Brine Enriched with Olive Wastewater Phenols: A Green Strategy to Reduce Nitrites in Cooked Ham
Abstract
1. Introduction
2. Materials and Methods
2.1. OVW Phenol Extract
2.2. Preparation of Phenol-Enriched Cooked Ham
2.3. pH, Activity Water, Proximate Composition, and Microbial Target of Cooked Ham
2.4. Phenols Analysis
2.5. Protein Oxidation
2.5.1. Carbonyl Compounds
2.5.2. Sulfhydryl Groups
2.6. Lipid Extraction
2.7. Determination of Main Lipid Classes
2.8. Determination of Total FA
2.9. Determination of Thiobarbituric Acid Reactive Substances (TBARs)
2.10. Determination of Cholesterol and Cholesterol Oxidation Products (COPs)
2.11. Volatile Organic Compounds (VOCs) Analysis
2.12. Physical Analysis
2.12.1. Instrumental Color Measurement
2.12.2. Image Analysis
2.13. Sensory Analysis
2.13.1. Descriptive Analysis
2.13.2. Discriminant Test
2.14. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition, pH, aw, and Microbial Analyses
3.2. Evolution of Phenolic Compounds
3.3. Main Lipid Classes
3.4. Total Fatty Acid Profile
3.5. Protein Oxidation
3.6. Lipid Oxidation
3.7. VOCs Profile
3.8. Physical Analysis
3.8.1. Colorimetric Analysis
3.8.2. Image Analysis
3.9. PCA of Chemical and Physical Data
3.10. Sensory Analysis
3.10.1. Descriptive Analysis
3.10.2. Discriminant Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Statista. 2024. Available online: https://www.statista.com/ (accessed on 20 February 2025).
- ASSICA. Associazione Industriali delle Carni e dei Salumi. 2024. Available online: https://www.assica.it/ (accessed on 20 February 2025).
- Ministerial Decree. DECRETO 26 Maggio 2016 Modifiche al Decreto 21 Settembre 2005 Concernente la Disciplina della Produzione e della Vendita di Taluni Prodotti di Salumeria. (16A04808) (GU Serie Generale n.149 del 28-06-2016). 26 May 2016. Available online: https://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario?atto.dataPubblicazioneGazzetta=2016-06-28&atto.codiceRedazionale=16A04808&elenco30giorni=true (accessed on 20 February 2025).
- Toldrá, F.; Mora, L.; Flores, M. Cooked ham. In Handbook of Meat Processing; Toldrá, F., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2010; pp. 299–311. [Google Scholar]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. International Agency for Research on Cancer Monograph Working Group Carcinogenicity of Consumption of Red and Processed Meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef]
- Estévez, M. Critical Overview of the Use of Plant Antioxidants in the Meat Industry: Opportunities, Innovative Applications and Future Perspectives. Meat Sci. 2021, 181, 108610. [Google Scholar] [CrossRef]
- Grasso, S.; Estévez, M.; Lorenzo, J.M.; Pateiro, M.; Ponnampalam, E.N. The Utilisation of Agricultural By-Products in Processed Meat Products: Effects on Physicochemical, Nutritional and Sensory Quality–Invited Review. Meat Sci. 2024, 211, 109451. [Google Scholar] [CrossRef]
- Zeb, A. Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-Antioxidant Activity Relationship of Methoxy, Phenolic Hydroxyl, and Carboxylic Acid Groups of Phenolic Acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef] [PubMed]
- Rocha, B.S.; Nunes, C.; Pereira, C.; Barbosa, R.M.; Laranjinha, J. A Shortcut to Wide-Ranging Biological Actions of Dietary Polyphenols: Modulation of the Nitrate–Nitrite–Nitric Oxide Pathway in the Gut. Food Funct. 2014, 5, 1646–1652. [Google Scholar] [CrossRef]
- Takó, M.; Kerekes, E.B.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant Phenolics and Phenolic-Enriched Extracts as Antimicrobial Agents against Food-Contaminating Microorganisms. Antioxidants 2020, 9, 165. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Hu, H.; Zhu, X.; Wang, S.; Zhao, W.; Xie, D.; Xi, J.; Liu, K. Inhibitory Effects and Reactions of Gallic Acid, Catechin, and Procyanidin B2 with Nitrosation under Stomach Simulating Conditions. Food Funct. 2024, 15, 3130–3140. [Google Scholar] [CrossRef]
- Shakil, M.H.; Trisha, A.T.; Rahman, M.; Talukdar, S.; Kobun, R.; Huda, N.; Zzaman, W. Nitrites in Cured Meats, Health Risk Issues, Alternatives to Nitrites: A Review. Foods 2022, 11, 3355. [Google Scholar] [CrossRef]
- Ferysiuk, K.; Wójciak, K.M. Reduction of Nitrite in Meat Products through the Application of Various Plant-Based Ingredients. Antioxidants 2020, 9, 711. [Google Scholar] [CrossRef]
- Mercatante, D.; Ansorena, D.; Taticchi, A.; Astiasarán, I.; Servili, M.; Rodriguez-Estrada, M.T. Effects of In Vitro Digestion on the Antioxidant Activity of Three Phenolic Extracts from Olive Mill Wastewaters. Antioxidants 2023, 12, 22. [Google Scholar] [CrossRef] [PubMed]
- Carrara, M.; Kelly, M.T.; Roso, F.; Larroque, M.; Margout, D. Potential of Olive Oil Mill Wastewater as a Source of Polyphenols for the Treatment of Skin Disorders: A Review. J. Agric. Food Chem. 2021, 69, 7268–7284. [Google Scholar] [CrossRef]
- Servili, M.; Esposto, S.; Veneziani, G.; Urbani, S.; Taticchi, A.; Di Maio, I.; Selvaggini, R.; Sordini, B.; Montedoro, G. Improvement of Bioactive Phenol Content in Virgin Olive Oil with an Olive-Vegetation Water Concentrate Produced by Membrane Treatment. Food Chem. 2011, 124, 1308–1315. [Google Scholar] [CrossRef]
- Benincasa, C.; Pellegrino, M.; Romano, E.; Claps, S.; Fallara, C.; Perri, E. Qualitative and Quantitative Analysis of Phenolic Compounds in Spray-Dried Olive Mill Wastewater. Front. Nutr. 2022, 8, 782693. [Google Scholar] [CrossRef]
- Caporaso, N.; Formisano, D.; Genovese, A. Use of Phenolic Compounds from Olive Mill Wastewater as Valuable Ingredients for Functional Foods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2829–2841. [Google Scholar] [CrossRef]
- Galanakis, C.M. Phenols Recovered from Olive Mill Wastewater as Additives in Meat Products. Trends Food Sci. Technol. 2018, 79, 98–105. [Google Scholar] [CrossRef]
- Boschetti, L.; Ottavian, M.; Facco, P.; Barolo, M.; Serva, L.; Balzan, S.; Novelli, E. A Correlative Study on Data from Pork Carcass and Processed Meat (Bauernspeck) for Automatic Estimation of Chemical Parameters by Means of near-Infrared Spectroscopy. Meat Sci. 2013, 95, 621–628. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990; pp. 200–210. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Fasolato, L.; Carraro, L.; Facco, P.; Cardazzo, B.; Balzan, S.; Taticchi, A.; Andreani, N.A.; Montemurro, F.; Martino, M.E.; Di Lecce, G.; et al. Agricultural By-Products with Bioactive Effects: A Multivariate Approach to Evaluate Microbial and Physicochemical Changes in a Fresh Pork Sausage Enriched with Phenolic Compounds from Olive Vegetation Water. Int. J. Food Microbiol. 2016, 228, 34–43. [Google Scholar] [CrossRef]
- Miraglia, D.; Castrica, M.; Menchetti, L.; Esposto, S.; Branciari, R.; Ranucci, D.; Urbani, S.; Sordini, B.; Veneziani, G.; Servili, M. Effect of an Olive Vegetation Water Phenolic Extract on the Physico-Chemical, Microbiological and Sensory Traits of Shrimp (Parapenaeus longirostris) during the Shelf-Life. Foods 2020, 9, 1647. [Google Scholar] [CrossRef]
- Selvaggini, R.; Esposto, S.; Taticchi, A.; Urbani, S.; Veneziani, G.; Di Maio, I.; Sordini, B.; Servili, M. Optimization of the Temperature and Oxygen Concentration Conditions in the Malaxation during the Oil Mechanical Extraction Process of Four Italian Olive Cultivars. J. Agric. Food Chem. 2014, 62, 3813–3822. [Google Scholar] [CrossRef]
- Zakrys, P.I.; Hogan, S.A.; O’Sullivan, M.G.; Allen, P.; Kerry, J.P. Effects of Oxygen Concentration on the Sensory Evaluation and Quality Indicators of Beef Muscle Packed under Modified Atmosphere. Meat Sci. 2008, 79, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Eymard, S.; Baron, C.P.; Jacobsen, C. Oxidation of Lipid and Protein in Horse Mackerel (Trachurus trachurus) Mince and Washed Minces during Processing and Storage. Food Chem. 2009, 114, 57–65. [Google Scholar] [CrossRef]
- Winther, J.R.; Thorpe, C. Quantification of Thiols and Disulfides. Biochim. Biophys. Acta 2014, 1840, 838–846. [Google Scholar] [CrossRef]
- Boselli, E.; Velazco, V.; Fiorenza Caboni, M.; Lercker, G. Pressurized Liquid Extraction of Lipids for the Determination of Oxysterols in Egg-Containing Food. J. Chromatogr. A 2001, 917, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Luise, D.; Cardenia, V.; Zappaterra, M.; Motta, V.; Bosi, P.; Rodriguez-Estrada, M.T.; Trevisi, P. Evaluation of Breed and Parity Order Effects on the Lipid Composition of Porcine Colostrum. J. Agric. Food Chem. 2018, 66, 12911–12920. [Google Scholar] [CrossRef]
- Cardenia, V.; Massimini, M.; Poerio, A.; Venturini, M.C.; Rodriguez-Estrada, M.T.; Vecchia, P.; Lercker, G. Effect of Dietary Supplementation on Lipid Photooxidation in Beef Meat, during Storage under Commercial Retail Conditions. Meat Sci. 2015, 105, 126–135. [Google Scholar] [CrossRef]
- Tarladgis, B.G.; Watts, B.M.; Younathan, M.T.; Dugan, L., Jr. A Distillation Method for the Quantitative Determination of Malonaldehyde in Rancid Foods. J. Am. Oil Chem. Soc. 1960, 37, 44–48. [Google Scholar] [CrossRef]
- Cardenia, V.; Rodriguez-Estrada, M.T.; Baldacci, E.; Savioli, S.; Lercker, G. Analysis of Cholesterol Oxidation Products by Fast Gas Chromatography/Mass Spectrometry. J. Sep. Sci. 2012, 35, 424–430. [Google Scholar] [CrossRef]
- Dottori, I.; Urbani, S.; Sordini, B.; Servili, M.; Selvaggini, R.; Veneziani, G.; Ranucci, D.; Taticchi, A.; Esposto, S. Frozen Ready-to-(h)Eat Meals: Evolution of Their Quality during a Real-Time Short Shelf Life. Foods 2023, 12, 1087. [Google Scholar] [CrossRef]
- Xiao, L.; Lee, J.; Zhang, G.; Ebeler, S.E.; Wickramasinghe, N.; Seiber, J.; Mitchell, A.E. HS-SPME GC/MS Characterization of Volatiles in Raw and Dry-Roasted Almonds (Prunus dulcis). Food Chem. 2014, 151, 31–39. [Google Scholar] [CrossRef]
- Estévez, M.; Ventanas, S.; Cava, R. Protein Oxidation in Frankfurters with Increasing Levels of Added Rosemary Essential Oil: Effect on Color and Texture Deterioration. J. Food Sci. 2005, 70, c427–c432. [Google Scholar] [CrossRef]
- Barbieri, S.; Soglia, F.; Palagano, R.; Tesini, F.; Bendini, A.; Petracci, M.; Cavani, C.; Gallina Toschi, T. Sensory and Rapid Instrumental Methods as a Combined Tool for Quality Control of Cooked Ham. Heliyon 2016, 2, e00202. [Google Scholar] [CrossRef]
- Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Sensory Evaluation Techniques, 4th ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 1–411. [Google Scholar]
- BS EN ISO 4120:2007; Sensory Analysis—Methodology—Triangle Test. British Standards Institution (BSI): London, UK, 2007.
- Barbieri, S.; Mercatante, D.; Balzan, S.; Esposto, S.; Cardenia, V.; Servili, M.; Novelli, E.; Taticchi, A.; Rodriguez-Estrada, M.T. Improved Oxidative Stability and Sensory Quality of Beef Hamburgers Enriched with a Phenolic Extract from Olive Vegetation Water. Antioxidants 2021, 10, 1969. [Google Scholar] [CrossRef]
- CREA. Tabella di Composizione Degli Alimenti. Available online: https://www.alimentinutrizione.it/sezioni/tabelle-nutrizionali (accessed on 7 February 2025).
- Lucarini, M.; Saccani, G.; D’Evoli, L.; Tufi, S.; Aguzzi, A.; Gabrielli, P.; Marletta, L.; Lombardi-Boccia, G. Micronutrients in Italian Ham: A Survey of Traditional Products. Food Chem. 2013, 140, 837–842. [Google Scholar] [CrossRef]
- Griglio, B.; Piovesan, F.; Goi, R.; Sattanino, G.; Natangelo, U.; Civera, T. Indagine Preliminare per la Valutazione dei Parametri Chimico/Fisici del Prosciutto Cotto nel Corso della vita Commerciale e in Fase di Rilavorazione a Seguito di Ritiro dal Mercato. AIVEMP 2012, 3 (Luglio). Available online: https://www.gazzettaufficiale.it/eli/gu/2016/06/28/149/sg/pdf (accessed on 20 February 2025).
- Serdaroğlu, M.; Can, H.; Sarı, B.; Kavuşan, H.S.; Yılmaz, F.M. Effects of Natural Nitrite Sources from Arugula and Barberry Extract on Quality Characteristic of Heat-Treated Fermented Sausages. Meat Sci. 2023, 198, 109090. [Google Scholar] [CrossRef]
- Servili, M.; Rizzello, C.G.; Taticchi, A.; Esposto, S.; Urbani, S.; Mazzacane, F.; Di Maio, I.; Selvaggini, R.; Gobbetti, M.; Di Cagno, R. Functional Milk Beverage Fortified with Phenolic Compounds Extracted from Olive Vegetation Water, and Fermented with Functional Lactic Acid Bacteria. Int. J. Food Microbiol. 2011, 147, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Balzan, S.; Taticchi, A.; Cardazzo, B.; Urbani, S.; Servili, M.; Di Lecce, G.; Zabalza, I.B.; Rodriguez-Estrada, M.T.; Novelli, E.; Fasolato, L. Effect of Phenols Extracted from a By-Product of the Oil Mill on the Shelf-Life of Raw and Cooked Fresh Pork Sausages in the Absence of Chemical Additives. LWT-Food Sci. Technol. 2017, 85, 89–95. [Google Scholar] [CrossRef]
- Obied, H.K.; Prenzler, P.D.; Ryan, D.; Servili, M.; Taticchi, A.; Esposto, S.; Robards, K. Biosynthesis and biotransformations of phenol-conjugated oleosidic secoiridoids from Olea europaea L. Nat. Prod. Rep. 2008, 25, 1167–1179. [Google Scholar] [CrossRef] [PubMed]
- Brenes, M.; García, A.; García, P.; Garrido, A. Acid Hydrolysis of Secoiridoid Aglycons during Storage of Virgin Olive Oil. J. Agric. Food Chem. 2001, 49, 5609–5614. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Kuang, Y.; Bi, Y.; Wang, H. A Review on Losses and Transformation Mechanisms of Common Antioxidants. J. Am. Oil Chem. Soc. 2023, 100, 259–285. [Google Scholar] [CrossRef]
- Han, S.; Wang, Y.; Fang, Z.; Zhang, Y.; Zeng, W.; Karrar, E.; Zhang, H.; Jin, Q.; Wu, G.; Wang, X. Effect of Olive Polyphenols on Lipid Oxidation of High-Fat Beef during Digestion. Food Res. Int. 2022, 161, 111843. [Google Scholar] [CrossRef]
- Tatiyaborworntham, N.; Oz, F.; Richards, M.P.; Wu, H. Paradoxical Effects of Lipolysis on the Lipid Oxidation in Meat and Meat Products. Food Chem. X 2022, 14, 100317. [Google Scholar] [CrossRef]
- Garbowska, B.; Pietrzak-Fiećko, R.; Radzymińska, M. Fatty acid composition of local, traditional and conventional pork meat products. In Current Trends in Commodity Science: New Trends in Food Quality, Packaging and Consumer Behavior; Juś, K., Jasnowska-Małecka, J., Bińczak, O., Eds.; Poznań University of Economics and Business: Poznań, Poland, 2015; pp. 35–46. [Google Scholar]
- Parrini, S.; Sirtori, F.; Acciaioli, A.; Becciolini, V.; Crovetti, A.; Franci, O.; Romani, A.; Scardigli, A.; Bozzi, R. Effect of Replacement of Synthetic vs. Natural Curing Agents on Quality Characteristics of Cinta Senese Frankfurter-Type Sausage. Animals 2019, 10, 14. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Evolutionary Aspects of Diet, the Omega-6/Omega-3 Ratio and Genetic Variation: Nutritional Implications for Chronic Diseases. Biomed. Pharmacother. 2006, 60, 502–507. [Google Scholar] [CrossRef]
- Delgado-Pando, G.; Cofrades, S.; Ruiz-Capillas, C.; Jiménez-Colmenero, F. Healthier Lipid Combination as Functional Ingredient Influencing Sensory and Technological Properties of Low-Fat Frankfurters. Eur. J. Lipid Sci. Technol. 2010, 112, 859–870. [Google Scholar] [CrossRef]
- Estévez, M. Protein Carbonyls in Meat Systems: A Review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef] [PubMed]
- Soladoye, O.P.; Juárez, M.L.; Aalhus, J.L.; Shand, P.; Estévez, M. Protein Oxidation in Processed Meat: Mechanisms and Potential Implications on Human Health. Compr. Rev. Food Sci. Food Saf. 2015, 14, 106–122. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Wang, Y.; Zhang, Y.; Yang, Z.; Ma, Z.; Chen, J.; Chen, X.; Qiu, Z.; Tian, J.; Pu, A.; et al. Formation and Regulation Strategies for Volatile Off-Flavor Compounds in Livestock Meat, Poultry Meat, and Their Products: A Comprehensive Review. Trends Food Sci. Technol. 2024, 152, 104689. [Google Scholar] [CrossRef]
- Armenteros, M.; Morcuende, D.; Ventanas, J.; Estévez, M. The Application of Natural Antioxidants via Brine Injection Protects Iberian Cooked Hams against Lipid and Protein Oxidation. Meat Sci. 2016, 116, 253–259. [Google Scholar] [CrossRef]
- Altomare, A.; Baron, G.; Gianazza, E.; Banfi, C.; Carini, M.; Aldini, G. Lipid Peroxidation Derived Reactive Carbonyl Species in Free and Conjugated Forms as an Index of Lipid Peroxidation: Limits and Perspectives. Redox Biol. 2021, 42, 101899. [Google Scholar] [CrossRef]
- Farhoosh, R. Quantitative Criteria Characterizing the Time Change Pattern of Total Lipid-Peroxidation Carbonyls. Sci. Rep. 2022, 12, 22345. [Google Scholar] [CrossRef]
- Munekata, P.E.S.; Pateiro, M.; Domínguez, R.; Nieto, G.; Kumar, M.; Dhama, K.; Lorenzo, J.M. Bioactive Compounds from Fruits as Preservatives. Foods 2023, 12, 343. [Google Scholar] [CrossRef]
- de Oliveira, I.; Santos-Buelga, C.; Aquino, Y.; Barros, L.; Heleno, S.A. New Frontiers in the Exploration of Phenolic Compounds and Other Bioactives as Natural Preservatives. Food Biosci. 2025, 68, 106571. [Google Scholar] [CrossRef]
- Shahidi, F.; Dissanayaka, C.S. Phenolic-Protein Interactions: Insight from in-Silico Analyses—A Review. FPPN 2023, 5, 2. [Google Scholar] [CrossRef]
- Gray, J.I.; Pearson, A.M. Rancidity and warmed-over flavor. In Advances in Meat Research; Pearson, A.M., Dutson, T.R., Eds.; Van Nostrand Reinhold Co., Ltd.: New York, NY, USA, 1987; pp. 221–270. [Google Scholar]
- Baggio, S.R.; Bragagnolo, N. The Effect of Heat Treatment on the Cholesterol Oxides, Cholesterol, Total Lipid and Fatty Acid Contents of Processed Meat Products. Food Chem. 2006, 95, 611–619. [Google Scholar] [CrossRef]
- Bragagnolo, N.; Rodriguez-Amaya, D.B. Simultaneous Determination of Total Lipid, Cholesterol and Fatty Acids in Meat and Backfat of Suckling and Adult Pigs. Food Chem. 2002, 79, 255–260. [Google Scholar] [CrossRef]
- de la Puerta, R.; Martínez Domínguez, M.E.; Ruíz-Gutíerrez, V.; Flavill, J.A.; Hoult, J.R. Effects of Virgin Olive Oil Phenolics on Scavenging of Reactive Nitrogen Species and upon Nitrergic Neurotransmission. Life Sci. 2001, 69, 1213–1222. [Google Scholar] [CrossRef]
- Cardenia, V.; Rodriguez-Estrada, M.T.; Boselli, E.; Lercker, G. Cholesterol Photosensitized Oxidation in Food and Biological Systems. Biochimie 2013, 95, 473–481. [Google Scholar] [CrossRef]
- Castañeda-Arriaga, R.; Pérez-González, A.; Reina, M.; Alvarez-Idaboy, J.R.; Galano, A. Comprehensive Investigation of the Antioxidant and Pro-Oxidant Effects of Phenolic Compounds: A Double-Edged Sword in the Context of Oxidative Stress? J. Phys. Chem. B 2018, 122, 6198–6214. [Google Scholar] [CrossRef]
- Vejux, A.; Lizard, G. Cytotoxic Effects of Oxysterols Associated with Human Diseases: Induction of Cell Death (Apoptosis and/or Oncosis), Oxidative and Inflammatory Activities, and Phospholipidosis. Mol. Aspects Med. 2009, 30, 153–170. [Google Scholar] [CrossRef]
- Rodriguez-Estrada, M.T.; Garcia-Llatas, G.; Lagarda, M.J. 7-Ketocholesterol as Marker of Cholesterol Oxidation in Model and Food Systems: When and How. Biochem. Biophys. Res. Comm. 2014, 446, 792–797. [Google Scholar] [CrossRef]
- Canzoneri, F.; Leoni, V.; Rosso, G.; Risso, D.; Menta, R.; Poli, G. Oxysterols as Reliable Markers of Quality and Safety in Cholesterol Containing Food Ingredients and Products. Front. Nutr. 2022, 9, 853460. [Google Scholar] [CrossRef]
- Samouilov, A.; Woldman, Y.Y.; Zweier, J.L.; Khramtsov, V.V. Magnetic Resonance Study of the Transmembrane Nitrite Diffusion. Nitric Oxide 2007, 16, 362–370. [Google Scholar] [CrossRef]
- Bayram, I.; Decker, E.A. Underlying Mechanisms of Synergistic Antioxidant Interactions during Lipid Oxidation. Trends Food Sci. Technol. 2023, 133, 219–230. [Google Scholar] [CrossRef]
- Khan, M.I.; Min, J.-S.; Lee, S.-O.; Yim, D.G.; Seol, K.-H.; Lee, M.; Jo, C. Cooking, Storage, and Reheating Effect on the Formation of Cholesterol Oxidation Products in Processed Meat Products. Lipids Health Dis. 2015, 14, 89. [Google Scholar] [CrossRef] [PubMed]
- Sottero, B.; Leonarduzzi, G.; Testa, G.; Gargiulo, S.; Poli, G.; Biasi, F. Lipid Oxidation Derived Aldehydes and Oxysterols Between Health and Disease. Eur. J. Lipid Sci. Technol. 2019, 121, 1700047. [Google Scholar] [CrossRef]
- Garcia-Llatas, G.; Mercatante, D.; López-García, G.; Rodriguez-Estrada, M.T. Oxysterols—How Much Do We Know about Food Occurrence, Dietary Intake and Absorption? Curr. Opin. Food Sci. 2021, 41, 231–239. [Google Scholar] [CrossRef]
- Comi, G.; Iacumin, L. Identification and Process Origin of Bacteria Responsible for Cavities and Volatile Off-Flavour Compounds in Artisan Cooked Ham. Int. J. Food Sci. Technol. 2012, 47, 114–121. [Google Scholar] [CrossRef]
- Pancrazio, G.; Cunha, S.C.; De Pinho, P.G.; Loureiro, M.; Ferreira, I.M.P.L.V.O.; Pinho, O. Physical and Chemical Characteristics of Cooked Ham: Effect of Tumbling Time and Modifications during Storage. J. Food Qual. 2015, 38, 359–368. [Google Scholar] [CrossRef]
- Estévez, M.; Morcuende, D.; Ventanas, S.; Cava, R. Analysis of Volatiles in Meat from Iberian Pigs and Lean Pigs after Refrigeration and Cooking by Using SPME-GC-MS. J. Agric. Food Chem. 2003, 51, 3429–3435. [Google Scholar] [CrossRef]
- Ortuño, J.; Mateo, L.; Rodríguez-Estrada, M.T.; Bañón, S. Effects of Sous Vide vs. Grilling Methods on Lamb Meat Colour and Lipid Stability during Cooking and Heated Display. Meat Sci. 2021, 171, 108287. [Google Scholar] [CrossRef]
- Ortuño, J.; Serrano, R.; Bañón, S. Use of Dietary Rosemary Diterpenes to Inhibit Rancid Volatiles in Lamb Meat Packed under Protective Atmosphere. Animal 2016, 10, 1391–1401. [Google Scholar] [CrossRef]
- Altmann, B.A.; Gertheiss, J.; Tomasevic, I.; Engelkes, C.; Glaesener, T.; Meyer, J.; Schäfer, A.; Wiesen, R.; Mörlein, D. Human Perception of Color Differences Using Computer Vision System Measurements of Raw Pork Loin. Meat Sci. 2022, 188, 108766. [Google Scholar] [CrossRef]
- Sebranek, J.G.; Bacus, J.N. Cured Meat Products without Direct Addition of Nitrate or Nitrite: What Are the Issues? Meat Sci. 2007, 77, 136–147. [Google Scholar] [CrossRef]
- Haile, D.M.; De Smet, S.; Claeys, E.; Vossen, E. Effect of Light, Packaging Condition and Dark Storage Durations on Colour and Lipid Oxidative Stability of Cooked Ham. J. Food Sci. Technol. 2013, 50, 239–247. [Google Scholar] [CrossRef]
- Dirpan, A.; Djalal, M.; Ainani, A.F. A Simple Combination of Active and Intelligent Packaging Based on Garlic Extract and Indicator Solution in Extending and Monitoring the Meat Quality Stored at Cold Temperature. Foods 2022, 11, 1495. [Google Scholar] [CrossRef] [PubMed]
- Valous, N.A.; Mendoza, F.; Sun, D.-W.; Allen, P. Colour Calibration of a Laboratory Computer Vision System for Quality Evaluation of Pre-Sliced Hams. Meat Sci. 2009, 81, 132–141. [Google Scholar] [CrossRef]
- Iqbal, A.; Valous, N.A.; Mendoza, F.; Sun, D.-W.; Allen, P. Classification of Pre-Sliced Pork and Turkey Ham Qualities Based on Image Colour and Textural Features and Their Relationships with Consumer Responses. Meat Sci. 2010, 84, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Hawashin, M.D.; Al-Juhaimi, F.; Ahmed, I.A.M.; Ghafoor, K.; Babiker, E.E. Physicochemical, Microbiological and Sensory Evaluation of Beef Patties Incorporated with Destoned Olive Cake Powder. Meat Sci. 2016, 122, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Karwowska, M.; Kononiuk, A.; Wójciak, K.M. Impact of Sodium Nitrite Reduction on Lipid Oxidation and Antioxidant Properties of Cooked Meat Products. Antioxidants 2019, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, S.; Luciani, R.; Sirangelo, T.M.; Amaretti, A.; Leonardi, A.; Ulrici, A.; Foca, G.; D’Auria, G.; Moya, A.; Zuliani, V.; et al. Microbiota of Sliced Cooked Ham Packaged in Modified Atmosphere throughout the Shelf Life: Microbiota of Sliced Cooked Ham in MAP. Int. J. Food Microbiol. 2019, 289, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Spampinato, G.; Candeliere, F.; Amaretti, A.; Licciardello, F.; Rossi, M.; Raimondi, S. Microbiota Survey of Sliced Cooked Ham During the Secondary Shelf Life. Front. Microbiol. 2022, 13, 842390. [Google Scholar] [CrossRef]
- Nieto, G.; Martínez, L.; Castillo, J.; Ros, G. Hydroxytyrosol Extracts, Olive Oil and Walnuts as Functional Components in Chicken Sausages. J. Sci. Food Agric. 2017, 97, 3761–3771. [Google Scholar] [CrossRef]
- Pizza, A.; Pedrielli, R. Effetto delle Tecniche di Zangolatura e di Cottura sulla Resa e sull’Accettabilità del Prosciutto Cotto Ottenuto da Cosce di Diversa Qualità. Ind. Conserve 2000, 75, 171–182. [Google Scholar]
- Trevisani, M.; Balzan, S.; Cardazzo, B.; Fasolato, F.; Novelli, E. Prodotti di salumeria. In Igiene e Tecnologie degli Alimenti; Colavita, G., Ed.; Point Veterinaire Italie: Milano, Italy, 2023; pp. 329–374. [Google Scholar]
- Kreyenschmidt, J.; Hübner, A.; Beierle, E.; Chonsch, L.; Scherer, A.; Petersen, B. Determination of the Shelf Life of Sliced Cooked Ham Based on the Growth of Lactic Acid Bacteria in Different Steps of the Chain. J. Appl. Microbiol. 2010, 108, 510–520. [Google Scholar] [CrossRef] [PubMed]
Oven Temperature (°C) | Core Temperature Target (°C) |
---|---|
40 | 20 |
55 | 40 |
73 | 69 |
SEM | P | ||||||||||||
NaCl | Form | St | Form*St | ||||||||||
Storage Time (days) | C | S1 | S2 | S3 | 0.08 | NS | NS | NS | |||||
0 | 1.94 | b, B | 2.05 | a, A | 1.82 | b, B | 2.16 | c, A | |||||
15 | 2.51 | a, A | 1.92 | ab, B | 1.95 | a, B | 2.41 | a, A | |||||
30 | 1.94 | b, B | 1.88 | b, B | 1.57 | c, C | 2.25 | b, A | |||||
Protein | |||||||||||||
C | S1 | S2 | S3 | 0.45 | NS | NS | NS | ||||||
0 | 27.63 | a, A | 27.12 | a, A | 25.14 | a, C | 26.32 | a, B | |||||
15 | 21.85 | c, C | 25.77 | b, A | 23.49 | b, B | 25.89 | b, A | |||||
30 | 25.99 | b, A | 25.72 | b, A | 25.25 | a, A | 24.92 | b, B | |||||
Moisture | |||||||||||||
C | S1 | S2 | S3 | 0.37 | NS | NS | NS | ||||||
0 | 64.30 | a, B | 66.08 | a, A | 64.42 | a, B | 63.05 | b, C | |||||
15 | 64.16 | a, B | 66.04 | a, A | 63.08 | b, C | 63.57 | b, C | |||||
30 | 64.32 | a, A | 62.41 | b, B | 61.93 | c, B | 64.47 | a, A | |||||
Fat | |||||||||||||
C | S1 | S2 | S3 | 0.64 | * | NS | NS | ||||||
0 | 8.07 | c, B | 6.80 | c, C | 10.45 | c, A | 10.63 | a, A | |||||
15 | 13.99 | a, A | 8.19 | b, C | 13.43 | a, A | 10.54 | a, B | |||||
30 | 9.70 | b, D | 11.87 | a, B | 12.82 | b, A | 10.61 | a, C | |||||
Aw | |||||||||||||
C | S1 | S2 | S3 | 0.00 | *** | * | *** | ||||||
0 | 0.985 | NS | 0.995 | NS | 0.984 | NS | 0.983 | NS | |||||
15 | 0.982 | NS | 0.985 | NS | 0.985 | NS | 0.983 | NS | |||||
30 | 0.980 | NS | 0.983 | NS | 0.984 | NS | 0.984 | NS | |||||
pH | |||||||||||||
C | S1 | S2 | S3 | 0.05 | *** | *** | *** | ||||||
0 | 5.95 | a, B | 6.43 | a, A | 6.50 | a, A | 5.97 | b, B | |||||
15 | 5.96 | a, B | 6.42 | a, A | 6.24 | a, A | 6.04 | a, AB | |||||
30 | 5.73 | a, B | 6.08 | a, A | 5.98 | b, B | 5.88 | b, B |
SEM | P | |||||||||||
3,4-DHPEA | Form | St | Form*St | |||||||||
Storage Time (days) | C | S1 | S2 | S3 | 5.90 | *** | *** | *** | ||||
0 | - | 63.52 | a, B | 80.62 | a, A | 69.09 | a, B | |||||
15 | - | 60.12 | b, B | 48.40 | b, C | 66.83 | a, A | |||||
30 | - | 38.15 | c, A | 24.86 | c, C | 31.19 | b, B | |||||
p-HPEA | ||||||||||||
C | S1 | S2 | S3 | 0.64 | *** | * | * | |||||
0 | - | 6.15 | a, C | 6.59 | b, B | 6.90 | c, A | |||||
15 | - | 6.20 | a, C | 7.29 | a, B | 8.35 | a, A | |||||
30 | - | 6.14 | a, B | 6.34 | b, B | 8.00 | b, A | |||||
VB | ||||||||||||
C | S1 | S2 | S3 | 2.39 | *** | *** | *** | |||||
0 | - | 38.01 | a, A | 31.37 | a, B | 38.41 | a, A | |||||
15 | - | 30.11 | b, A | 18.07 | b, B | 32.91 | b, A | |||||
30 | - | 23.06 | c, A | 15.96 | c, B | 23.66 | c, A | |||||
3,4-DHPEA-EDA | ||||||||||||
C | S1 | S2 | S3 | 2.87 | *** | *** | *** | |||||
0 | - | 33.83 | a, A | 21.56 | a, B | 36.47 | a, A | |||||
15 | - | n.d. | b | n.d. | b | n.d. | b | |||||
30 | - | n.d. | b | n.d. | b | n.d. | b | |||||
Total phenols | ||||||||||||
C | S1 | S2 | S3 | 11.17 | *** | *** | *** | |||||
0 | - | 141.51 | a, B | 140.13 | a, B | 150.86 | a, A | |||||
15 | - | 96.42 | b, B | 73.76 | b, C | 108.08 | b, A | |||||
30 | - | 67.35 | c, A | 47.16 | c, B | 62.84 | c, A |
SEM | P | ||||||||||||
FFA | Form | St | Form*St | ||||||||||
Storage Time (days) | C | S1 | S2 | S3 | 0.11 | *** | *** | *** | |||||
0 | 1.08 | ab, A | 0.82 | b, C | 0.96 | c, B | 0.90 | a, B | |||||
15 | 0.88 | b, C | 1.15 | a, B | 1.90 | b, A | 0.83 | b, C | |||||
30 | 1.57 | a, B | 1.10 | a, C | 2.47 | a, A | 0.87 | b, D | |||||
STE | |||||||||||||
C | S1 | S2 | S3 | 0.07 | *** | *** | *** | ||||||
0 | 1.12 | a, A | 0.89 | b, C | 0.61 | b, B | 0.95 | a, B | |||||
15 | 0.50 | b, C | 0.86 | b, B | 1.03 | ab, A | 0.50 | b, C | |||||
30 | 1.19 | a, AB | 1.04 | a, B | 1.42 | a, A | 0.57 | b, C | |||||
DAG | |||||||||||||
C | S1 | S2 | S3 | 0.15 | *** | *** | *** | ||||||
0 | 5.15 | a, A | 5.32 | ab, A | 4.93 | b, B | 4.92 | a, B | |||||
15 | 4.68 | b, B | 5.50 | a, A | 4.90 | b, B | 4.24 | ab, B | |||||
30 | 5.12 | a, A | 5.46 | a, A | 5.51 | a, A | 4.56 | ab, B | |||||
TAG | |||||||||||||
C | S1 | S2 | S3 | 0.29 | *** | *** | *** | ||||||
0 | 92.82 | b, B | 93.02 | a, B | 93.45 | a, A | 93.46 | ab, A | |||||
15 | 93.71 | a, A | 92.47 | b, B | 92.72 | b, B | 93.95 | ab, A | |||||
30 | 92.40 | b, B | 91.84 | c, C | 91.40 | c, C | 94.00 | ab, A |
SEM | P | ||||||||||||
SFA | Form | St | Form*St | ||||||||||
Storage Time (days) | C | S1 | S2 | S3 | 0.67 | NS | *** | NS | |||||
0 | 14.83 | b, B | 13.63 | b, C | 14.63 | a, B | 15.62 | a, A | |||||
15 | 15.91 | a, A | 15.00 | a, A | 11.37 | b, C | 14.42 | b, B | |||||
30 | 14.23 | b, A | 12.51 | b, B | 13.58 | b, A | 13.77 | b, A | |||||
MUFA | |||||||||||||
C | S1 | S2 | S3 | 0.38 | *** | * | *** | ||||||
0 | 70.92 | c, B | 71.38 | ab, B | 74.28 | a, A | 73.09 | a, A | |||||
15 | 72.94 | a, A | 70.95 | a, B | 75.47 | b, B | 73.35 | b, A | |||||
30 | 73.53 | ab, A | 71.13 | b, B | 72.31 | b, AB | 74.42 | b, A | |||||
PUFA | |||||||||||||
C | S1 | S2 | S3 | 0.38 | *** | NS | ** | ||||||
0 | 14.26 | a, B | 15.00 | b, A | 11.10 | b, C | 11.30 | b, C | |||||
15 | 11.17 | c, D | 14.06 | b, A | 13.16 | a, B | 12.24 | a, C | |||||
30 | 12.25 | b, D | 16.37 | a, A | 14.13 | a, B | 11.82 | b, C | |||||
n-3 | |||||||||||||
C | S1 | S2 | S3 | 0.08 | * | ** | ** | ||||||
0 | 2.25 | a, AB | 2.41 | a, A | 1.64 | b, C | 2.05 | a, B | |||||
15 | 1.44 | b, B | 2.22 | b, A | 2.01 | a, AB | 1.65 | b, B | |||||
30 | 1.41 | b, B | 2.03 | b, A | 2.05 | a, A | 1.58 | b, B | |||||
n-6 | |||||||||||||
C | S1 | S2 | S3 | 0.33 | *** | ** | ** | ||||||
0 | 12.01 | a, A | 12.59 | b, A | 9.46 | c, B | 9.26 | b, B | |||||
15 | 9.73 | c, B | 11.84 | c, A | 11.15 | b, A | 10.60 | a, AB | |||||
30 | 10.84 | b, C | 14.34 | a, A | 12.08 | a, B | 10.25 | ab, C | |||||
n-6/n-3 | |||||||||||||
C | S1 | S2 | S3 | 0.18 | * | *** | ** | ||||||
0 | 5.35 | c, B | 5.23 | b, B | 5.77 | a, A | 4.55 | b, C | |||||
15 | 6.76 | b, A | 5.38 | b, B | 5.55 | a, B | 6.45 | a, A | |||||
30 | 7.72 | a, A | 7.06 | a, A | 5.89 | a, C | 6.51 | a, B | |||||
PUFA/SFA | |||||||||||||
C | S1 | S2 | S3 | 0.10 | NS | ** | NS | ||||||
0 | 0.96 | a, B | 1.10 | b, A | 0.76 | c, C | 0.72 | b, C | |||||
15 | 0.70 | b, C | 0.95 | c, B | 1.21 | a, A | 0.85 | a, B | |||||
30 | 0.93 | a, C | 1.31 | a, A | 1.04 | b, B | 0.86 | a, C | |||||
UFA/SFA | |||||||||||||
C | S1 | S2 | S3 | 0.61 | NS | ** | NS | ||||||
0 | 5.75 | b, B | 6.34 | b, A | 5.84 | c, B | 5.40 | b, B | |||||
15 | 5.29 | b, B | 5.67 | c, B | 7.80 | a, A | 5.94 | b, B | |||||
30 | 6.03 | a, B | 6.99 | a, A | 6.36 | b, B | 6.27 | a, B |
SEM | P | ||||||||||||
Sulfhydryl | Form | St | Form*St | ||||||||||
Storage Time (days) | C | S1 | S2 | S3 | 0.33 | *** | *** | *** | |||||
0 | 12.71 | a, A | 8.62 | b, B | 8.90 | a, B | 13.02 | a, A | |||||
15 | 12.24 | a, A | 10.32 | a, B | 6.02 | b, D | 8.14 | b, C | |||||
30 | 5.39 | c, C | 7.89 | c, A | 6.28 | b, B | 6.77 | c, B | |||||
Carbonyl | |||||||||||||
C | S1 | S2 | S3 | 0.54 | *** | *** | *** | ||||||
0 | 3.79 | a, A | 1.90 | b, B | 1.92 | b, B | 0.59 | c, C | |||||
15 | 2.49 | b, C | 2.39 | a, C | 6.94 | a, A | 3.22 | a, B | |||||
30 | 2.50 | b, AB | 1.15 | c, B | 1.29 | b, B | 2.81 | b, A | |||||
TBARs | |||||||||||||
C | S1 | S2 | S3 | 0.17 | *** | *** | *** | ||||||
0 | 1.19 | c, A | 1.17 | a, A | 0.98 | b, B | 0.64 | c, C | |||||
15 | 2.04 | b, A | 1.00 | b, B | 1.20 | b, B | 1.01 | b, B | |||||
30 | 3.83 | a, A | 1.02 | b, C | 1.45 | a, B | 1.28 | a, B | |||||
Cholesterol | |||||||||||||
C | S1 | S2 | S3 | 57.63 | ** | NS | NS | ||||||
0 | 1244.39 | a, BC | 1163.98 | b, C | 1746.82 | a, A | 1381.31 | a, B | |||||
15 | 1190.40 | b, D | 1531.07 | b, B | 1682.34 | b, A | 1228.57 | b, C | |||||
30 | 1272.46 | a, D | 1872.59 | a, A | 1608.03 | b, B | 1355.78 | a, C | |||||
7α-HC | |||||||||||||
C | S1 | S2 | S3 | 0.07 | NS | ** | ** | ||||||
0 | 0.43 | a, C | 0.67 | a, B | 0.95 | a, A | 0.33 | b, D | |||||
15 | 0.47 | a, A | 0.05 | b, C | 0.15 | b, B | 0.14 | b, B | |||||
30 | 0.07 | b, B | 0.06 | b, B | 0.04 | b, B | 0.77 | a, A | |||||
7β-HC | |||||||||||||
C | S1 | S2 | S3 | 0.11 | *** | *** | *** | ||||||
0 | 0.78 | a, B | 0.75 | b, B | 0.73 | a, B | 0.83 | b, A | |||||
15 | 0.78 | a, A | 0.49 | b, B | 0.24 | b, B | 0.54 | b, B | |||||
30 | 0.17 | b, C | 2.05 | a, A | 0.12 | b, C | 1.63 | a, B | |||||
5β,6β-EC | |||||||||||||
C | S1 | S2 | S3 | 0.10 | ** | *** | *** | ||||||
0 | 0.23 | b, B | 0.26 | b, B | 0.56 | a, A | 0.23 | b, B | |||||
15 | 0.99 | a, A | 0.40 | b, C | 0.13 | b, D | 0.57 | b, B | |||||
30 | 0.46 | b, B | 1.53 | a, A | 0.22 | b, C | 1.35 | a, A | |||||
5α,6α-EC | |||||||||||||
C | S1 | S2 | S3 | 0.04 | * | *** | * | ||||||
0 | 0.08 | b | 0.05 | b | 0.06 | b | 0.04 | b | |||||
15 | 0.45 | a, A | 0.16 | b, B | 0.05 | b, C | 0.17 | b, B | |||||
30 | 0.29 | b, B | 0.49 | a, A | 0.11 | a, C | 0.43 | a, A | |||||
CT | |||||||||||||
C | S1 | S2 | S3 | 0.03 | * | * | * | ||||||
0 | 0.13 | b, B | 0.12 | a, B | 0.54 | a, A | 0.11 | b, B | |||||
15 | 0.20 | a, A | 0.05 | b, B | 0.07 | b, B | 0.09 | b, B | |||||
30 | 0.08 | b, B | 0.12 | a, A | 0.07 | b, B | 0.18 | a, A | |||||
7-KC | |||||||||||||
C | S1 | S2 | S3 | 0.11 | *** | *** | *** | ||||||
0 | 0.72 | b, A | 1.30 | a, C | 0.62 | b, B | 0.52 | b, C | |||||
15 | 0.89 | b, A | 0.34 | b, C | 0.24 | b, C | 0.48 | b, B | |||||
30 | 1.30 | a, C | 2.01 | a, A | 1.17 | a, D | 1.62 | a, B | |||||
Total COPs | |||||||||||||
C | S1 | S2 | S3 | 0.34 | *** | *** | *** | ||||||
0 | 2.36 | b, B | 2.46 | b, B | 3.46 | a, A | 2.04 | b, C | |||||
15 | 3.78 | a, A | 1.50 | b, C | 0.88 | b, D | 2.01 | b, B | |||||
30 | 2.37 | b, C | 6.27 | a, A | 1.73 | b, D | 5.99 | a, B | |||||
OR | |||||||||||||
C | S1 | S2 | S3 | 0.02 | *** | *** | *** | ||||||
0 | 0.19 | b, A | 0.21 | b, A | 0.20 | a, A | 0.15 | b, B | |||||
15 | 0.32 | a, A | 0.10 | b, B | 0.05 | b, C | 0.16 | b, B | |||||
30 | 0.19 | b, B | 0.34 | a, A | 0.11 | b, C | 0.44 | a, A |
SEM | P | ||||||||||||
L | Form | St | Form*St | ||||||||||
Storage Time (days) | C | S1 | S2 | S3 | 0.52 | NS | NS | NS | |||||
0 | 64.96 | b, B | 67.32 | a, A | 67.57 | b, A | 64.70 | b, B | |||||
15 | 66.84 | a, B | 65.58 | b, B | 70.49 | a, A | 64.29 | b, C | |||||
30 | 62.57 | c, B | 65.59 | b, AB | 65.50 | c, AB | 66.73 | a, A | |||||
a* | |||||||||||||
C | S1 | S2 | S3 | 0.56 | *** | NS | NS | ||||||
0 | 9.70 | a, A | 9.25 | a, AB | 8.41 | a, B | 4.16 | a, C | |||||
15 | 9.35 | b, A | 9.36 | a, A | 8.17 | a, B | 2.81 | b, C | |||||
30 | 9.63 | a, A | 9.37 | a, A | 8.74 | a, B | 2.38 | b, C | |||||
b* | |||||||||||||
C | S1 | S2 | S3 | 0.42 | *** | NS | NS | ||||||
0 | 10.38 | a, C | 10.04 | a, C | 12.53 | a, B | 14.39 | a, A | |||||
15 | 8.26 | b, C | 8.91 | b, C | 11.29 | b, B | 13.55 | b, A | |||||
30 | 8.98 | b, C | 10.20 | a, B | 10.22 | c, B | 13.03 | b, A | |||||
∆E | |||||||||||||
C | S1 | S2 | S3 | 0.33 | *** | *** | *** | ||||||
0 | - | c, A | - | c, A | - | c, A | - | c, A | |||||
15 | 2.63 | b, B | 1.13 | b, C | 1.93 | b, C | 3.92 | a, A | |||||
30 | 4.72 | a, A | 2.75 | a, C | 2.65 | a, C | 3.05 | b, B |
Pr > F (Model) | Significant | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Overall aroma | |||||||||||
Storage Time (days) | C | S1 | S2 | S3 | <0.0001 | Yes | |||||
0 | 5.9 | ab | 5.7 | abc | 5.6 | abcd | 4.0 | e | |||
15 | 4.7 | de | 6.0 | a | 4.8 | cde | 4.0 | e | |||
30 | 5.0 | bcde | 4.9 | cde | 4.9 | cde | 4.7 | de | |||
Spices and flavors | |||||||||||
C | S1 | S2 | S3 | 0.294 | No | ||||||
0 | 3.1 | a | 2.7 | abc | 2.6 | abc | 2.0 | abc | |||
15 | 2.2 | abc | 2.5 | abc | 2.4 | abc | 1.5 | c | |||
30 | 1.7 | bc | 2.7 | ab | 2.0 | abc | 2.0 | abc | |||
Smoky | |||||||||||
C | S1 | S2 | S3 | 0.007 | Yes | ||||||
0 | 2.3 | ab | 2.3 | ab | 2.5 | a | 2.0 | abc | |||
15 | 1.0 | c | 2.4 | ab | 1.4 | abc | 1.0 | c | |||
30 | 0.9 | c | 1.7 | abc | 1.4 | bc | 1.0 | c | |||
Olfactory anomalies | |||||||||||
C | S1 | S2 | S3 | ||||||||
0 | / | / | / | Cooked meat (roast) | |||||||
15 | Fermented/ lactic | Fermented/ lactic | / | Cooked meat (roast); Fermented/ lactic | |||||||
30 | Fermented/ lactic | Fermented/ lactic | Fermented/lactic | Cooked meat (roast); Fermented/ lactic | |||||||
Sweet | |||||||||||
C | S1 | S2 | S3 | 0.494 | No | ||||||
0 | 4.3 | ab | 4.5 | ab | 4.5 | ab | 4.6 | a | |||
15 | 4.3 | ab | 4.0 | ab | 4.4 | ab | 3.7 | b | |||
30 | 4.3 | ab | 4.1 | b | 4.1 | ab | 3.6 | ab | |||
Salty | |||||||||||
C | S1 | S2 | S3 | 0.009 | Yes | ||||||
0 | 4.3 | a | 2.6 | bc | 2.5 | bc | 2.3 | c | |||
15 | 3.4 | ab | 2.8 | bc | 2.7 | bc | 2.8 | bc | |||
30 | 3.3 | abc | 2.7 | bc | 2.7 | bc | 3.4 | ab | |||
Taste anomalies | |||||||||||
C | S1 | S2 | S3 | ||||||||
0 | / | / | / | Cooked meat (roast) | |||||||
15 | Sourish/Rancid | / | / | Cooked meat (roast) | |||||||
30 | Sourish/Rancid | Sourish/Rancid | Sourish/Rancid | Cooked meat (roast); Sourish/Rancid | |||||||
Cohesiveness | |||||||||||
C | S1 | S2 | S3 | 0.0003 | Yes | ||||||
0 | 4.9 | bc | 6.1 | a | 4.9 | abc | 5.2 | ab | |||
15 | 3.6 | d | 5.2 | ab | 4.6 | bcd | 4.2 | bcd | |||
30 | 3.7 | d | 5.3 | ab | 4.2 | bcd | 3.9 | cd | |||
Juiciness | |||||||||||
C | S1 | S2 | S3 | <0.0001 | Yes | ||||||
0 | 3.9 | a | 1.5 | ef | 1.7 | def | 1.2 | f | |||
15 | 3.0 | b | 1.8 | def | 1.8 | def | 2.2 | cde | |||
30 | 2.8 | bc | 1.8 | def | 2.5 | bcd | 3.0 | bc | |||
Pink intensity | |||||||||||
C | S1 | S2 | S3 | <0.0001 | Yes | ||||||
0 | 5.2 | a | 6.0 | a | 5.5 | a | 0.3 | c | |||
15 | 3.3 | b | 3.6 | b | 6.0 | a | 0.6 | c | |||
30 | 3.0 | b | 3.6 | b | 6.0 | a | 0.6 | c | |||
Visual anomalies | |||||||||||
C | S1 | S2 | S3 | ||||||||
0 | / | Abnormal coloring (yellowish areas) | / | Abnormal coloring (gray) | |||||||
15 | Abnormal coloring (iridescent and/or dark areas) | Abnormal coloring (grayish areas) | / | Abnormal coloring (gray) | |||||||
30 | Abnormal coloring (grayish areas) | Abnormal coloring (grayish areas) | Abnormal coloring (grayish areas) | Abnormal coloring (gray) |
Session Number | Judges Number | Compared Samples | Corrected Answers | Significance |
---|---|---|---|---|
1 | 44 | CT0 vs. S1T0 | 28 | 0.001 |
2 | 44 | CT0 vs. S2T0 | 29 | 0.001 |
3 | 44 | CT0 vs. S3T0 | 44 | 0.001 |
4 | 44 | S1T0 vs. S2T0 | 14 | NS |
5 | 44 | S1T0 vs. S3T0 | 39 | 0.001 |
6 | 44 | S2T0 vs. S3T0 | 43 | 0.001 |
7 | 40 | CT15 vs. S1T15 | 28 | 0.001 |
8 | 40 | CT15 vs. S2T15 | 17 | 0.1 |
9 | 40 | CT15 vs. S3T15 | 36 | 0.001 |
10 | 40 | S1T15 vs. S2T15 | 19 | 0.05 |
11 | 40 | S1T15 vs. S3T15 | 26 | 0.001 |
12 | 40 | S2T15 vs. S3T15 | 32 | 0.001 |
13 | 29 | CT30 vs. S1T30 | 17 | 0.01 |
14 | 29 | CT30 vs. S2T30 | 23 | 0.001 |
15 | 29 | CT30 vs. S3T30 | 27 | 0.001 |
16 | 29 | S1T30 vs. S2T30 | 20 | 0.001 |
17 | 29 | S1T30 vs. S3T30 | 24 | 0.001 |
18 | 29 | S2T30 vs. S3T30 | 20 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercatante, D.; Balzan, S.; Esposto, S.; Barbieri, S.; Fontana, F.; Fasolato, L.; Rosa, V.D.; Servili, M.; Taticchi, A.; Novelli, E.; et al. Brine Enriched with Olive Wastewater Phenols: A Green Strategy to Reduce Nitrites in Cooked Ham. Antioxidants 2025, 14, 1124. https://doi.org/10.3390/antiox14091124
Mercatante D, Balzan S, Esposto S, Barbieri S, Fontana F, Fasolato L, Rosa VD, Servili M, Taticchi A, Novelli E, et al. Brine Enriched with Olive Wastewater Phenols: A Green Strategy to Reduce Nitrites in Cooked Ham. Antioxidants. 2025; 14(9):1124. https://doi.org/10.3390/antiox14091124
Chicago/Turabian StyleMercatante, Dario, Stefania Balzan, Sonia Esposto, Sara Barbieri, Federico Fontana, Luca Fasolato, Vincenzo De Rosa, Maurizio Servili, Agnese Taticchi, Enrico Novelli, and et al. 2025. "Brine Enriched with Olive Wastewater Phenols: A Green Strategy to Reduce Nitrites in Cooked Ham" Antioxidants 14, no. 9: 1124. https://doi.org/10.3390/antiox14091124
APA StyleMercatante, D., Balzan, S., Esposto, S., Barbieri, S., Fontana, F., Fasolato, L., Rosa, V. D., Servili, M., Taticchi, A., Novelli, E., & Rodriguez-Estrada, M. T. (2025). Brine Enriched with Olive Wastewater Phenols: A Green Strategy to Reduce Nitrites in Cooked Ham. Antioxidants, 14(9), 1124. https://doi.org/10.3390/antiox14091124