Circulating Interleukin-6 Level, Dietary Antioxidant Capacity, and Risk of Colorectal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment and Dietary Antioxidant Capacity Based on the ORAC Database
2.3. Laboratory Assays for IL-6 Biomarker Concentration
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Turati, F.; Bravi, F.; Di Maso, M.; Bosetti, C.; Polesel, J.; Serraino, D.; Dalmartello, M.; Giacosa, A.; Montella, M.; Tavani, A.; et al. Adherence to the World Cancer Research Fund/American Institute for Cancer Research recommendations and colorectal cancer risk. Eur. J. Cancer 2017, 85, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Itzkowitz, S.H.; Yio, X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: The role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, G7–G17. [Google Scholar] [CrossRef] [PubMed]
- Kraus, S.; Arber, N. Inflammation and colorectal cancer. Curr. Opin. Pharmacol. 2009, 9, 405–410. [Google Scholar] [CrossRef]
- Mantovani, A.; Allavena, P.; Sica, A.; Balkwill, F. Cancer-related inflammation. Nature 2008, 454, 436–444. [Google Scholar] [CrossRef]
- Seruga, B.; Zhang, H.; Bernstein, L.J.; Tannock, I.F. Cytokines and their relationship to the symptoms and outcome of cancer. Nat. Rev. Cancer 2008, 8, 887–899. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef]
- Mitsuyama, K.; Sata, M.; Rose-John, S. Interleukin-6 trans-signaling in inflammatory bowel disease. Cytokine Growth Factor Rev. 2006, 17, 451–461. [Google Scholar] [CrossRef]
- Rose-John, S. IL-6 trans-signaling via the soluble IL-6 receptor: Importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 2012, 8, 1237–1247. [Google Scholar] [CrossRef]
- Waldner, M.J.; Foersch, S.; Neurath, M.F. Interleukin-6-a key regulator of colorectal cancer development. Int. J. Biol. Sci. 2012, 8, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Knupfer, H.; Preiss, R. Serum interleukin-6 levels in colorectal cancer patients—A summary of published results. Int. J. Colorectal Dis. 2010, 25, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.-C.; Chang, Y.-F. Serum interleukin-6 levels reflect the disease status of colorectal cancer. J. Surg. Oncol. 2003, 83, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Komoda, H.; Tanaka, Y.; Honda, M.; Matsuo, Y.; Hazama, K.; Takao, T. Interleukin-6 levels in colorectal cancer tissues. World J. Surg. 1998, 22, 895–898. [Google Scholar] [CrossRef]
- Waldner, M.J.; Neurath, M.F. Mechanisms of immune signaling in colitis-associated cancer. Cell. Mol. Gastroenterol. Hepatol. 2015, 1, 6–16. [Google Scholar] [CrossRef]
- Steinmetz, K.A.; Kushi, L.H.; Bostick, R.M.; Folsom, A.R.; Potter, J.D. Vegetables, fruit, and colon cancer in the Iowa Women’s Health Study. Am. J. Epidemiol. 1994, 139, 1–15. [Google Scholar] [CrossRef]
- Voorrips, L.E.; Goldbohm, R.A.; van Poppel, G.; Sturmans, F.; Hermus, R.J.; van den Brandt, P.A. Vegetable and fruit consumption and risks of colon and rectal cancer in a prospective cohort study: The Netherlands Cohort Study on Diet and Cancer. Am. J. Epidemiol. 2000, 152, 1081–1092. [Google Scholar] [CrossRef]
- Terry, P.; Giovannucci, E.; Michels, K.B.; Bergkvist, L.; Hansen, H.; Holmberg, L.; Wolk, A. Fruit, vegetables, dietary fiber, and risk of colorectal cancer. J. Natl. Cancer Inst. 2001, 93, 525–533. [Google Scholar] [CrossRef]
- Riboli, E.; Norat, T. Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. Am. J. Clin. Nutr. 2003, 78 (Suppl. S3), 559S–569S. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef]
- Rahman, K. Studies on free radicals, antioxidants, and co-factors. Clin. Interv. Aging 2007, 2, 219–236. [Google Scholar] [PubMed]
- Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med. 1993, 14, 303–311. [Google Scholar] [CrossRef]
- Cao, G.; Prior, R.L. Measurement of oxygen radical absorbance capacity in biological samples. Methods Enzymol. 1999, 299, 50–62. [Google Scholar] [PubMed]
- Cao, G.; Booth, S.L.; Sadowski, J.A.; Prior, R.L. Increases in human plasma antioxidant capacity after consumption of controlled diets high in fruit and vegetables. Am. J. Clin. Nutr. 1998, 68, 1081–1087. [Google Scholar] [CrossRef]
- Haytowitz, D.B.; Bhagwat, S. USDA Database for the Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2; US Department of Agriculture: Washington, DC, USA, 2010.
- Farvid, M.S.; Homayouni, F.; Kashkalani, F.; Shirzadeh, L.; Valipour, G.; Farahnak, Z. The associations between oxygen radical absorbance capacity of dietary intake and hypertension in type 2 diabetic patients. J. Hum. Hypertens. 2013, 27, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Gifkins, D.; Olson, S.H.; Demissie, K.; Lu, S.E.; Kong, A.N.; Bandera, E.V. Total and individual antioxidant intake and endometrial cancer risk: Results from a population-based case-control study in New Jersey. Cancer Causes Control 2012, 23, 887–895. [Google Scholar] [CrossRef]
- Sheikhi, M.; Sharifi-Zahabi, E.; Paknahad, Z. Dietary antioxidant capacity and its association with preeclampsia. Clin. Nutr. Res. 2017, 6, 47–54. [Google Scholar] [CrossRef]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef]
- Rautiainen, S.; Serafini, M.; Morgenstern, R.; Prior, R.L.; Wolk, A. The validity and reproducibility of food-frequency questionnaire-based total antioxidant capacity estimates in Swedish women. Am. J. Clin. Nutr. 2008, 87, 1247–1253. [Google Scholar] [CrossRef]
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 9S–31S. [Google Scholar] [CrossRef]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Klampfer, L. Cytokines, inflammation and colon cancer. Curr. Cancer Drug Targets 2011, 11, 451–464. [Google Scholar] [CrossRef]
- Terzic, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and colon cancer. Gastroenterology 2010, 138, 2101–2114. [Google Scholar] [CrossRef]
- Wang, S.W.; Sun, Y.M. The IL-6/JAK/STAT3 pathway: Potential therapeutic strategies in treating colorectal cancer. Int. J. Oncol. 2014, 44, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Belluco, C.; Nitti, D.; Frantz, M.; Toppan, P.; Basso, D.; Plebani, M.; Lise, M.; Jessup, J.M. Interleukin-6 blood level is associated with circulating carcinoembryonic antigen and prognosis in patients with colorectal cancer. Ann. Surg. Oncol. 2000, 7, 133–138. [Google Scholar] [CrossRef]
- Vainer, N.; Dehlendorff, C.; Johansen, J.S. Systematic literature review of IL-6 as a biomarker or treatment target in patients with gastric, bile duct, pancreatic and colorectal cancer. Oncotarget 2018, 9, 29820–29841. [Google Scholar] [CrossRef]
- Rajendran, P.; Nandakumar, N.; Rengarajan, T.; Palaniswami, R.; Gnanadhas, E.N.; Lakshminarasaiah, U.; Gopas, J.; Nishigaki, I. Antioxidants and human diseases. Clin. Chim. Acta 2014, 436, 332–347. [Google Scholar] [CrossRef] [PubMed]
- Mut-Salud, N.; Alvarez, P.J.; Garrido, J.M.; Carrasco, E.; Aranega, A.; Rodriguez-Serrano, F. Antioxidant intake and antitumor therapy: Toward nutritional recommendations for optimal results. Oxid. Med. Cell. Longev. 2016, 2016, 6719534. [Google Scholar] [CrossRef] [Green Version]
- Carini, F.; Mazzola, M.; Rappa, F.; Jurjus, A.; Geagea, A.G.; Al Kattar, S.; Bou-Assi, T.; Jurjus, R.; Damiani, P.; Leone, A.; et al. Colorectal carcinogenesis: Role of oxidative stress and antioxidants. Anticancer Res. 2017, 37, 4759–4766. [Google Scholar]
- Perse, M. Oxidative stress in the pathogenesis of colorectal cancer: Cause or consequence? Biomed. Res. Int. 2013, 2013, 725710. [Google Scholar] [CrossRef] [Green Version]
- Pais, R.; Dumitrascu, D.L. Do antioxidants prevent colorectal cancer? A meta-analysis. Rom. J. Intern. Med. 2013, 51, 152–163. [Google Scholar] [PubMed]
- Sreevalsan, S.; Safe, S. Reactive oxygen species and colorectal cancer. Curr. Colorectal Cancer Rep. 2013, 9, 350–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Li, Y.; Zamyatnin, A.A., Jr.; Werner, J.; Bazhin, A.V. Reactive oxygen species and colorectal cancer. J. Cell. Physiol. 2018, 233, 5119–5132. [Google Scholar] [CrossRef] [PubMed]
- Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity 2019, 51, 27–41. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, inflammation, and cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef] [Green Version]
- Crusz, S.M.; Balkwill, F.R. Inflammation and cancer: Advances and new agents. Nat. Rev. Clin. Oncol. 2015, 12, 584–596. [Google Scholar] [CrossRef]
- Ahn-Jarvis, J.H.; Parihar, A.; Doseff, A.I. Dietary flavonoids for immunoregulation and cancer: Food design for targeting disease. Antioxidants (Basel) 2019, 8, 202. [Google Scholar] [CrossRef] [Green Version]
- Kristo, A.S.; Klimis-Zacas, D.; Sikalidis, A.K. Protective role of dietary berries in cancer. Antioxidants (Basel) 2016, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, T.; Chen, G.Y. Flavonoids and colorectal cancer prevention. Antioxidants (Basel) 2018, 7, 187. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-García, C.; Sánchez-Quesada, C.J.; Gaforio, J. Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants (Basel) 2019, 8, 137. [Google Scholar]
Controls (n = 1312) | Cases (n = 654) | p-Value a | |
---|---|---|---|
Age (years) | |||
Mean ± SD | 56.10 ± 9.21 | 56.44 ± 9.60 | 0.45 |
Sex (n, %) | |||
Male | 895 (68.22) | 446 (68.20) | >0.99 |
Female | 417 (31.78) | 208 (31.80) | |
Body mass index (BMI, kg/m2) (n, %) | |||
Mean ± SD | 24.26 ± 2.88 | 24.14 ± 3.52 | 0.44 |
<25 | 828 (63.03) | 411 (62.84) | 0.92 |
≥25 | 484 (36.89) | 243 (37.16) | |
Education level (n, %) | |||
Middle school or less | 201 (15.32) | 241 (36.85) | <0.001 |
High school | 422 (32.16) | 248 (37.92) | |
College or more | 658 (50.15) | 165 (25.23) | |
Occupation (n, %) | |||
Professionals, administrative, management, office jobs | 339 (25.84) | 136 (20.80) | <0.001 |
Sales and service positions | 284 (21.65) | 27 (4.13) | |
Agriculture, manufacturing, mining, army service | 165 (12.58) | 108 (16.51) | |
Housekeeping, unemployment, and others | 510 (38.87) | 383 (58.56) | |
Income (10,000 won/month) (n, %) | |||
<200 | 284 (21.65) | 226 (34.56) | <0.001 |
200–400 | 536 (40.85) | 428 (65.44) | |
>400 | 379 (28.89) | 0 (0.00) | |
Smoking status (n, %) | |||
None | 575 (43.83) | 298 (45.57) | 0.05 |
Ex-smoker | 496 (37.80) | 214 (32.72) | |
Current-smoker | 241 (18.37) | 142 (21.71) | |
Alcohol drinking status (n, %) | |||
None | 406 (30.95) | 200 (30.58) | 0.025 |
Ex-drinker | 121 (9.22) | 86 (13.15) | |
Current-drinker | 785 (59.83) | 368 (56.27) | |
Physical activity status (n, %) | |||
Yes | 759 (57.85) | 207 (31.65) | <0.001 |
No | 545 (41.54) | 447 (68.35) | |
First-degree family history of colorectal cancer (CRC) (n, %) | |||
Yes | 73 (5.56) | 57 (8.72) | 0.008 |
No | 1239 (94.44) | 597 (91.28) | |
Total caloric intake (kcal/day) | |||
Mean ± SD | 1693.04 ± 562.86 | 2022.17 ± 525.74 | <0.001 |
semiquantitative food frequency questionnaire (SQFFQ)- oxygen radical absorbance capacity (ORAC) | |||
hydrophilic ORAC (H-ORAC) (μmolTE/d) | |||
Mean ± SD b | 4870.43 ± 3806.52 | 3323.50 ± 2008.79 | <0.001 d |
Median | 3796.64 | 2837.11 | |
(interquartile range (IQR)) c | (2350.58, 6181.32) | (1961.12, 4185.10) | |
lipophilic ORAC (L-ORAC) (μmolTE/d) | |||
Mean ± SD b | 196.45 ± 116.62 | 147.06 ± 75.94 | <0.001 d |
Median | 173.96 | 134.98 | |
(IQR) c | (120.81, 248.60) | (96.27, 183.24) | |
total ORAC (T-ORAC) (μmolTE/d) | |||
Mean ± SD b | 5062.87 ± 3863.00 | 3467.73 ± 2048.26 | <0.001 d |
Median | 4022.77 | 2987.32 | |
(IQR) c | (2485.96, 6465.70) | (2080.73, 4363.09) | |
TPs (mgGAE/d) | |||
Mean ± SD b | 452.36 ± 386.38 | 301.44 ± 222.92 | <0.001 d |
Median | 344.79 | 242.71 | |
(IQR) c | (195.37, 581.23) | (168.91, 363.96) | |
IL-6 (pg/mL) | |||
Mean ± SD | 1.93 ± 2.39 | 3.64 ± 5.68 | <0.001 d |
Median | 1.36 | 2.14 | |
(IQR) c | (0.98, 2.04) | (1.42, 3.46) |
Plasma IL-6 Concentration (pg/mL) | |||||
---|---|---|---|---|---|
Q1 (<0.98) | Q2 (0.98 to <1.36) | Q3 (1.36 to <2.04) | Q4 (≥2.04) | P for Trend | |
Colorectal cancer | |||||
No. controls/cases | 328/52 | 328/94 | 328/154 | 328/354 | |
Crude OR (95% CI) | 1.0 (ref) | 1.81 (1.25–2.62) | 2.96 (2.09–4.20) | 6.81 (4.90–9.46) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 1.97 (1.24–3.11) | 2.82 (1.82–4.37) | 6.23 (4.10–9.45) | <0.001 |
Colon cancer | |||||
No. controls/cases | 328/32 | 328/46 | 328/80 | 328/176 | |
Crude OR (95% CI) | 1.0 (ref) | 1.44 (0.89–2.31) | 2.50 (1.61–3.87) | 5.50 (3.66–8.26) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 1.63 (0.94–2.84) | 2.33 (1.39–3.92) | 4.77 (2.93–7.76) | <0.001 |
Rectal cancer | |||||
No. controls/cases | 328/20 | 328/48 | 328/72 | 328/168 | |
Crude OR (95% CI) | 1.0 (ref) | 2.40 (1.39–4.13) | 3.60 (2.14–6.05) | 8.40 (5.16–13.69) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 2.42 (1.29–4.55) | 3.48 (1.90–6.39) | 8.06 (4.52–14.39) | <0.001 |
Dietary ORAC | |||||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | P for Trend | |
Colorectal Cancer | |||||
H-ORAC (μmolTE/d) | <2350.58 | 2350.58 to <3796.64 | 3796.64 to <6181.33 | ≥6181.32 | |
No. controls/cases | 328/242 | 328/211 | 328/147 | 328/54 | |
Crude OR (95% CI) | 1.0 (ref) | 0.87 (0.69–1.11) | 0.61 (0.47–0.78) | 0.22 (0.16–0.31) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 0.94 (0.69–1.29) | 0.68 (0.48–0.96) | 0.29 (0.19–0.44) | <0.001 |
L-ORAC (μmolTE/d) | <120.81 | 120.81 to <173.96 | 173.96 to <248.60 | ≥248.60 | |
No. controls/cases | 328/277 | 328/193 | 328/141 | 328/43 | |
Crude OR (95% CI) | 1.0 (ref) | 0.70 (0.55–0.89) | 0.51 (0.40–0.66) | 0.16 (0.11–0.22) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 0.82 (0.60–1.13) | 0.59 (0.42–0.83) | 0.18 (0.12–0.29) | <0.001 |
T-ORAC (μmolTE/d) | 2485.96 | 2485.96 to <4022.77 | 4022.77 to <6465.70 | ≥6465.70 | |
No. controls/cases | 328/248 | 328/207 | 328/148 | 328/51 | |
Crude OR (95% CI) | 1.0 (ref) | 0.84 (0.66–1.06) | 0.60 (0.46–0.77) | 0.21 (0.15–0.29) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 0.92 (0.67–1.27) | 0.68 (0.48–0.96) | 0.26 (0.16–0.40) | <0.001 |
TPs (mgGAE/d) | 195.37 | 195.37 to <344.79 | 344.79 to <581.24 | ≥581.24 | |
No. controls/cases | 328/231 | 328/246 | 328/122 | 328/55 | |
Crude OR (95% CI) | 1.0 (ref) | 1.07 (0.84–1.35) | 0.53 (0.40–0.69) | 0.24 (0.17–0.33) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 1.23 (0.90–1.67) | 0.54 (0.38–0.78) | 0.32 (0.21–0.50) | <0.001 |
Colon Cancer | |||||
H-ORAC (μmolTE/d) | |||||
No. controls/cases | 328/111 | 328/118 | 328/76 | 328/29 | |
Crude OR (95% CI) | 1.0 (ref) | 1.06 (0.79–1.44) | 0.69 (0.49–0.95) | 0.26 (0.17–0.40) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 1.19 (0.81–1.73) | 0.67 (0.44–1.03) | 0.30 (0.18–0.51) | <0.001 |
L-ORAC (μmolTE/d) | |||||
No. controls/cases | 328/131 | 328/107 | 328/76 | 328/20 | |
Crude OR (95% CI) | 1.0 (ref) | 0.82 (0.61–1.10) | 0.58 (0.42–0.80) | 0.15 (0.09–0.25) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 1.01 (0.70–1.47) | 0.62 (0.41–0.93) | 0.15 (0.08–0.27) | <0.001 |
T-ORAC (μmolTE/d) | |||||
No. controls/cases | 328/116 | 328/114 | 328/77 | 328/27 | |
Crude OR (95% CI) | 1.0 (ref) | 0.98 (0.73–1.33) | 0.66 (0.48–0.92) | 0.23 (0.15–0.36) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 1.13 (0.78–1.65) | 0.66 (0.43–1.00) | 0.25 (0.15–0.44) | <0.001 |
TPs (mgGAE/d) | |||||
No. controls/cases | 328/102 | 328/144 | 328/57 | 328/31 | |
Crude OR (95% CI) | 1.0 (ref) | 1.41 (1.05–1.90) | 0.56 (0.39–0.80) | 0.30 (0.20–0.47) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 1.65 (1.14–2.40) | 0.51 (0.32–0.80) | 0.35 (0.21–0.61) | <0.001 |
Rectal Cancer | |||||
H-ORAC (μmolTE/d) | |||||
No. controls/cases | 328/125 | 328/90 | 328/70 | 328/23 | |
Crude OR (95% CI) | 1.0 (ref) | 0.72 (0.53–0.98) | 0.56 (0.40–0.78) | 0.18 (0.12–0.29) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 0.77 (0.52–1.14) | 0.67 (0.43–1.02) | 0.27 (0.15–0.47) | <0.001 |
L-ORAC (μmolTE/d) | |||||
No. controls/cases | 328/138 | 328/84 | 328/63 | 328/23 | |
Crude OR (95% CI) | 1.0 (ref) | 0.61 (0.45–0.83) | 0.46 (0.33–0.64) | 0.17 (0.10–0.27) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 0.73 (0.50–1.08) | 0.64 (0.42–0.97) | 0.23 (0.13–0.40) | <0.001 |
T-ORAC (μmolTE/d) | |||||
No. controls/cases | 328/126 | 328/90 | 328/70 | 328/22 | |
Crude OR (95% CI) | 1.0 (ref) | 0.71 (0.52–0.98) | 0.56 (0.40–0.77) | 0.18 (0.11–0.28) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 0.77 (0.52–1.14) | 0.69 (0.45–1.06) | 0.24 (0.14–0.43) | <0.001 |
TPs (mgGAE/d) | |||||
No. controls/cases | 328/123 | 328/99 | 328/63 | 328/23 | |
Crude OR (95% CI) | 1.0 (ref) | 0.81 (0.59–1.09) | 0.51 (0.37–0.72) | 0.19 (0.12–0.30) | <0.001 |
Multivariable OR (95% CI) a | 1.0 (ref) | 0.94 (0.64–1.38) | 0.55 (0.36–0.86) | 0.29 (0.16–0.52) | <0.001 |
Plasma IL-6 Concentration (pg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|
Q1 (<0.98) | Q2 (0.98 to <1.36) | Q3 (1.36 to <2.04) | Q4 (≥2.04) | |||||
No. Controls/Cases | Multivariable OR (95% CI) a | No. Controls/Cases | Multivariable OR (95% CI) a | No. Controls/Cases | Multivariable OR (95% CI) a | No. Controls/Cases | Multivariable OR (95% CI) a | |
H-ORAC (μmolTE/d) | ||||||||
Low | 157/31 | 1.0 (ref) | 156/67 | 1.54 (1.02–2.33) | 168/102 | 1.96 (1.35–2.85) | 175/253 | 4.26 (3.07–5.91) |
High | 171/21 | 1.0 (ref) | 172/27 | 0.33 (0.20–0.56) | 160/52 | 0.57 (0.36–0.88) | 153/101 | 1.23 (0.86–1.77) |
L-ORAC (μmolTE/d) | ||||||||
Low | 148/33 | 1.0 (ref) | 172/69 | 1.56 (1.04–2.34) | 164/115 | 2.21 (1.53–3.17) | 172/253 | 4.70 (3.38–6.52) |
High | 180/19 | 1.0 (ref) | 156/25 | 0.33 (0.19–0.56) | 164/39 | 0.43 (0.27–0.70) | 156/101 | 1.10 (0.77–1.59) |
T-ORAC (μmolTE/d) | ||||||||
Low | 155/31 | 1.0 (ref) | 157/66 | 1.53 (1.01–2.31) | 170/105 | 2.05 (1.41–2.98) | 174/253 | 4.34 (3.12–6.02) |
High | 173/21 | 1.0 (ref) | 171/28 | 0.35 (0.21–0.58) | 158/49 | 0.53 (0.34–0.83) | 154/101 | 1.22 (0.85–1.75) |
TPs (mgGAE/d) | ||||||||
Low | 142/36 | 1.0 (ref) | 160/73 | 1.80 (1.20–2.71) | 174/102 | 2.18 (1.49–3.18) | 180/266 | 4.61 (3.33–6.39) |
High | 186/16 | 1.0 (ref) | 168/21 | 0.25 (0.14–0.44) | 154/52 | 0.53 (0.34–0.83) | 148/88 | 1.13 (0.77–1.66) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Lee, J.; Oh, J.H.; Chang, H.J.; Sohn, D.K.; Shin, A.; Kim, J. Circulating Interleukin-6 Level, Dietary Antioxidant Capacity, and Risk of Colorectal Cancer. Antioxidants 2019, 8, 595. https://doi.org/10.3390/antiox8120595
Kim J, Lee J, Oh JH, Chang HJ, Sohn DK, Shin A, Kim J. Circulating Interleukin-6 Level, Dietary Antioxidant Capacity, and Risk of Colorectal Cancer. Antioxidants. 2019; 8(12):595. https://doi.org/10.3390/antiox8120595
Chicago/Turabian StyleKim, Jimi, Jeonghee Lee, Jae Hwan Oh, Hee Jin Chang, Dae Kyung Sohn, Aesun Shin, and Jeongseon Kim. 2019. "Circulating Interleukin-6 Level, Dietary Antioxidant Capacity, and Risk of Colorectal Cancer" Antioxidants 8, no. 12: 595. https://doi.org/10.3390/antiox8120595
APA StyleKim, J., Lee, J., Oh, J. H., Chang, H. J., Sohn, D. K., Shin, A., & Kim, J. (2019). Circulating Interleukin-6 Level, Dietary Antioxidant Capacity, and Risk of Colorectal Cancer. Antioxidants, 8(12), 595. https://doi.org/10.3390/antiox8120595