Relationship Between Bioactive Compounds and Biological Activities (Antioxidant, Antimicrobial, Antihaemolytic) of ‘Colcas’ Fruits at Different Stages of Maturity
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Material Studied
2.3. Physicochemical Analyses
Mineral Profile
2.4. Bioactive Compounds Content
2.4.1. Ascorbic Acid
2.4.2. Organic Acid Profile
2.4.3. Carotenoid Profile
2.4.4. Chlorophylls and Their Derivatives
2.4.5. Total Anthocyanins
2.4.6. Phenol Profile
2.5. Antioxidant Activity Analyses
2.6. Antimicrobial Activity Analyses
2.6.1. Antibacterial Activity
Minimal Inhibitory Concentration (MIC)
2.6.2. Antifungal Activity
Minimal Inhibitory Concentration (MIC)
2.7. Haemolytic Activity
2.8. Statistical Analysis
3. Results
3.1. Physicochemical Characteristics
3.2. Analysis of Bioactive Compounds
3.3. Antioxidant Activity Analyses
3.4. Antimicrobial Activity Analyses
3.5. Haemolytic Activity
3.6. Statistical Analysis
4. Discussion
4.1. Physicochemical
4.2. Bioactive Compounds
4.3. Antioxidant Activity
4.4. Antimicrobial Activity
4.5. Haemolytic Activity
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armijos, C.; Ramírez, J.; Vidari, G. Poorly Investigated Ecuadorian Medicinal Plants. Plants 2022, 11, 1590. [Google Scholar] [CrossRef]
- Ratan, R.; Ravi, K.; Swaroop, M. Hidden Treasures: Exploring the Bioactive Compounds and Medicinal Properties of under-Exploited Fruits. Int. J. Adv. Biochem. Res. 2024, 8, 187–197. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Guachamin, A.; Villacís, M.; Rivera, J.; Neto, M.; Méndez, G.; Heredia-Moya, J.; Vera, E. Evaluation of Bioactive Compounds and Antioxidant Activity in 51 Minor Tropical Fruits of Ecuador. Foods 2023, 12, 4439. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A. Carotenoid Analysis; Humana Press: Sevilla España, Spain, 2025; ISBN 9781071645697. [Google Scholar]
- Negreanu-Pirjol, B.; Oprea, O.; Negreanu-Pirjol, T.; Roncea, F.; Prelipcean, A.; Craciunescu, O.; Iosageanu, A.; Artem, V.; Ranca, A.; Motelica, L.; et al. Health Benefits of Antioxidant Bioactive Compounds in the Fruits and Leaves of Lonicera Caerulea L. and Aronia Melanocarpa (Michx.) Elliot. Antioxidants 2023, 12, 951. [Google Scholar] [CrossRef]
- Suriyaprom, S.; Mosoni, P.; Leroy, S.; Kaewkod, T.; Desvaux, M.; Tragoolpua, Y. Antioxidants of Fruit Extracts as Antimicrobial Agents against Pathogenic Bacteria. Antioxidants 2022, 11, 602. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Morado, L.; Robles-Zepeda, R.; Ochoa-Leyva, A.; Arvizu-Flores, A.; Garibay-Escobar, A.; Castillo-Yañez, F.; Lopez-Zavala, A. Biochemical Characterization and Inhibition of Thermolabile Hemolysin from Vibrio Parahaemolyticus by Phenolic Compounds. PeerJ 2021, 9, e10506. [Google Scholar] [CrossRef]
- Morales-Puentes, M.; Michelangeli, F.; González, F. Una Nueva Especie de Miconia (Melastomataceae: Miconieae) de Colombia. Rev. Acad. Colomb. Cienc. Exactas Física Matemática 2019, 43, 250–254. [Google Scholar] [CrossRef]
- Bezerra, V.; Almeida-Bezerra, J.; Rodrigues, A.; Bezerra, M.; Gregorio, M.; Vieira, A.; Leite, R.; Goncalves, J.; Figueiredo, M.; De-Alencar, V.; et al. The Genus Miconia Ruiz & Pav. (Melastomataceae): Ethnomedicinal Uses, Pharmacology, and Phytochemistry. Molecules 2022, 27, 4132. [Google Scholar] [CrossRef]
- Ferreira, B.; Brito, A.; Santos, M.; Pereiza, D.; Sampaio, P.; Freire, T.; Khan, A.; Trindade, R. Avaliação Da Atividade Antioxidante Dos Extratos Vegetais Da Espécie Miconia Albicans (Sw.)Triana. II BrCD 2021. [Google Scholar] [CrossRef]
- Tavares, D.; Santos, R. Miconia Albicans (Sw.) Triana (Canela-de-Velho), the New Trend Plant from the Brazilian Cerrado: Contribution to Species Identification and Pharmacological Aspects. Agrar. Sci. J. 2022, 14, 1–9. [Google Scholar]
- Goldenberg, R.; Almeda, F.; Caddah, M.; Martins, A.; Meirelles, J.; Michelangeli, F.; Weiss, M. Nomenclator Botanicus for the Neotropical Genus Miconia (Melastomataceae: Miconieae); Magnolia Press: Auckland, New Zealand, 2013; Volume 106, ISBN 9781775571926. [Google Scholar]
- iNaturalistEc INABIO. Available online: https://ecuador.inaturalist.org/ (accessed on 11 August 2025).
- Berghof-GmbH. Application Report Microwave Speedwave Xpert; Berghof-GmbH: Eningen unter Achalm Germany, 2023; Volume 1, p. 42. [Google Scholar]
- Coyago-Cruz, E.; Salazar, I.; Guachamin, A.; Alomoto, M.; Cerna, M.; Mendez, G.; Heredia-Moya, J.; Vera, E. Bioactive Compounds, Antioxidant, and Antimicrobial Activity of Seeds and Mucilage of Non-Traditional Cocoas. Antioxidants 2025, 14, 299. [Google Scholar] [CrossRef] [PubMed]
- Mayorga-Ramos, A.; Zúñiga-Miranda, J.; Coyago-Cruz, E.; Heredia-Moya, J.; Guamán-Bautista, J.; Guamán, L. Phytochemical Composition and Biological Properties of Macleania Rupestris Fruit Extract: Insights into Its Antimicrobial and Antioxidant Activity. Antioxidants 2025, 14, 394. [Google Scholar] [CrossRef] [PubMed]
- Coyago-Cruz, E.; Alarcón, A.; Guachamin, A.; Méndez, G.; Osorio, E.; Heredia-Moya, J.; Zuñiga-Miranda, J.; Beltrán-Sinchiguano, E.; Vera, E. Functional, Antioxidant, Antibacterial, and Antifungal Activity of Edible Flowers. Antioxidants 2024, 13, 1297. [Google Scholar] [CrossRef] [PubMed]
- Zúñiga-Miranda, J.; Vaca-Vega, D.; Vizuete, K.; Carrera-Pacheco, S.; Gonzalez-Pastor, R.; Heredia-Moya, J.; Mayorga-Ramos, A.; Barba-Ostria, C.; Coyago-Cruz, E.; Debut, A.; et al. Green Synthesis of Silver Oxide Nanoparticles from Mauritia Flexuosa Fruit Extract: Characterization and Bioactivity Assessment. Nanomaterials 2024, 14, 1875. [Google Scholar] [CrossRef]
- CLSI M02; Performance Standards for Antimicrobial Disk Suspectibility Tests, Approved Standard-Eleventh Edition. Clinical and Laboratory Standards Institue: Wayne, PA, USA, 2018; Volume 38, pp. 2162–2914.
- Balouiri, M.; Sadiki, M.; Ibnsouda, S. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- CLSI M44-A2; Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts. Approved Guideline—Second Edition. Clinical and Laboratory Standards Institue: Wayne, PA, USA, 2009; Volume 29, p. 29.
- Sæbø, I.; Bjørås, M.; Franzyk, H.; Helgesen, E.; Booth, J. Optimization of the Hemolysis Assay for the Assessment of Cytotoxicity. Int. J. Mol. Sci. 2023, 24, 2914. [Google Scholar] [CrossRef]
- Zhang, H.; Pu, J.; Tang, Y.; Wang, M.; Tian, K.; Wang, Y.; Luo, X.; Deng, Q. Changes in Phenolic Compounds and Antioxidant Activity during Development of ‘Qiangcuili’ and ‘Cuihongli’ Fruit. Foods 2022, 11, 3198. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Veberic, R.; Hudina, M.; Zorenc, Z.; Koron, D.; Senica, M. Fruit Quality Characteristics and Biochemical Composition of Fully Ripe Blackberries Harvested at Different Times. Foods 2021, 10, 1581. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A. Surveilling the Rise and Fall of Macro/Micro Minerals, Sugars, Total Acidity, Phenolics and Anthocyanins during Fruit Development Stages in Five Mulberry (Morus) Cultivars. Preprints 2023, 1–31. [Google Scholar] [CrossRef]
- Mayorga-Gómez, A.; Nambeesan, S.; Coolong, T.; Díaz-Pérez, J. Temporal Relationship between Calcium and Fruit Growth and Development in Bell Pepper (Capsicum annuum L.). HortScience 2020, 55, 906–913. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, F.; Wang, Y.; Ma, X. Physiological and Metabolomic Analysis Reveals Maturity Stage-Dependent Nitrogen Regulation of Vitamin C Content in Pepper Fruit. Front. Plant Sci. 2023, 13, 1049785. [Google Scholar] [CrossRef]
- Zheng, X.; Gong, M.; Zhang, Q.; Tan, H.; Li, L.; Tang, Y.; Li, Z.; Peng, M.; Deng, W. Metabolism and Regulation of Ascorbic Acid in Fruits. Plants 2022, 11, 1602. [Google Scholar] [CrossRef]
- Manzoor, M.; Hussain, S.; Anjum, M.; Naseer, M.; Ahmad, R.; Ziogas, V. Effects of Harvest Time on the Fruit Quality of Kinnow and Feutrell’s Early Mandarins (Citrus reticulata Blanco). Agronomy 2023, 13, 802. [Google Scholar] [CrossRef]
- Stra, A.; Almarwaey, L.; Alagoz, Y.; Moreno, J.; Al-babili, S. Carotenoid Metabolism: New Insights and Synthetic Approaches. Front. Plant Sci. 2023, 13, 1072061. [Google Scholar] [CrossRef]
- Kapoor, L.; Simkin, A.; Doss, C.; Siva, R. Fruit Ripening: Dynamics and Integrated Analysis of Carotenoids and Anthocyanins. BMC Plant Biol. 2022, 22, 27. [Google Scholar] [CrossRef]
- Christ, B.; Guyer, L.; Rossi, M.; Hörtensteiner, S. Different Mechanisms Are Responsible for Chlorophyll Dephytylation during Fruit Ripening and Leaf Senescence in Tomato. Plant Physiol. 2014, 166, 44–56. [Google Scholar] [CrossRef]
- Coyago-Cruz, E.; Corell, M.; Moriana, A.; Hernanz, D.; Benítez-González, A.M.; Stinco, C.M.; Meléndez-Martínez, A.J. Antioxidants (Carotenoids and Phenolics) Profile of Cherry Tomatoes as Influenced by Deficit Irrigation, Ripening and Cluster. Food Chem. 2018, 240, 870–884. [Google Scholar] [CrossRef]
- Joshi, T.; Deepa, P.; Kumar, P. Effect of Different Proportions of Phenolics on Antioxidant Potential: Pointers for Bioactive Synergy/Antagonism in Foods and Nutraceuticals. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2022, 92, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Pastor, R.; Carrera-Pacheco, S.; Zúñiga-Miranda, J.; Rodríguez-Pólit, C.; Mayorga-Ramos, A.; Guamán, L.; Barba-Ostria, C. Current Landscape of Methods to Evaluate Antimicrobial Activity of Natural Extracts. Molecules 2023, 28, 1068. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; José, H.; Homem, V.; Simões, M. Comparison of Techniques and Solvents on the Antimicrobial and Antioxidant Potential of Extracts from Acacia Dealbata and Olea Europaea. Antibiotics 2020, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Bedair, H.; Samir, T.; Mansour, F. Antibacterial and Antifungal Activities of Natural Deep Eutectic Solvents. Appl. Microbiol. Biotechnol. 2024, 108, 198. [Google Scholar] [CrossRef]
- Bonarska-Kujawa, D.; Cyboran-Mikołajczyk, S.; Kleszczyńska, H. Molecular Mechanism of Action of Chlorogenic Acid on Erythrocyte and Lipid Membranes. Mol. Membr. Biol. 2015, 32, 46–54. [Google Scholar] [CrossRef]
- Tipikin, I.; Rozhkova, E.; Seifulla, R.; Ordzhonikidze, Z.; Panyuskin, V.; Kravtsov, A. Flavonoid Correction of Functional Elasticity of Erythrocyte Membranes and Hemorheological Disorders during Oxidative Stress Caused by Chronic Physical Overstrain in Mice. Eksp. I Klin. Farmakol. 2011, 74, 26–30. [Google Scholar]
- Chirumbolo, S.; Ilie, D.; Ilie, M. The Role of Quercetin in Membrane Stability. Gen. Physiol. Biophys. 2012, 31, 229–232. [Google Scholar] [CrossRef]
- Ajay, P.; Sivakumar, T.; Jin, C.; Li, S.-H.; Weng, Y.-J.; Yin, J.; Jia, J.-Q.; Wang, C.-Y.; Gui, Z.-Z. Antioxidant and Hemolysis Protective Effects of Polyphenol-Rich Extract from Mulberry Fruits. Pharmacogn. Mag. 2018, 14, 103–109. [Google Scholar] [CrossRef]
- Liu, B.; Teng, Z.; Wang, J.; Lu, G.; Deng, X.; Li, L. Inhibition of Listeriolysin O Oligomerization by Lutein Prevents Listeria Monocytogenes Infection. Fitoterapia 2017, 116, 45–50. [Google Scholar] [CrossRef]
- Das, D.; Patil, S.; Gajbhiye, A. Heme-Mimetic Potential of Iron Conjugated Pheophytin-I in Attenuating Oxidative Stress-Induced Cellular and Vascular Toxicity. J. Pharm. Bioallied Sci. 2022, 14 (Suppl. S1), 15–22. [Google Scholar] [CrossRef]
- Mȩczarska, K.; Cyboran-Mikołajczyk, S.; Włoch, A.; Bonarska-Kujawa, D.; Oszmiański, J.; Kleszczyńska, H. Polyphenol Content and Bioactivity of Saskatoon (Amelanchier Alnifolia Nutt.) Leaves and Berries. Acta Pol. Pharm.-Drug Res. 2017, 74, 660–669. [Google Scholar]
- Estrada-Gil, L.; Contreras-Esquivel, J.; Flores-Gallegos, C.; Zugasti-Cruz, A.; Govea-Salas, M.; Mata-Gómez, M.; Rodríguez-Herrera, R.; Ascacio-Valdés, J. Recovery of Bioactive Ellagitannins by Ultrasound/Microwave-Assisted Extraction from Mexican Rambutan Peel (Nephelium lappaceum L.). Molecules 2022, 27, 1592. [Google Scholar] [CrossRef]
- Goyos, L.; Mendes, F.; Farias, V.; Dokkedal, A. Antioxidant Activity and Total Phenols from the Methanolic Extract of Miconia Albicans (Sw.) Triana Leaves. Molecules 2011, 16, 9439–9450. [Google Scholar] [CrossRef]
- Coyago-Cruz, E. Estudio Sobre El Contenido En Carotenoides y Compuestos Fenólicos de Tomates y Flores en El Contexto de la Alimentación Funcional. Ph.D. Thesis, Universidad de Sevilla, Departamento de Ciencias Agroforestales, Sevilla, Spain, 2017. [Google Scholar]
- Alvarado-martinez, Z.; Tabashsum, Z.; Aditya, A.; Suh, G.; Wall, M.; Hshieh, K.; Biswas, D. Purified Plant-Derived Phenolic Acids Inhibit Salmonella Typhimurium without Alteration of Microbiota in a Simulated Chicken Cecum Condition. Microorganisms 2023, 11, 957. [Google Scholar] [CrossRef]
Parameters * | M0% | M50% | M80% | M100% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 3.4 | ± | 0.1 a | 3.2 | ± | 0.0 b | 3.0 | ± | 0.0 c | 2.8 | ± | 0.0 d |
SS (°Brix) | 1.2 | ± | 0.3 c | 1.1 | ± | 0.1 c | 7.0 | ± | 0.0 a | 6.2 | ± | 0.3 b |
TA (%) | 0.3 | ± | 0.1 d | 0.6 | ± | 0.1 c | 0.8 | ± | 0.2 b | 1.2 | ± | 0.1 a |
Humidity (%) | 81.5 | ± | 0.5 b | 86.5 | ± | 0.7 a | 86.0 | ± | 1.2 a | 87.2 | ± | 1.3 a |
Ash (%) | 1.0 | ± | 0.2 b | 1.2 | ± | 0.3 ab | 1.4 | ± | 0.1 a | 0.8 | ± | 0.1 c |
Mineral profile (mg/100 g DW) ** | ||||||||||||
Ca | 1263.9 | ± | 11.7 b | 93.0 | ± | 4.0 c | 2760.8 | ± | 24.1 a | 473.7 | ± | 64.1 c |
Fe | nd | 8.6 | ± | 0.4 b | 22.0 | ± | 0.4 a | nd | ||||
K | 1154.6 | ± | 10.3 c | 3066.7 | ± | 22.7 a | 3109.5 | ± | 11.3 a | 1728.0 | ± | 23.9 b |
Mg | 141.8 | ± | 7.7 c | 41.7 | ± | 0.5 c | 254.4 | ± | 58.8 a | 106.8 | ± | 17.6 b |
Na | 24.9 | ± | 6.9 a | 5.8 | ± | 0.2 c | 9.0 | ± | 1.5 b | 8.0 | ± | 0.9 b |
Parameters | M0% | M50% | M80% | M100% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Vitamin C (mg/100 g DW) | 2.0 | ± | 0.0 b | 4.1 | ± | 0.4 a | 2.2 | ± | 0.2 b | 0.9 | ± | 0.0 c |
Organic acid profile (mg/100 g DW) | ||||||||||||
Citric acid | 387.5 | ± | 32.2 c | 1059.8 | ± | 67.0 a | 128.1 | ± | 5.0 d | 581.9 | ± | 27.0 b |
Malic acid | 3722.5 | ± | 20.7 d | 5280.5 | ± | 37.7 a | 4580.9 | ± | 38.2 b | 4099.8 | ± | 54.3 c |
Tartaric acid | 62.1 | ± | 6.6 d | 366.3 | ± | 26.0 c | 659.5 | ± | 98.8 b | 730.6 | ± | 205.3 a |
Total organic acid | 4172.1 | ± | 6.6 c | 6706.6 | ± | 26.0 abc | 5368.5 | ± | 98.8 ab | 5421.2 | ± | 205.3 a |
Carotenoid profile (mg/100 g DW) | ||||||||||||
Lutein | 2.9 | ± | 1.0 d | 9.1 | ± | 0.7 b | 6.9 | ± | 0.0 b | 4.4 | ± | 1.0 c |
9-cis-Anteraxanthin | 0.2 | ± | 0.0 c | 0.2 | ± | 0.0 c | 0.6 | ± | 0.0 a | 0.3 | ± | 0.0 b |
Violaxanthin | nd | 0.2 | ± | 0.0 b | 2.1 | ± | 0.2 a | nd | ||||
Zeaxanthin | nd | 0.5 | ± | 0.1 a | 0.3 | ± | 0.0 b | 0.1 | ± | 0.0 c | ||
Total carotenoid | 3.1 | ± | 1.0 c | 10.0 | ± | 0.8 a | 9.9 | ± | 0.3 a | 4.8 | ± | 1.1 b |
Chlorophylls and their derivatives (mg/100 g DW) | ||||||||||||
Chlorophyll b | 15.0 | ± | 0.1 b | 3.0 | ± | 0.2 a | 1.7 | ± | 0.2 b | 0.1 | ± | 0.0 c |
Pheophytin a | 4.3 | ± | 0.5 c | 10.3 | ± | 1.7 a | 8.0 | ± | 1.1 a | 6.3 | ± | 0.6 b |
Pheophytin b | 28.0 | ± | 2.3 d | 88.7 | ± | 4.9 a | 79.5 | ± | 0.4 b | 70.7 | ± | 3.8 c |
Total chlorophyll | 47.3 | ± | 0.3 d | 102.0 | ± | 0.7 a | 89.2 | ± | 3.2 b | 77.1 | ± | 2.4 c |
Total anthocyanins (mg/100 g DW) | 10.9 | ± | 1.2 d | 52.7 | ± | 2.9 c | 75.2 | ± | 6.3 b | 91.3 | ± | 5.5 a |
Phenolic compounds (mg/100 g DW) | ||||||||||||
Gallic acid | 0.02 | ± | 0.0 b | 0.02 | ± | 0.0 b | 0.02 | ± | 0.0 b | 0.03 | ± | 0.0 a |
Catechin | 433.3 | ± | 25.5 | 229.8 | ± | 25.6 | 210.9 | ± | 30.7 | 93.6 | ± | 5.4 |
m-Cumaric acid | 3308.1 | ± | 59.2 a | 2239.2 | ± | 33.7 b | 1551.1 | ± | 35.3 c | 735.8 | ± | 10.5 d |
Syringic acid | 544.1 | ± | 15.5 a | 628.2 | ± | 10.1 b | 508.7 | ± | 96.6 c | 211.5 | ± | 9.8 d |
Chlorogenic acid | 2303.8 | ± | 22.6 c | 3996.9 | ± | 291.5 b | 4058.8 | ± | 179.8 a | 1402.2 | ± | 338.5 d |
Kaempferol | 1636.0 | ± | 21.6 a | 342.4 | ± | 7.4 b | 456.8 | ± | 1.0 b | 348.2 | ± | 8.5 c |
Quercetin glucoside | 183.4 | ± | 5.4 c | 272.2 | ± | 15.1 b | 307.7 | ± | 40.3 a | 280.4 | ± | 40.3 b |
Quercetin | 36.9 | ± | 3.4 c | 88.5 | ± | 7.1 a | 99.0 | ± | 3.7 a | 62.8 | ± | 4.5 b |
Total phenolics | 7145.6 | ± | 581.0 b | 7539.9 | ± | 39.1 a | 6835.7 | ± | 70.2 c | 2844.5 | ± | 51.3 d |
M0% | M50% | M80% | M100% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Antioxidant activity (mmol TE/100 g DW) | ||||||||||||
DPPH | 5.5 | ± | 0.1 a | 5.1 | ± | 0.2 a | 5.2 | ± | 0.1 a | 5.3 | ± | 0.1 a |
ABTS | 5.5 | ± | 0.11 b | 6.1 | ± | 0.21 a | 6.1 | ± | 0.02 a | 5.8 | ± | 0.15 b |
Microorganisms | Inhibition Zone (mm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M0% | M50% | M80% | M100% | |||||||||
E. coli ATCC 8739 | 13.5 | ± | 0.7 b | 16.0 | ± | 2.8 a | 18.5 | ± | 3.5 a | 18.0 | ± | 3.0 a |
P. aeruginosa ATCC 9027 | 14.0 | ± | 0.0 c | 19.0 | ± | 1.4 b | 19.5 | ± | 3.5 b | 26.0 | ± | 0.0 a |
S. aureus ATCC 6538P | 18.0 | ± | 2.8 b | 23.5 | ± | 2.1 a | 23.5 | ± | 2.1 a | 24.5 | ± | 0.0 a |
S. mutans ATCC 25175 | 17.5 | ± | 0.7 b | 24.0 | ± | 1.4 a | 24.5 | ± | 0.7 a | 25.0 | ± | 2.8 a |
C. albicans ATCC 1031 | 17.0 | ± | 0.0 a | 15.0 | ± | 0.0 b | - | 8.0 | ± | 1.0 c | ||
C. tropicalis ATCC 13803 | 13.0 | ± | 1.4 a | - | - | 10.0 | ± | 0.0 b |
Microorganisms | Minimal Inhibitory Concentration (mg/mL) | |
---|---|---|
M0% | M100% | |
E. coli ATCC 8739 | 62.5 | 62.5 |
P. aeruginosa ATCC 9027 | 31.3 | 31.3 |
S. aureus ATCC 6538P | 15.6 | 15.6 |
S. mutans ATCC 25175 | 7.8 | 15.6 |
C. albicans ATCC 1031 | 31.3 | 62.5 |
C. tropicalis ATCC 13803 | 62.5 | 125.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coyago-Cruz, E.; Zúñiga-Miranda, J.; Méndez, G.; Guachamin, A.; Escobar-Quiñonez, R.; Barba-Ostria, C.; Heredia-Moya, J. Relationship Between Bioactive Compounds and Biological Activities (Antioxidant, Antimicrobial, Antihaemolytic) of ‘Colcas’ Fruits at Different Stages of Maturity. Antioxidants 2025, 14, 1105. https://doi.org/10.3390/antiox14091105
Coyago-Cruz E, Zúñiga-Miranda J, Méndez G, Guachamin A, Escobar-Quiñonez R, Barba-Ostria C, Heredia-Moya J. Relationship Between Bioactive Compounds and Biological Activities (Antioxidant, Antimicrobial, Antihaemolytic) of ‘Colcas’ Fruits at Different Stages of Maturity. Antioxidants. 2025; 14(9):1105. https://doi.org/10.3390/antiox14091105
Chicago/Turabian StyleCoyago-Cruz, Elena, Johana Zúñiga-Miranda, Gabriela Méndez, Aida Guachamin, Ruth Escobar-Quiñonez, Carlos Barba-Ostria, and Jorge Heredia-Moya. 2025. "Relationship Between Bioactive Compounds and Biological Activities (Antioxidant, Antimicrobial, Antihaemolytic) of ‘Colcas’ Fruits at Different Stages of Maturity" Antioxidants 14, no. 9: 1105. https://doi.org/10.3390/antiox14091105
APA StyleCoyago-Cruz, E., Zúñiga-Miranda, J., Méndez, G., Guachamin, A., Escobar-Quiñonez, R., Barba-Ostria, C., & Heredia-Moya, J. (2025). Relationship Between Bioactive Compounds and Biological Activities (Antioxidant, Antimicrobial, Antihaemolytic) of ‘Colcas’ Fruits at Different Stages of Maturity. Antioxidants, 14(9), 1105. https://doi.org/10.3390/antiox14091105