.; Silva, V.M.; Tonon, R.V.; Hubinger, M.D. Effect of process conditions on the microencapsulation of coffee oil by spray drying. Food Bioprod. Process. 2012, 90, 413–424. [Google Scholar] [CrossRef]
- Lv, S.; Zhang, Y.; Tan, H.; Zhang, R.; McClements, D.J. Vitamin E encapsulation within oil-in-water emulsions: Impact of emulsifier type on physicochemical stability and bioaccessibility. J. Agric. Food Chem. 2019, 67, 1521–1529. [Google Scholar] [CrossRef]
- Somchue, W.; Sermsri, W.; Shiowatana, J.; Siripinyanond, A. Encapsulation of a-tocopherol in protein-based delivery particles. Food Res. Int. 2009, 42, 909–914. [Google Scholar] [CrossRef]
- Verkempinck, S.H.E.; Salvia-Trujillo, L.; Denis, S.; Van Loey, A.M.; Hendrickx, M.E.; Grauwet, T. Pectin influences the kinetics of in vitro lipid digestion in oil-in-water emulsions. Food Chem. 2018, 262, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Talón, E.; Vargas, M.; Chiralt, A.; González-Martínez, C. Antioxidant starch-based films with encapsulated eugenol. Application to sunflower oil preservation. LWT 2019, 133, 108290. [Google Scholar] [CrossRef]
- Tan, C.P.; Nakajima, M. b-Carotene nanodispersions: Preparation, characterization and stability evaluation. Food Chem. 2005, 92, 661–671. [Google Scholar] [CrossRef]
Powder Code | Powder Composition | Extract d.m. Composition | |||||
---|---|---|---|---|---|---|---|
Sunflower Oil (SO) (%) | Tween® 20 (%) | AG (%) | MD (%) | Extract d.m. (%) | β-Glucans (%) | Proteins (%) | |
Pc_Tween | 10 | 0.3 | --- | 89.7 | --- | --- | --- |
Pc_AG | 10 | --- | 36 | 54 | --- | --- | --- |
P10W | 10 | --- | --- | 89 | 1 | 0.21 | 0.21 |
P10UW | 10 | --- | --- | 89 | 1 | 0.22 | 0.14 |
P20UW | 20 | --- | --- | 78 | 2 | 0.43 | 0.29 |
Emulsion Reconstituted | Digestion Stage | Particle Size | |||||
---|---|---|---|---|---|---|---|
D (3,2) | D (4,3) | ||||||
Ec_AG | Before | 0.81 ± 0.01 | A | a | 1.15 ± 0.01 | A | a |
Oral | 0.75 ± 0.05 | A | a | 1.13 ± 0.03 | A | a | |
Gastric | 0.77 ± 0.06 | A | a | 1.13 ± 0.03 | A | a | |
Intestinal | 0.68 ± 0.15 | A | a | 299.15 ± 100.12 | B | a | |
E10W | Before | 1.76 ± 0.01 | A | b | 2.58 ± 0.36 | A | a,b |
Oral | 1.67 ± 0.04 | A | b | 3.46 ± 0.43 | A | a | |
Gastric | 1.53 ± 0.24 | A | b | 4.19 ± 1.58 | A | a,b | |
Intestinal | 0.80 ± 0.10 | B | a | 305.13 ± 83.79 | B | a | |
E10UW | Before | 2.23 ± 0.02 | A | c | 4.16 ± 0.90 | A | b,c |
Oral | 1.88 ± 0.31 | A | b | 5.34 ± 3.60 | A | a | |
Gastric | 2.01 ± 0.33 | A | b | 17.28 ± 1.46 | B | c | |
Intestinal | 1.83 ± 0.56 | A | a | 407.13 ± 37.51 | C | a | |
E20UW | Before | 2.64 ± 0.05 | A | d | 4.37 ± 0.38 | A | c |
Oral | 2.45 ± 0.22 | A | c | 16.81 ± 6.63 | B | b | |
Gastric | 2.68 ± 1.10 | A | c | 9.53 ± 3.08 | B | b | |
Intestinal | 8.39 ± 3.05 | B | b | 233.05 ± 27.77 | C | a |
Free SO | Pc_Tween | Pc_AG | P10W | P10UW | P20UW | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Day | CD (ΔSA) | |||||||||||||||||
0 | 0.0 ± 0.0 | A | a | 0.0 ± 0.0 | A | a | 0.0 ± 0.0 | B,C | a | 0.0 ± 0.0 | A | a | 0.0 ± 0.0 | A | a | 0.0 ± 0.0 | A | a |
1 | 1.4 ± 0.2 | A | a | 1.1 ± 0.1 | A,B | a | 2.0 ± 0.9 | B,C | a | 0.6 ± 0.6 | A | a | 1.0 ± 0.7 | A,B | a | 0.6 ± 0.4 | A | a |
2 | 4.2 ± 0.6 | B | b,c | 2.1 ± 0.2 | B | a,b | 4.6 ± 1.5 | C | c | 1.2 ± 0.5 | A | a | 1.8 ± 0.7 | A,B | a,b | 1.4 ± 0.7 | A,B | a |
5 | 11.0 ± 1.2 | C | c | 5.4 ± 0.4 | C | a,b | 7.9 ± 1.5 | C,D | b,c | 2.1 ± 0.5 | A | a | 2.4 ± 0.3 | B | a | 2.0 ± 0.2 | A,B | a |
9 | 15.5 ± 0.5 | D | c | 11.5 ± 0.3 | D | a,b,c | 13.4 ± 5.9 | D | b,c | 4.2 ± 1.1 | B | a | 6.1 ± 0.9 | C | a,b | 2.8 ± 0.2 | A,B | a |
12 | n.d. | 15.1 ± 0.6 | E | d | −5.7 ± 0.4 | A | a | 7.0 ± 0.2 | C | c | 7.0 ± 0.8 | C | c | 4.0 ± 0.4 | B,C | b | ||
15 | n.d. | 15.4 ± 0.8 | E | d | −3.3 ± 1.3 | A | a | 9.6 ± 0.1 | D | c | 11.3 ± 0.8 | D | c | 6.6 ± 0.1 | C | b | ||
Day | Degradation of α-Toc (%) | |||||||||||||||||
0 | 0 ± 0 | A | a | 0 ± 0 | A | a | 0 ± 0 | A | a | 0 ± 0 | A | a | 0 ± 0 | A | a | 0 ± 0 | A | a |
1 | 8 ± 15 | A | a,b | 1 ± 8 | A | a | 27 ± 6 | B | b | 3 ± 1 | A | a | 10 ± 5 | A,B | a,b | 7 ± 4 | A | a,b |
2 | 12 ± 11 | A | a | 22 ± 9 | B | a | 64 ± 3 | C | b | 8 ± 4 | A | a | 12 ± 4 | A,B | a | 16 ± 5 | A | a |
5 | 42 ± 11 | B | b | 50 ± 2 | C | b | 87 ± 2 | D | c | 17 ± 5 | B | a | 18 ± 3 | B,C | a | 17 ± 7 | A | a |
9 | 99 ± 0 | C | c | 67 ± 5 | C | b | 95 ± 1 | D | c | 18 ± 3 | B | a | 20 ± 5 | B,C | a | 25 ± 6 | A | a |
12 | n.d. | 95 ± 1 | D | b | 97 ± 1 | D | b | 20 ± 2 | B | a | 28 ± 3 | C,D | a | 28 ± 3 | A | a | ||
15 | n.d. | 98 ± 1 | D | b | 97± 1 | D | b | 27 ± 4 | B | a | 37 ± 3 | D | a | 29 ± 7 | A | a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallotti, F.; Lavoisier, A.; Turchiuli, C.; Lavelli, V. Impact of Pleurotus ostreatus β-Glucans on Oxidative Stability of Active Compounds Encapsulated in Powders during Storage and In Vitro Digestion. Antioxidants 2020, 9, 1219. https://doi.org/10.3390/antiox9121219
Gallotti F, Lavoisier A, Turchiuli C, Lavelli V. Impact of Pleurotus ostreatus β-Glucans on Oxidative Stability of Active Compounds Encapsulated in Powders during Storage and In Vitro Digestion. Antioxidants. 2020; 9(12):1219. https://doi.org/10.3390/antiox9121219
Chicago/Turabian StyleGallotti, Francesca, Anaïs Lavoisier, Christelle Turchiuli, and Vera Lavelli. 2020. "Impact of Pleurotus ostreatus β-Glucans on Oxidative Stability of Active Compounds Encapsulated in Powders during Storage and In Vitro Digestion" Antioxidants 9, no. 12: 1219. https://doi.org/10.3390/antiox9121219
APA StyleGallotti, F., Lavoisier, A., Turchiuli, C., & Lavelli, V. (2020). Impact of Pleurotus ostreatus β-Glucans on Oxidative Stability of Active Compounds Encapsulated in Powders during Storage and In Vitro Digestion. Antioxidants, 9(12), 1219. https://doi.org/10.3390/antiox9121219