Anti-Oxidant and Tyrosinase Inhibitory In Vitro Activity of Amino Acids and Small Peptides: New Hints for the Multifaceted Treatment of Neurologic and Metabolic Disfunctions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.2. Biological Studies
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) |
ACE | Acarbose equivalents |
AChE | acetylcholinesterase |
AcOEt | Ethyl acetate |
AD | Alzheimer’s disease |
ATCI | Acetylthiocholine iodide |
BChE | Butyrylcholinesterase |
BTCI | Butyrylthiocholine chloride |
CECC | Carnosine Equivalent Iron Chelation Capacity |
ChE | Cholinesterase |
13C-NMR | Carbon-13 nuclear magnetic resonance |
CUPRAC | Cupric ion reducing antioxidant capacity |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
DTNB | 5,5-dithio-bis(2-nitrobenzoic acid) |
EDTA | Ethylenediaminetetraacetic Acid |
EECC | EDTA Equivalent Iron Chelation Capacity |
EGT | L-ergothioneine |
EtOH | Ethanol |
FRAP | Ferric reducing ability of plasma |
GALAE | Galantamine equivalents |
GSH | Gluthatione |
HAT | Hydrogen atom transfer |
1H-NMR | Proton nuclear magnetic resonance |
KAE | Kojic acid |
L-DOPA | Levo-dihydroxy-phenylalanine |
LPA | Lipid peroxidation assay |
NEAC | Non enzymatic antioxidant capacity |
ORAC | Oxygen radical absorbance capacity |
OS | Oxidative strees |
PM | Phosphomolybdenum |
PNPG | p-nitrophenol-alfa-D-glucopyranoside |
RNS | Reactive nitrogen species |
ROS | Reactive Oxygen Species |
SET | Single electron transfer |
TAC | Total anti-oxidant capacity |
Tau | Taurine |
T2D | type 2 diabetes |
TEAC | Trolox equivalent antioxidant capacity |
TLC | Thin layer chromatography |
TPTZ | 2,4,6-tris(2-pyridyl)-S-triazine |
TRAP | Total radical trapping antioxidant parameter |
References
- Sies, H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 1997, 82, 291–295. [Google Scholar] [CrossRef]
- Carrasco-Pancorbo, A.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Del Carlo, M.; Gallina-Toschi, T.; Lercker, G.; Compagnone, D.; Fernandez-Gutierrez, A. Evaluation of the antioxidant capacity of individual phenolic compounds in virgin olive oil. J. Agric. Food Chem. 2005, 53, 8918–8925. [Google Scholar] [CrossRef]
- Rubbo, H.; Batthyany, C.; Radi, R. Nitric Oxide: Oxygen Radical Interactions in Atherosclerosis. Biol. Res. 2000, 33, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, Q.; Liu, A.; Anadón, A.; Rodríguez, J.-L.; Martínez-Larrañaga, M.-R.; Yuan, Z.; Martínez, M.-A. Paracetamol: Overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro. Drug Metab. Rev. 2017, 49, 395–437. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G.; Abdallah, H.H.; Dogan, A.; Mollica, A.; Aumeeruddy-Elalfi, Z.; Mahomoodally, M.F. Phenolic components and assessment of biological properties of Tchihatchewia isatidea Boiss. extracts: Docking and functional approaches for designing novel products. Food Chem. Toxicol. 2018, 111, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Radjendirane, V.; Joseph, P.; Jaiswal, A.K. Oxidative Stress and Signal Transduction; Cadenas, E., Forman, H.J., Eds.; Springer: Basel, Switzerland, 1997; pp. 441–469. [Google Scholar]
- Bartosz, G. Non-enzymatic antioxidant capacity assays: Limitations of use in biomedicine. Free Radic. Res. 2010, 44, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Apak, R.A.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant activity/capacity measurement. 2. Hydrogen atom transfer (HAT)-based, mixed-mode (electron transfer (ET)/HAT), and lipid peroxidation assays. J. Agric. Food Chem. 2016, 64, 1028–1045. [Google Scholar] [CrossRef] [PubMed]
- Metodiewa, D.; Kośka, C. Reactive oxygen species and reactive nitrogen species: Relevance to cyto (neuro) toxic events and neurologic disorders. An overview. Neurotox. Res. 1999, 1, 197–233. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, X.; Li, X. Cardiovascular diseases: Oxidative damage and antioxidant protection. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3091–3096. [Google Scholar] [PubMed]
- Kamat, P.K.; Kalani, A.; Rai, S.; Swarnkar, S.; Tota, S.; Nath, C.; Tyagi, N. Mechanism of Oxidative Stress and Synapse Dysfunction in the Pathogenesis of Alzheimer’s Disease: Understanding the Therapeutics Strategies. Mol. Neurobiol. 2016, 53, 648–661. [Google Scholar] [CrossRef] [PubMed]
- Tramutola, A.; Lanzillotta, C.; Perluigi, M.; Butterfield, D.A. Oxidative stress, protein modification and Alzheimer disease. Brain Res. Bull. 2017, 133, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, S.; Fujita, T.; Shimabukuro, M.; Iwaki, M.; Yamada, Y.; Nakajima, Y.; Nakayama, O.; Makishima, M.; Matsuda, M.S.I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Investig. 2004, 114, 1752–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calcagni, A.; Lucente, G.; Luisi, G.; Pinnen, F.; Rossi, D. Novel glutathione analogues containing the dithiol and disulfide form of the Cys-Cys dyad. Amino Acids 1999, 17, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, A.; Leboffe, L.; Agamennone, M.; Di Pizio, A.; Fiocchetti, M.; Marino, M.; Ascenzi, P.; Luisi, G. Ac-tLeu-Asp-H is the minimal and highly effective human caspase-3 inhibitor: Biological and in silico studies. Amino Acids 2015, 47, 153–162. [Google Scholar] [CrossRef]
- Mollica, A.; Mirzaie, S.; Costante, R.; Carradori, S.; Macedonio, G.; Stefanucci, A.; Dvoracsko, S.; Novellino, E. Exploring the biological consequences of conformational changes in aspartame models containing constrained analogues of phenylalanine. J. Enzym. Inhib. Med. Chem. 2016, 31, 953–963. [Google Scholar] [CrossRef]
- Erdei, A.I.; Borbély, A.; Magyar, A.; Szűcs, E.; Ötvös, F.; Gombos, D.; Al-Khrasani, M.; Stefanucci, A.; Dimmito, M.P.; Luisi, G.; et al. Biochemical and pharmacological investigation of novel nociceptin/OFQ analogues and N/OFQ-RYYRIK hybrid peptides. Peptides 2018, 99, 205–216. [Google Scholar] [CrossRef]
- Rauf, A.; Noor, J. Natural Products as a Potential Enzyme Inhibitors from Medicinal Plants, Enzyme Inhibitors and Activators, Murat Senturk. IntechOpen. 2017. Available online: https://www.intechopen.com/books/enzyme-inhibitors-and-activators/natural-products-as-a-potential-enzyme-inhibitors-from-medicinal-plants (accessed on 29 March 2017). [CrossRef]
- Revadigar, V.; Ghalib, R.M.; Murugaiyah, V.; Embaby, M.A.; Jawad, A.; Mehdi, S.H.; Hashim, R.; Sulaiman, O. Enzyme Inhibitors Involved in the Treatment of Alzheimer’s Disease. In Drug Design and Discovery in Alzheimer’s Disease; Elsevier: Amsterdam, The Netherlands, 2015; pp. 142–198. [Google Scholar]
- Kandiah, N.; Pai, M.-C.; Senanarong, V.; Looi, I.; Ampil, E.; Park, K.W.; Karanam, A.K.; Christopher, S. Rivastigmine: The advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin. Interv. Aging 2017, 12, 697–707. [Google Scholar] [CrossRef]
- Lee, S.Y.; Baek, N.; Nam, T.-G. Natural, semisynthetic and synthetic tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2016, 31, 1–13. [Google Scholar] [CrossRef]
- Tief, K.; Schmidt, A.; Beermann, F. New evidence for presence of tyrosinase in substantia nigra, forebrain and midbrain. Mol. Brain Res. 1998, 53, 307–310. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol. Res. 2018, 130, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Mollica, A.; Zengin, G.; Durdagi, S.; Ekhteiari, S.R.; Macedonio, G.; Stefanucci, A.; Dimmito, M.P.; Novellino, E. Combinatorial peptide library screening for discovery of diverse α-glucosidase inhibitors using molecular dynamics simulations and binary QSAR models. J. Biomol. Struct. Dyn. 2018, 22, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Luisi, G.; Mollica, A.; Carradori, S.; Lenoci, A.; De Luca, A.; Caccuri, A.M. Nitrobenzoxadiazole-based GSTP1-1 inhibitors containing the full peptidyl moiety of (pseudo) glutathione. J. Enzym. Inhib. Med. Chem. 2016, 31, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Colantonio, P.; Leboffe, L.; Bolli, A.; Marino, M.; Ascenzi, P.; Luisi, G. Human caspase-3 inhibition by Z-tLeu-Asp-H: TLeu (P2) counterbalances Asp (P4) and Glu (P3) specific inhibitor truncation. Biochem. Biophys. Res. Commun. 2008, 377, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
- Calcagni, A.; Duprè, S.; Lucente, G.; Luisi, G.; Pinnen, F.; Rossi, D.; Spirito, A. Synthesis and Activity of the Glutathione Analogue γ-(L-γ-Oxaglutamyl)-L-cysteinyl-glycine. Arch. Pharm. 1996, 329, 498–502. [Google Scholar] [CrossRef]
- Cheah, I.K.; Halliwell, B. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim. Biophys. Acta 2012, 1822, 784–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apak, R.A.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J. Agric. Food Chem. 2016, 4, 997–1027. [Google Scholar] [CrossRef]
- Motohashi, N.; Mori, I.; Sugiura, Y.; Tanaka, H. Metal complexes of ergothioneine. Chem. Pharm. Bull. 1974, 22, 654–657. [Google Scholar] [CrossRef]
- Patel, S.N.; Pandya, K.; Clark, G.J.; Parikh, M.C.; Lau-Cam, C.A. Comparison of taurine and pantoyltaurine as antioxidants in vitro and in the central nervous system of diabetic rats. Exp. Toxicol. Pathol. 2016, 68, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Bold, G.; Fässler, A.; Capraro, H.-G.; Cozens, R.; Klimkait, T.; Lazdins, J.; Mestan, J.; Poncioni, B.; Rösel, J.; Stover, D. New aza-dipeptide analogues as potent and orally absorbed HIV-1 protease inhibitors: Candidates for clinical development. J. Med. Chem. 1998, 41, 3387–3401. [Google Scholar] [CrossRef] [PubMed]
- Bommarius, A.S.; Schwarm, M.; Stingl, K.; Kottenhahn, M.; Huthmacher, K.; Drauz, K. Synthesis and use of enantiomerically pure tert-leucine. Tetrahedron Asymmetry 1995, 6, 2851–2888. [Google Scholar] [CrossRef]
- Lyu, P.C.; Sherman, J.C.; Chen, A.; Kallenbach, N.R. Alpha-helix stabilization by natural and unnatural amino acids with alkyl side chains. Proc. Natl. Acad. Sci. USA 1991, 88, 5317–5320. [Google Scholar] [CrossRef] [PubMed]
- Croft, A.K.; Easton, C.J.; Radom, L. Design of radical-resistant amino acid residues: A combined theoretical and experimental investigation. J. Am. Chem. Soc. 2003, 125, 4119–4124. [Google Scholar] [CrossRef]
- Palanimuthu, D.; Wu, Z.; Jansson, P.J.; Braidy, N.; Bernhardt, P.V.; Richardson, D.R.; Kalinowski, D.S. Novel chelators based on adamantane-derived semicarbazones and hydrazones that target multiple hallmarks of Alzheimer’s disease. Dalton Trans. 2018, 47, 7190–7205. [Google Scholar] [CrossRef] [PubMed]
Mechanisms of Assays | Type of Assay | pH | Solvent | Anti-Oxidant Character |
---|---|---|---|---|
Assays involving Single Electron Transfer (SET) reactions ● Non-competitive reduction-based assays | FRAP (Ferric ion Reducing Anti-oxidant Power) ● The assay does not sufficiently responds to thiols due to the kinetic inertness of high-spin Fe(III) in the TPTZ complex | acid | water | hydrophilic |
CUPRAC (CUPric Reducing Anti-oxidant Capacity) ● The reagent rapidly oxidizes thiol-containing anti-oxidants | neutral | alcohols, acetone, DCM, alcohol-water mixtures | lipophilic and hydrophilic | |
PM (Phosphomolybdenum assay) | 4–5 | water | hydrophilic | |
Assays involving mixed-mode Hydrogen Atom Transfer (HAT) /SET reactions ● Non-competitive scavenging and reduction-based assays | DPPH (2,2-Di-Phenyl-1-Picryl-Hydrazyl) | 3–7.5 | methanol, ethanol alcohol-water mixtures | lipophilic and hydrophilic |
ABTS (2,2-Azino-Bis(3-ethylbenzo-Thiazoline)-6-Sulphonic acid ● Thiols are oxidized by ABTS.+ radical cation to higher oxidation levels (sulfenic and sulfinic acids) | acid | water, ethanol | lipophilic and hydrophilic |
Compounds | DPPH (mgTE/g Sample) | ABTS (mgTE/g Sample) | CUPRAC (mgTE/g Sample) | FRAP (mgTE/g Sample) | Phosphomolybdenum (mmolTE/g Sample) | Metal Chelating (mgEDTAE/g Sample) |
---|---|---|---|---|---|---|
L-cysteine (1) | 102.50 ± 1.43 a | 245.14 ± 0.21 a | 939.97 ± 2.96 a | 761.90 ± 16.69 a | 2.28 ± 0.02 b | not active |
GSH (2) | 65.48 ± 2.81 b | 196.89 ± 0.38 b | 389.74 ± 7.88 c | 143.03 ± 6.68 c | 2.50 ± 0.11 a | not active |
H-Glo(Cys-Gly-OH)-OH (3) | 106.07 ± 0.54 a | not active | 69.36 ± 0.97 f | 41.44 ± 0.86 c | 0.21 ± 0.04 e | 70.91 ± 0.17 b |
L-cystine (4) | 100.79 ± 0.40 a | 1.20 ± 0.08 f | 124.72 ± 4.13 d | 41.59 ± 0.35 e | 0.11 ± 0.01 f | 84.77 ± 0.11 a |
Ergothioneine (5) | 73.23 ± 0.13 c | 123.88 ± 0.24 c | 534.55 ± 7.87 b | 114.94 ± 1.75 d | 2.46 ± 0.02 a | 1.35 ± 0.27 f |
Taurine (6) | not active | 5.47 ± 0.14 e | 26.19 ± 0.53 g | 13.47 ± 0.63 a | 0.05 ± 0.01 g | 20.45 ± 2.08 d |
Z-tleu-Asp (OtBu)-Sc (7) | not active | not active | 84.30 ± 1.39 e | 30.33 ± 1.44 f | 0.36 ± 0.01 d | 43.69 ± 3.40 c |
Ac-tLeu-Leu-Asp(OtBu)-Sc (8) | not active | 48.01 ± 1.41 d | 81.31 ± 1.85 e | 170.47 ± 5.50 b | 2.62 ± 0.13 a | 82.70 ± 3.01 a |
Ethyl 2-tBu-(DL)-mono-malonate (9) | not active | not active | 27.41 ± 3.53 g | 14.29 ± 0.36 g | 0.54 ± 0.01 c | 13.76 ± 3.27 e |
Compounds | AChE Inhibition (mgGALAE/g) | BChE Inhibition (mgGALAE/g) | Tyrosinase Inhibition (mgKAE/g) | Amylase Inhibition (mmolACAE/g) | Glucosidase Inhibition (mmolACAE/g Sample) |
---|---|---|---|---|---|
L-cysteine (1) | 5.12 ± 0.15 a | 6.14 ± 0.08 ab | 216.40 ± 0.17 a | 0.06 ± 0.01 e | not active |
GSH (2) | 3.62 ± 0.04 b | 6.13 ± 0.12 ab | 45.60 ± 0.15 e | 0.03 ± 0.01 f | not active |
H-Glo(Cys-Gly-OH)-OH (3) | not active | 6.39 ± 0.01 a | 216.95 ± 0.17 a | 1.37 ± 0.03 b | 1.69 ± 0.01 b |
L-cystine (4) | 5.24 ± 0.02 a | 6.38 ± 0.01 a | 217.16 ± 0.55 a | 1.95 ± 0.04 a | 1.68 ± 0.02 b |
Ergothioneine (5) | 3.01 ± 0.01 c | 0.18 ± 0.05 d | 100.97 ± 1.71 d | 0.07 ± 0.01 e | not active |
Taurine (6) | 0.45 ± 0.03 e | 0.07 ± 0.01 e | 33.87 ± 1.59 f | 0.07 ± 0.01 e | 3.96 ± 0.95 a |
Z-tleu-Asp (OtBu)-Sc (7) | not active | 6.37 ± 0.01 a | 163.87 ± 0.90 b | 0.31 ± 0.06 c | 1.69 ± 0.01 b |
Ac-tLeu-Leu-Asp(OtBu)-Sc (8) | 5.17 ± 0.07 a | 6.33 ± 0.01 a | 152.69 ± 1.19 c | 0.39 ± 0.08 c | not active |
ethyl 2-tBu-(DL)-mono-malonate (9) | 2.61 ± 0.01 d | 2.96 ± 0.08 c | 45.37 ± 0.52 e | 0.20 ± 0.02 d | 0.84 ± 0.01 c |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luisi, G.; Stefanucci, A.; Zengin, G.; Dimmito, M.P.; Mollica, A. Anti-Oxidant and Tyrosinase Inhibitory In Vitro Activity of Amino Acids and Small Peptides: New Hints for the Multifaceted Treatment of Neurologic and Metabolic Disfunctions. Antioxidants 2019, 8, 7. https://doi.org/10.3390/antiox8010007
Luisi G, Stefanucci A, Zengin G, Dimmito MP, Mollica A. Anti-Oxidant and Tyrosinase Inhibitory In Vitro Activity of Amino Acids and Small Peptides: New Hints for the Multifaceted Treatment of Neurologic and Metabolic Disfunctions. Antioxidants. 2019; 8(1):7. https://doi.org/10.3390/antiox8010007
Chicago/Turabian StyleLuisi, Grazia, Azzurra Stefanucci, Gokhan Zengin, Marilisa Pia Dimmito, and Adriano Mollica. 2019. "Anti-Oxidant and Tyrosinase Inhibitory In Vitro Activity of Amino Acids and Small Peptides: New Hints for the Multifaceted Treatment of Neurologic and Metabolic Disfunctions" Antioxidants 8, no. 1: 7. https://doi.org/10.3390/antiox8010007
APA StyleLuisi, G., Stefanucci, A., Zengin, G., Dimmito, M. P., & Mollica, A. (2019). Anti-Oxidant and Tyrosinase Inhibitory In Vitro Activity of Amino Acids and Small Peptides: New Hints for the Multifaceted Treatment of Neurologic and Metabolic Disfunctions. Antioxidants, 8(1), 7. https://doi.org/10.3390/antiox8010007