Circulating Interleukin-6 Level, Dietary Antioxidant Capacity, and Risk of Colorectal Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment and Dietary Antioxidant Capacity Based on the ORAC Database
2.3. Laboratory Assays for IL-6 Biomarker Concentration
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Turati, F.; Bravi, F.; Di Maso, M.; Bosetti, C.; Polesel, J.; Serraino, D.; Dalmartello, M.; Giacosa, A.; Montella, M.; Tavani, A.; et al. Adherence to the World Cancer Research Fund/American Institute for Cancer Research recommendations and colorectal cancer risk. Eur. J. Cancer 2017, 85, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Itzkowitz, S.H.; Yio, X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: The role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, G7–G17. [Google Scholar] [CrossRef] [PubMed]
- Kraus, S.; Arber, N. Inflammation and colorectal cancer. Curr. Opin. Pharmacol. 2009, 9, 405–410. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef]
- Seruga, B.; Zhang, H.; Bernstein, L.J.; Tannock, I.F. Cytokines and their relationship to the symptoms and outcome of cancer. Nat. Rev. Cancer 2008, 8, 887–899. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- Mitsuyama, K.; Sata, M.; Rose-John, S. Interleukin-6 trans-signaling in inflammatory bowel disease. Cytokine Growth Factor Rev. 2006, 17, 451–461. [Google Scholar] [CrossRef]
- Rose-John, S. IL-6 trans-signaling via the soluble IL-6 receptor: Importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 2012, 8, 1237–1247. [Google Scholar] [CrossRef]
- Waldner, M.J.; Foersch, S.; Neurath, M.F. Interleukin-6-a key regulator of colorectal cancer development. Int. J. Biol. Sci. 2012, 8, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Knupfer, H.; Preiss, R. Serum interleukin-6 levels in colorectal cancer patients—A summary of published results. Int. J. Colorectal Dis. 2010, 25, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.-C.; Chang, Y.-F. Serum interleukin-6 levels reflect the disease status of colorectal cancer. J. Surg. Oncol. 2003, 83, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Komoda, H.; Tanaka, Y.; Honda, M.; Matsuo, Y.; Hazama, K.; Takao, T. Interleukin-6 levels in colorectal cancer tissues. World J. Surg. 1998, 22, 895–898. [Google Scholar] [CrossRef]
- Waldner, M.J.; Neurath, M.F. Mechanisms of immune signaling in colitis-associated cancer. Cell. Mol. Gastroenterol. Hepatol. 2015, 1, 6–16. [Google Scholar] [CrossRef]
- Steinmetz, K.A.; Kushi, L.H.; Bostick, R.M.; Folsom, A.R.; Potter, J.D. Vegetables, fruit, and colon cancer in the Iowa Women’s Health Study. Am. J. Epidemiol. 1994, 139, 1–15. [Google Scholar] [CrossRef]
- Voorrips, L.E.; Goldbohm, R.A.; van Poppel, G.; Sturmans, F.; Hermus, R.J.; van den Brandt, P.A. Vegetable and fruit consumption and risks of colon and rectal cancer in a prospective cohort study: The Netherlands Cohort Study on Diet and Cancer. Am. J. Epidemiol. 2000, 152, 1081–1092. [Google Scholar] [CrossRef]
- Terry, P.; Giovannucci, E.; Michels, K.B.; Bergkvist, L.; Hansen, H.; Holmberg, L.; Wolk, A. Fruit, vegetables, dietary fiber, and risk of colorectal cancer. J. Natl. Cancer Inst. 2001, 93, 525–533. [Google Scholar] [CrossRef]
- Riboli, E.; Norat, T. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am. J. Clin. Nutr. 2003, 78 (Suppl. S3), 559S–569S. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Rahman, K. Studies on free radicals, antioxidants, and co-factors. Clin. Interv. Aging 2007, 2, 219–236. [Google Scholar] [PubMed]
- Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med. 1993, 14, 303–311. [Google Scholar] [CrossRef]
- Cao, G.; Prior, R.L. Measurement of oxygen radical absorbance capacity in biological samples. Methods Enzymol. 1999, 299, 50–62. [Google Scholar] [PubMed]
- Cao, G.; Booth, S.L.; Sadowski, J.A.; Prior, R.L. Increases in human plasma antioxidant capacity after consumption of controlled diets high in fruit and vegetables. Am. J. Clin. Nutr. 1998, 68, 1081–1087. [Google Scholar] [CrossRef]
- Haytowitz, D.B.; Bhagwat, S. USDA Database for the Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2; US Department of Agriculture: Washington, DC, USA, 2010.
- Farvid, M.S.; Homayouni, F.; Kashkalani, F.; Shirzadeh, L.; Valipour, G.; Farahnak, Z. The associations between oxygen radical absorbance capacity of dietary intake and hypertension in type 2 diabetic patients. J. Hum. Hypertens. 2013, 27, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Gifkins, D.; Olson, S.H.; Demissie, K.; Lu, S.E.; Kong, A.N.; Bandera, E.V. Total and individual antioxidant intake and endometrial cancer risk: Results from a population-based case-control study in New Jersey. Cancer Causes Control 2012, 23, 887–895. [Google Scholar] [CrossRef][Green Version]
- Sheikhi, M.; Sharifi-Zahabi, E.; Paknahad, Z. Dietary antioxidant capacity and its association with preeclampsia. Clin. Nutr. Res. 2017, 6, 47–54. [Google Scholar] [CrossRef]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef]
- Rautiainen, S.; Serafini, M.; Morgenstern, R.; Prior, R.L.; Wolk, A. The validity and reproducibility of food-frequency questionnaire-based total antioxidant capacity estimates in Swedish women. Am. J. Clin. Nutr. 2008, 87, 1247–1253. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 9S–31S. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Klampfer, L. Cytokines, inflammation and colon cancer. Curr. Cancer Drug Targets 2011, 11, 451–464. [Google Scholar] [CrossRef]
- Terzic, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and colon cancer. Gastroenterology 2010, 138, 2101–2114. [Google Scholar] [CrossRef]
- Wang, S.W.; Sun, Y.M. The IL-6/JAK/STAT3 pathway: Potential therapeutic strategies in treating colorectal cancer. Int. J. Oncol. 2014, 44, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Belluco, C.; Nitti, D.; Frantz, M.; Toppan, P.; Basso, D.; Plebani, M.; Lise, M.; Jessup, J.M. Interleukin-6 blood level is associated with circulating carcinoembryonic antigen and prognosis in patients with colorectal cancer. Ann. Surg. Oncol. 2000, 7, 133–138. [Google Scholar] [CrossRef]
- Vainer, N.; Dehlendorff, C.; Johansen, J.S. Systematic literature review of IL-6 as a biomarker or treatment target in patients with gastric, bile duct, pancreatic and colorectal cancer. Oncotarget 2018, 9, 29820–29841. [Google Scholar] [CrossRef]
- Rajendran, P.; Nandakumar, N.; Rengarajan, T.; Palaniswami, R.; Gnanadhas, E.N.; Lakshminarasaiah, U.; Gopas, J.; Nishigaki, I. Antioxidants and human diseases. Clin. Chim. Acta 2014, 436, 332–347. [Google Scholar] [CrossRef] [PubMed]
- Mut-Salud, N.; Alvarez, P.J.; Garrido, J.M.; Carrasco, E.; Aranega, A.; Rodriguez-Serrano, F. Antioxidant intake and antitumor therapy: Toward nutritional recommendations for optimal results. Oxid. Med. Cell. Longev. 2016, 2016, 6719534. [Google Scholar] [CrossRef]
- Carini, F.; Mazzola, M.; Rappa, F.; Jurjus, A.; Geagea, A.G.; Al Kattar, S.; Bou-Assi, T.; Jurjus, R.; Damiani, P.; Leone, A.; et al. Colorectal carcinogenesis: Role of oxidative stress and antioxidants. Anticancer Res. 2017, 37, 4759–4766. [Google Scholar]
- Perse, M. Oxidative stress in the pathogenesis of colorectal cancer: Cause or consequence? Biomed. Res. Int. 2013, 2013, 725710. [Google Scholar] [CrossRef]
- Pais, R.; Dumitrascu, D.L. Do antioxidants prevent colorectal cancer? A meta-analysis. Rom. J. Intern. Med. 2013, 51, 152–163. [Google Scholar] [PubMed]
- Sreevalsan, S.; Safe, S. Reactive oxygen species and colorectal cancer. Curr. Colorectal Cancer Rep. 2013, 9, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Li, Y.; Zamyatnin, A.A., Jr.; Werner, J.; Bazhin, A.V. Reactive oxygen species and colorectal cancer. J. Cell. Physiol. 2018, 233, 5119–5132. [Google Scholar] [CrossRef] [PubMed]
- Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef]
- Crusz, S.M.; Balkwill, F.R. Inflammation and cancer: Advances and new agents. Nat. Rev. Clin. Oncol. 2015, 12, 584–596. [Google Scholar] [CrossRef]
- Ahn-Jarvis, J.H.; Parihar, A.; Doseff, A.I. Dietary flavonoids for immunoregulation and cancer: Food design for targeting disease. Antioxidants (Basel) 2019, 8, 202. [Google Scholar] [CrossRef]
- Kristo, A.S.; Klimis-Zacas, D.; Sikalidis, A.K. Protective role of dietary berries in cancer. Antioxidants (Basel) 2016, 5, 37. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Chen, G.Y. Flavonoids and colorectal cancer prevention. Antioxidants (Basel) 2018, 7, 187. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; Sánchez-Quesada, C.J.; Gaforio, J. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants (Basel) 2019, 8, 137. [Google Scholar]
Controls (n = 1312) | Cases (n = 654) | p-Value a | |
---|---|---|---|
Age (years) | |||
Mean ± SD | 56.10 ± 9.21 | 56.44 ± 9.60 | 0.45 |
Sex (n, %) | |||
Male | 895 (68.22) | 446 (68.20) | >0.99 |
Female | 417 (31.78) | 208 (31.80) | |
Body mass index (BMI, kg/m2) (n, %) | |||
Mean ± SD | 24.26 ± 2.88 | 24.14 ± 3.52 | 0.44 |
<25 | 828 (63.03) | 411 (62.84) | 0.92 |
≥25 | 484 (36.89) | 243 (37.16) | |
Education level (n, %) | |||
Middle school or less | 201 (15.32) | 241 (36.85) | <0.001 |
High school | 422 (32.16) | 248 (37.92) | |
College or more | 658 (50.15) | 165 (25.23) | |
Occupation (n, %) | |||
Professionals, administrative, management, office jobs | 339 (25.84) | 136 (20.80) | <0.001 |
Sales and service positions | 284 (21.65) | 27 (4.13) | |
Agriculture, manufacturing, mining, army service | 165 (12.58) | 108 (16.51) | |
Housekeeping, unemployment, and others | 510 (38.87) | 383 (58.56) | |
Income (10,000 won/month) (n, %) | |||
<200 | 284 (21.65) | 226 (34.56) | <0.001 |
200–400 | 536 (40.85) | 428 (65.44) | |
>400 | 379 (28.89) | 0 (0.00) | |
Smoking status (n, %) | |||
None | 575 (43.83) | 298 (45.57) | 0.05 |
Ex-smoker | 496 (37.80) | 214 (32.72) | |
Current-smoker | 241 (18.37) | 142 (21.71) | |
Alcohol drinking status (n, %) | |||
None | 406 (30.95) | 200 (30.58) | 0.025 |
Ex-drinker | 121 (9.22) | 86 (13.15) | |
Current-drinker | 785 (59.83) | 368 (56.27) | |
Physical activity status (n, %) | |||
Yes | 759 (57.85) | 207 (31.65) | <0.001 |
No | 545 (41.54) | 447 (68.35) | |
First-degree family history of colorectal cancer (CRC) (n, %) | |||
Yes | 73 (5.56) | 57 (8.72) | 0.008 |
No | 1239 (94.44) | 597 (91.28) | |
Total caloric intake (kcal/day) | |||
Mean ± SD | 1693.04 ± 562.86 | 2022.17 ± 525.74 | <0.001 |
semiquantitative food frequency questionnaire (SQFFQ)- oxygen radical absorbance capacity (ORAC) | |||
hydrophilic ORAC (H-ORAC) (μmolTE/d) | |||
Mean ± SD b | 4870.43 ± 3806.52 | 3323.50 ± 2008.79 | <0.001 d |
Median | 3796.64 | 2837.11 | |
(interquartile range (IQR)) c | (2350.58, 6181.32) | (1961.12, 4185.10) | |
lipophilic ORAC (L-ORAC) (μmolTE/d) | |||
Mean ± SD b | 196.45 ± 116.62 | 147.06 ± 75.94 | <0.001 d |
Median | 173.96 | 134.98 | |
(IQR) c | (120.81, 248.60) | (96.27, 183.24) | |
total ORAC (T-ORAC) (μmolTE/d) | |||
Mean ± SD b | 5062.87 ± 3863.00 | 3467.73 ± 2048.26 | <0.001 d |
Median | 4022.77 | 2987.32 | |
(IQR) c | (2485.96, 6465.70) | (2080.73, 4363.09) | |
TPs (mgGAE/d) | |||
Mean ± SD b | 452.36 ± 386.38 | 301.44 ± 222.92 | <0.001 d |
Median | 344.79 | 242.71 | |
(IQR) c | (195.37, 581.23) | (168.91, 363.96) | |
IL-6 (pg/mL) | |||
Mean ± SD | 1.93 ± 2.39 | 3.64 ± 5.68 | <0.001 d |
Median | 1.36 | 2.14 | |
(IQR) c | (0.98, 2.04) | (1.42, 3.46) |
Plasma IL-6 Concentration (pg/mL) | |||||
---|---|---|---|---|---|
Q1 (<0.98) | Q2 (0.98 to <1.36) | Q3 (1.36 to <2.04) | Q4 (≥2.04) | P for Trend | |
Colorectal cancer | |||||
No. controls/cases | 328/52 | 328/94 | 328/154 | 328/354 | |
Crude OR (95% CI) | 1.0 (ref) | 1.81 (1.25–2.62) | 2.96 (2.09–4.20) | 6.81 (4.90–9.46) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 1.97 (1.24–3.11) | 2.82 (1.82–4.37) | 6.23 (4.10–9.45) | <0.001 |
Colon cancer | |||||
No. controls/cases | 328/32 | 328/46 | 328/80 | 328/176 | |
Crude OR (95% CI) | 1.0 (ref) | 1.44 (0.89–2.31) | 2.50 (1.61–3.87) | 5.50 (3.66–8.26) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 1.63 (0.94–2.84) | 2.33 (1.39–3.92) | 4.77 (2.93–7.76) | <0.001 |
Rectal cancer | |||||
No. controls/cases | 328/20 | 328/48 | 328/72 | 328/168 | |
Crude OR (95% CI) | 1.0 (ref) | 2.40 (1.39–4.13) | 3.60 (2.14–6.05) | 8.40 (5.16–13.69) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 2.42 (1.29–4.55) | 3.48 (1.90–6.39) | 8.06 (4.52–14.39) | <0.001 |
Dietary ORAC | |||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | P for Trend | |
Colorectal Cancer | |||||
H-ORAC (μmolTE/d) | <2350.58 | 2350.58 to <3796.64 | 3796.64 to <6181.33 | ≥6181.32 | |
No. controls/cases | 328/242 | 328/211 | 328/147 | 328/54 | |
Crude OR (95% CI) | 1.0 (ref) | 0.87 (0.69–1.11) | 0.61 (0.47–0.78) | 0.22 (0.16–0.31) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 0.94 (0.69–1.29) | 0.68 (0.48–0.96) | 0.29 (0.19–0.44) | <0.001 |
L-ORAC (μmolTE/d) | <120.81 | 120.81 to <173.96 | 173.96 to <248.60 | ≥248.60 | |
No. controls/cases | 328/277 | 328/193 | 328/141 | 328/43 | |
Crude OR (95% CI) | 1.0 (ref) | 0.70 (0.55–0.89) | 0.51 (0.40–0.66) | 0.16 (0.11–0.22) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 0.82 (0.60–1.13) | 0.59 (0.42–0.83) | 0.18 (0.12–0.29) | <0.001 |
T-ORAC (μmolTE/d) | 2485.96 | 2485.96 to <4022.77 | 4022.77 to <6465.70 | ≥6465.70 | |
No. controls/cases | 328/248 | 328/207 | 328/148 | 328/51 | |
Crude OR (95% CI) | 1.0 (ref) | 0.84 (0.66–1.06) | 0.60 (0.46–0.77) | 0.21 (0.15–0.29) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 0.92 (0.67–1.27) | 0.68 (0.48–0.96) | 0.26 (0.16–0.40) | <0.001 |
TPs (mgGAE/d) | 195.37 | 195.37 to <344.79 | 344.79 to <581.24 | ≥581.24 | |
No. controls/cases | 328/231 | 328/246 | 328/122 | 328/55 | |
Crude OR (95% CI) | 1.0 (ref) | 1.07 (0.84–1.35) | 0.53 (0.40–0.69) | 0.24 (0.17–0.33) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 1.23 (0.90–1.67) | 0.54 (0.38–0.78) | 0.32 (0.21–0.50) | <0.001 |
Colon Cancer | |||||
H-ORAC (μmolTE/d) | |||||
No. controls/cases | 328/111 | 328/118 | 328/76 | 328/29 | |
Crude OR (95% CI) | 1.0 (ref) | 1.06 (0.79–1.44) | 0.69 (0.49–0.95) | 0.26 (0.17–0.40) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 1.19 (0.81–1.73) | 0.67 (0.44–1.03) | 0.30 (0.18–0.51) | <0.001 |
L-ORAC (μmolTE/d) | |||||
No. controls/cases | 328/131 | 328/107 | 328/76 | 328/20 | |
Crude OR (95% CI) | 1.0 (ref) | 0.82 (0.61–1.10) | 0.58 (0.42–0.80) | 0.15 (0.09–0.25) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 1.01 (0.70–1.47) | 0.62 (0.41–0.93) | 0.15 (0.08–0.27) | <0.001 |
T-ORAC (μmolTE/d) | |||||
No. controls/cases | 328/116 | 328/114 | 328/77 | 328/27 | |
Crude OR (95% CI) | 1.0 (ref) | 0.98 (0.73–1.33) | 0.66 (0.48–0.92) | 0.23 (0.15–0.36) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 1.13 (0.78–1.65) | 0.66 (0.43–1.00) | 0.25 (0.15–0.44) | <0.001 |
TPs (mgGAE/d) | |||||
No. controls/cases | 328/102 | 328/144 | 328/57 | 328/31 | |
Crude OR (95% CI) | 1.0 (ref) | 1.41 (1.05–1.90) | 0.56 (0.39–0.80) | 0.30 (0.20–0.47) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 1.65 (1.14–2.40) | 0.51 (0.32–0.80) | 0.35 (0.21–0.61) | <0.001 |
Rectal Cancer | |||||
H-ORAC (μmolTE/d) | |||||
No. controls/cases | 328/125 | 328/90 | 328/70 | 328/23 | |
Crude OR (95% CI) | 1.0 (ref) | 0.72 (0.53–0.98) | 0.56 (0.40–0.78) | 0.18 (0.12–0.29) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 0.77 (0.52–1.14) | 0.67 (0.43–1.02) | 0.27 (0.15–0.47) | <0.001 |
L-ORAC (μmolTE/d) | |||||
No. controls/cases | 328/138 | 328/84 | 328/63 | 328/23 | |
Crude OR (95% CI) | 1.0 (ref) | 0.61 (0.45–0.83) | 0.46 (0.33–0.64) | 0.17 (0.10–0.27) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 0.73 (0.50–1.08) | 0.64 (0.42–0.97) | 0.23 (0.13–0.40) | <0.001 |
T-ORAC (μmolTE/d) | |||||
No. controls/cases | 328/126 | 328/90 | 328/70 | 328/22 | |
Crude OR (95% CI) | 1.0 (ref) | 0.71 (0.52–0.98) | 0.56 (0.40–0.77) | 0.18 (0.11–0.28) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 0.77 (0.52–1.14) | 0.69 (0.45–1.06) | 0.24 (0.14–0.43) | <0.001 |
TPs (mgGAE/d) | |||||
No. controls/cases | 328/123 | 328/99 | 328/63 | 328/23 | |
Crude OR (95% CI) | 1.0 (ref) | 0.81 (0.59–1.09) | 0.51 (0.37–0.72) | 0.19 (0.12–0.30) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 0.94 (0.64–1.38) | 0.55 (0.36–0.86) | 0.29 (0.16–0.52) | <0.001 |
Plasma IL-6 Concentration (pg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|
Q1 (<0.98) | Q2 (0.98 to <1.36) | Q3 (1.36 to <2.04) | Q4 (≥2.04) | |||||
No. Controls/Cases | Multivariable OR (95% CI) a | No. Controls/Cases | Multivariable OR (95% CI) a | No. Controls/Cases | Multivariable OR (95% CI) a | No. Controls/Cases | Multivariable OR (95% CI) a | |
H-ORAC (μmolTE/d) | ||||||||
Low | 157/31 | 1.0 (ref) | 156/67 | 1.54 (1.02–2.33) | 168/102 | 1.96 (1.35–2.85) | 175/253 | 4.26 (3.07–5.91) |
High | 171/21 | 1.0 (ref) | 172/27 | 0.33 (0.20–0.56) | 160/52 | 0.57 (0.36–0.88) | 153/101 | 1.23 (0.86–1.77) |
L-ORAC (μmolTE/d) | ||||||||
Low | 148/33 | 1.0 (ref) | 172/69 | 1.56 (1.04–2.34) | 164/115 | 2.21 (1.53–3.17) | 172/253 | 4.70 (3.38–6.52) |
High | 180/19 | 1.0 (ref) | 156/25 | 0.33 (0.19–0.56) | 164/39 | 0.43 (0.27–0.70) | 156/101 | 1.10 (0.77–1.59) |
T-ORAC (μmolTE/d) | ||||||||
Low | 155/31 | 1.0 (ref) | 157/66 | 1.53 (1.01–2.31) | 170/105 | 2.05 (1.41–2.98) | 174/253 | 4.34 (3.12–6.02) |
High | 173/21 | 1.0 (ref) | 171/28 | 0.35 (0.21–0.58) | 158/49 | 0.53 (0.34–0.83) | 154/101 | 1.22 (0.85–1.75) |
TPs (mgGAE/d) | ||||||||
Low | 142/36 | 1.0 (ref) | 160/73 | 1.80 (1.20–2.71) | 174/102 | 2.18 (1.49–3.18) | 180/266 | 4.61 (3.33–6.39) |
High | 186/16 | 1.0 (ref) | 168/21 | 0.25 (0.14–0.44) | 154/52 | 0.53 (0.34–0.83) | 148/88 | 1.13 (0.77–1.66) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Lee, J.; Oh, J.H.; Chang, H.J.; Sohn, D.K.; Shin, A.; Kim, J. Circulating Interleukin-6 Level, Dietary Antioxidant Capacity, and Risk of Colorectal Cancer. Antioxidants 2019, 8, 595. https://doi.org/10.3390/antiox8120595
Kim J, Lee J, Oh JH, Chang HJ, Sohn DK, Shin A, Kim J. Circulating Interleukin-6 Level, Dietary Antioxidant Capacity, and Risk of Colorectal Cancer. Antioxidants. 2019; 8(12):595. https://doi.org/10.3390/antiox8120595
Chicago/Turabian StyleKim, Jimi, Jeonghee Lee, Jae Hwan Oh, Hee Jin Chang, Dae Kyung Sohn, Aesun Shin, and Jeongseon Kim. 2019. "Circulating Interleukin-6 Level, Dietary Antioxidant Capacity, and Risk of Colorectal Cancer" Antioxidants 8, no. 12: 595. https://doi.org/10.3390/antiox8120595
APA StyleKim, J., Lee, J., Oh, J. H., Chang, H. J., Sohn, D. K., Shin, A., & Kim, J. (2019). Circulating Interleukin-6 Level, Dietary Antioxidant Capacity, and Risk of Colorectal Cancer. Antioxidants, 8(12), 595. https://doi.org/10.3390/antiox8120595