Development of Biocomposites with Antioxidant Activity Based on Red Onion Extract and Acetate Cellulose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Red Onion Extraction Studies
2.2.1. Extraction of Active Compounds from Red Onion
2.2.2. Determination of Polyphenolic Compounds
2.2.3. Evaluation of Antioxidant Capacity of Extracts
2.2.4. Determination of Total Flavonoid Content
2.3. Obtaining Onion Extract (OE)
2.4. Films Preparation
Independent Variables | Levels | ||||
−14.142 | −1 | 0 | 1 | 14.142 | |
OE concentration (%) (X1) | 3.964 | 5 | 7.5 | 10 | 11.035 |
Plasticizer concentration (%) (X2) | 13.786 | 20 | 35 | 50 | 56.213 |
2.5. Antioxidant Release Test
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Onion Extract
Experiment | Factors | Actual Responses | Predicted Responses | |||
---|---|---|---|---|---|---|
OE concentration | Plasticizer | DPPH | Total Phenols | DPPH | Total Phenols | |
(%) | (%) | (mg Trolox/g of Sample) | (mg GAE/g of Sample) | (mg Trolox/g of Sample) | (mg GAE/g of Sample) | |
1 | 5 | 20 | 0.355 | 1.303 | 0.331 | 1.28 |
2 | 10 | 20 | 0.854 | 2.034 | 0.858 | 1.94 |
3 | 5 | 50 | 0.357 | 0.977 | 0.416 | 0.976 |
4 | 10 | 50 | 0.212 | 1.525 | 0.298 | 1.453 |
5 | 3.96 | 35 | 0.456 | 0.945 | 0.445 | 0.942 |
6 | 11.04 | 35 | 0.787 | 1.648 | 0.735 | 1.746 |
7 | 7.5 | 13.79 | 0.502 | 1.696 | 0.529 | 1.759 |
8 | 7.5 | 56.21 | 0.283 | 1.168 | 0.194 | 1.2 |
9 | 7.5 | 35 | 0.489 | 1.341 | 0.509 | 1.427 |
10 | 7.5 | 35 | 0.56 | 1.525 | 0.509 | 1.427 |
11 | 7.5 | 35 | 0.479 | 1.339 | 0.509 | 1.427 |
12 | 7.5 | 35 | 0.508 | 1.502 | 0.509 | 1.427 |
Solvent | mg Trolox/100 g Sample |
---|---|
Acetone | 9.7 ± 0.4 a |
Water | 6.5 ± 0.3 b |
Ethanol 75% | 9.5 ± 0.9 a |
Ethanol 85% | 13.1 ± 0.5 c |
Ethanol | 17.0 ± 0.7 d |
Method | Ethanol 85% | Ethanol 100% |
---|---|---|
Total Phenols (mg GAE/100 g of sample) | 232.2 ± 2.5 a | 287.6 ± 5.0 b |
ABTS (mg Trolox/100 g of sample) | 109.1 ± 2.4 a | 118.3 ± 0.2 b |
FRAP (mg Trolox/100 g of sample) | 57.6 ± 0.9 a | 59.1 ± 1.0 a |
Flavonoid (mg quercetin/100 g of sample) | 187.8 ± 2.1 a | 178.7 ± 5.3 a |
3.2. Experimental Design for Film Formulation
Source | DPPH | Total Phenols | ||
---|---|---|---|---|
F-Ratio | p-Value | F-Ratio | p-Value | |
[X1] | 64.02 | 0.004 | 64.88 | 0.000 |
[X2] | 85.71 | 0.002 | 31.38 | 0.001 |
X1 X1 | 7.97 | 0.066 | 1.09 | 0.336 |
X1 X2 | 78.92 | 0.003 | 0.84 | 0.394 |
X2 X2 | 26.51 | 0.014 | 0.45 | 0.528 |
Lack-of-fit | 5.81 | 0.091 | 0.96 | 0.514 |
R2aj | 87.12 | 89.52 | ||
SEE | 0.06 | 0.10 |
3.3. Antioxidant Compounds Release
4. Conclusions
Acknowledgements
Author Contributions
Conflicts of Interest
References
- Galotto, M.J.; Guarda, A.; Lopez de Dicastillo, C. Antimicrobial active polymers in food packaging. In Functional Polymers in Food Science; Cirillo, G., Iemma, F., Gianfranco Spirizzi, U., Eds.; Scrivener Publishing Editorial: Hoboken, NJ, USA, 2014; Chapter 10; pp. 323–353. [Google Scholar]
- Gómez-Estaca, J.; López-de-Dicastillo, C.; Hernández-Muñoz, P.; Catalá, R.; Gavara, R. Advances in antioxidant active food packaging. Trends Food Sci. Technol. 2014, 35, 42–51. [Google Scholar] [CrossRef]
- Sanchez-Silva, A.; Costa, D.; Albuquerque, T.G.; Buonocore, G.G.; Ramos, F.; Conceiçao-Catillho, M.; Machado, A.V.; Costa, H.S. Trends in the use of natural antioxidants in active food packaging: A review. Food Addit. Contam. 2014, 31, 374–395. [Google Scholar] [CrossRef] [PubMed]
- Bentayeb, K.; Rubio, C.; Batlle, R.; Nerin, C. Direct determinationof carnosic acid in a new active packaging based on natural extractof rosemary. Anal. Bioanal. Chem. 2007, 389, 1989–1996. [Google Scholar] [CrossRef] [PubMed]
- Camo, J.; Beltran, J.A.; Roncales, P. Extension of the display life of lamb with an antioxidant active packaging. Meat Sci. 2008, 80, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, M.; López de Dicastillo, C.; López-Carballo, G.; Vélez, D.; Hernández-Muñoz, P.; Gavara, R. Active films based on cocoa extract with antioxidant, antimicrobial and biological applications. Food Chem. 2013, 139, 51–58. [Google Scholar] [CrossRef] [PubMed]
- López de Dicastillo, C.; Nerín, C.; Alfaro, P.; Catalá, R.; Gavara, R.; Hernández-Muñoz, P. Development of a new antioxidant active packaging films based on EVOH and green tea extract. J. Agric. Food Chem 2011, 59, 7832–7840. [Google Scholar] [CrossRef] [PubMed]
- Meier, M.M.; Kanis, L.A.; Lima, J.C.; Pires, A.T.N.; Soldi, V. Poly(caprolactone triol) as plasticizer agent for acetate cellulose films: Influence of the preparation procedure and plasticizer content on the physic-chemical properties. Polym. Adv. Technol. 2004, 15, 593–600. [Google Scholar] [CrossRef]
- Rodriguez, F.; Galotto, M.J.; Guarda, A.; Bruna, J.E. Modification of cellulose acetate films using nanofillers based on organoclays. J. Food Eng. 2012, 110, 262–268. [Google Scholar] [CrossRef]
- Griffiths, G.; Trueman, L.; Crowther, T.; Thomas, B.; Smith, B. Review Article Onions—A Global Benefit to Health. Phytother. Res. 2002, 16, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Nuutila, A.M.; Kammiovirta, K.; Oksman-Caldentey, K.M. Comparison of methods for the hydrolysis of flavonoids and phenolic acids from onion and spinach for HPLC analysis. Food Chem. 2002, 76, 519–525. [Google Scholar] [CrossRef]
- Lindahl, S.; Liu, J.; Khan, S.; Nordberg-Karlsson, E.; Turner, C. An on-line method for pressurized hot water extraction and enzymatic hydrolysis of quercetin glucosides from onions. Anal. Chim. Acta 2013, 785, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Huma, Z.; Vian, M.A.; Sylvie, A.; Tixier, F.; Elmaataoui, M.; Dangles, O.; Chemat, F. A remarkable influence of microwave extraction: Enhancement of antioxidant activity of extracted onion varieties. Food Chem. 2011, 127, 1472–1480. [Google Scholar] [CrossRef]
- Friedman, M. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol. Nutr. Food Res. 2007, 51, 116–134. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, C.; Filesi, C.; D’Archivio, M.; Scazzocchio, B.; Santangelo, C.; Masella, R. Polyphenols and endogenous antioxidant defences: Effects on glutathione and glutathione related enzymes. Ann. Ist. Super. Sanita 2006, 42, 336–347. [Google Scholar] [PubMed]
- Shapiro, H.; Singer, P.; Halpern, Z.; Bruck, R. Polyphenols in the treatment of inflammatory bowel disease and acute pacreatitis. Gut 2007, 56, 426–435. [Google Scholar] [CrossRef] [PubMed]
- López-de-Dicastillo, C.; Gómez-Estaca, J.; Catalá, R.; Gavara, R.; Hernández-Muñoz, P. Active antioxidant packaging films: Development and effect on lipid stability of brined sardines. Food Chem. 2012, 131, 1376–1384. [Google Scholar] [CrossRef]
- Torres, A.; Romero, J.; Macan, A.; Guarda, A.; Galotto, M.J. Near critical and supercritical impregnation and kinetic release of thymol in LLDPE films used for food packaging. J. Supercrit. Fluids 2014, 85, 41–48. [Google Scholar] [CrossRef]
- Laboulfie, F.; Hémati, M.; Lamure, A.; Diguet, S. Effect of the plasticizer on permeability, mechanical resistance and thermal behaviour of composite coating films. Powder Technol. 2013, 238, 14–19. [Google Scholar] [CrossRef]
- López de Dicastillo, C.; Ares Pernas, A.; Castro López, M.; López Vilariño, J.M.; González Rodríguez, M.V. Enhancing the release of the antioxidant tocopherol from polypropylene films by incorporating the natural plasticizers lecithin, olive oil, or sunflower oil. J. Agric. Food Chem. 2013, 61, 11848–11857. [Google Scholar] [CrossRef] [PubMed]
- Castro López, M.; López de Dicastillo, C.; López Vilariño, J.M.; González Rodríguez, M.V. Improving the capacity of polypropylene to be used in antioxidant active films: Incorporation of plasticizer and natural antioxidants. Food Res. Int. 2011, 44, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Park, H.M.; Misra, M.; Drzal, L.T.; Mohanty, A.K. “Green” nanocomposites from cellulose acetate bioplastic and clay: Effect of eco-friendly triethyl citrate plasticizer. Biomacromolecules 2004, 5, 2281–2288. [Google Scholar] [CrossRef] [PubMed]
- Pelissari, F.M.; Andrade-Mahecha, M.M.; do Amaral Sobral, P.J.; Menegalli, F.C. Optimization of process conditions for the production of films based on the flour from plantain bananas (Musa paradisiaca). LWT—Food Sci. Technol. 2013, 52, 1–11. [Google Scholar] [CrossRef]
- Tapia-Blácido, D.R.; do Amaral Sobral, P.J.; Menegalli, F.C. Optimization of amaranth flour films plasticized with glycerol and sorbitol by multi-response analysis. LWT—Food Sci. Technol. 2011, 44, 1731–1738. [Google Scholar] [CrossRef]
- Ozdemir, M.; Floros, J.D. Optimization of edible whey protein films containing preservatives for water vapor permeability, water solubility and sensory characteristics. J. Food Eng. 2008, 86, 215–224. [Google Scholar] [CrossRef]
- Yücel, E.; Güler, N.; Yücel, Y. Optimization of deposition conditions of CdS thin films using response surface methodology. J. Alloys Compd. 2014, 589, 207–212. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Prior, R.L.; Wu, X.L.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Okada, M. Scavenging effect of water soluble proteins in broad beans on free radicals and active oxygen species. J. Agric. Food Chem. 1998, 46, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, J.; Al-Qadiri, H.M.; Ross, C.F.; Powers, J.R.; Tang, J.; Rasco, B.A. Determination of total phenolic content and antioxidant capacity of onion (Allium cepa) and shallot (Allium oschaninii) using infrared spectroscopy. Food Chem. 2011, 129, 637–644. [Google Scholar] [CrossRef]
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Antioxidant, anti-inflammatory and DNA scission inhibito activities of phenolic compounds in selected onion and pot varieties. J. Funct. Foods 2013, 5, 930–939. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C. Response Surface Methodology: Product and Process Optimization Using Designed Experiments, 2nd ed.John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Kahkonen, M.P.; Hopia, A.I.; Vuorela, H.J.; Rauha, J.P.; Pihlaja, K.; Kujala, T.S.; Heinonen, M. Antioxidant Activity of Plant Extracts Containing Phenolic Compounds. J. Agric. Food Chem. 1999, 47, 3954–3962. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.J.; Lee, H.K.; Wang, D.M. The influence of plasticizers on the release of Theophylline from microporous-controlled tablets. J. Control Release 2004, 99, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Iñiguez-Franco, F.; Soto-Valdez, H.; Peralta, E.; Ayala-Zavala, J.F.; Auras, R.; Gamez-Meza, N. Antioxidant activity and diffusion of catechin and epicatechin from antioxidant active films made of Poly(l-lactic acid). J. Agric. Food Chem. 2012, 60, 6515–6523. [Google Scholar] [CrossRef] [PubMed]
- Samsudin, H.; Soto-Valdez, H.; Auras, R. Poly(lactic acid) film incorporated with marigold flower extract (Tagetes erecta) intended for fatty-food application. Food Control 2014, 46, 55–66. [Google Scholar] [CrossRef]
- Lopez de Dicastillo, C.; Alonso, J.M.; Catala, R.; Gavara, R.; Hernandez-Muñoz, P. Improving the antioxidant protection of packaged food by incorporating natural flavonoids into ethylene-vinyl alcohol copolymer (EVOH) films. J. Agric.Food Chem. 2010, 58, 10958–10964. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Dicastillo, C.L.; Navarro, R.; Guarda, A.; Galotto, M.J. Development of Biocomposites with Antioxidant Activity Based on Red Onion Extract and Acetate Cellulose. Antioxidants 2015, 4, 533-547. https://doi.org/10.3390/antiox4030533
De Dicastillo CL, Navarro R, Guarda A, Galotto MJ. Development of Biocomposites with Antioxidant Activity Based on Red Onion Extract and Acetate Cellulose. Antioxidants. 2015; 4(3):533-547. https://doi.org/10.3390/antiox4030533
Chicago/Turabian StyleDe Dicastillo, Carol López, Rosa Navarro, Abel Guarda, and Maria José Galotto. 2015. "Development of Biocomposites with Antioxidant Activity Based on Red Onion Extract and Acetate Cellulose" Antioxidants 4, no. 3: 533-547. https://doi.org/10.3390/antiox4030533
APA StyleDe Dicastillo, C. L., Navarro, R., Guarda, A., & Galotto, M. J. (2015). Development of Biocomposites with Antioxidant Activity Based on Red Onion Extract and Acetate Cellulose. Antioxidants, 4(3), 533-547. https://doi.org/10.3390/antiox4030533