Non-Invasive Redox Biomarkers Detected in Organ Preservation Outflow Solution Enable Early Prediction of Human Liver Allograft Dysfunction
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Collection of Organ Preservation Solution
2.3. Procurement of Liver Biopsies
2.4. Clinical Follow-Up of Transplant Patients
2.5. Total Antioxidant Capacity
2.6. Lipid Peroxidation Analysis
2.7. Oxidative DNA Damage
2.8. Protein Carbonyl Measurement
2.9. Total Protein Quantification
2.10. Quantitative Reverse Transcriptase–Polymerase Chain Reaction (qRT-PCR)
2.11. Statistical Analysis
3. Results
3.1. Oxidative Stress Markers Exhibited Differences Based on the Type of Donation
3.2. Transcriptomic Study Reveals the Influence of Donation Type on Genes Associated with ROS Production and Protection Against Oxidative Damage
3.3. Oxidative Damage Impacts the Short-Term Outcome of Liver Transplant Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | Acute rejection |
AUC | Area under the curve |
BMI | Body mass index |
CIT | Cold ischemia time |
CT | Computed tomography |
DBD | Donor after brain death |
DCD | Donor after circulatory death |
ECD | Expanded criteria donors |
eiOPS | End-ischemic organ preservation solution |
GLM | Generalized logistic regression |
IRI | Ischemia–reperfusion injury |
LASSO | Least absolute shrinkage and selection operator |
LT | Liver transplantation |
MDA | Malondialdehyde |
MEAF | Model for early allograft function |
NLRP3 | NLR family pyrin domain containing 3 |
NRP | Normothermic regional perfusion |
OPS | Organ preservation solution |
ROS | Reactive oxygen species |
SRR | Super rapid recovery |
WIT | Warm ischemia time |
References
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef]
- Ghinolfi, D.; Melandro, F.; Torri, F.; Martinelli, C.; Cappello, V.; Babboni, S.; Silvestrini, B.; De Simone, P.; Basta, G.; Del Turco, S. Extended criteria grafts and emerging therapeutics strategy in liver transplantation. The unstable balance between damage and repair. Transplant. Rev. 2021, 35, 100639. [Google Scholar] [CrossRef] [PubMed]
- Vodkin, I.; Kuo, A. Extended Criteria Donors in Liver Transplantation. Clin. Liver Dis. 2017, 21, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Potter, K.F.; Cocchiola, B.; Quader, M.A. Donation after circulatory death: Opportunities on the horizon. Curr. Opin. Anaesthesiol. 2021, 34, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Y.; Petrowsky, H.; Hong, J.C.; Busuttil, R.W.; Kupiec-Weglinski, J.W. Ischaemia-reperfusion injury in liver transplantation--from bench to bedside. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 79–89. [Google Scholar] [CrossRef]
- He, X.S.; Ma, Y.; Wu, L.W.; Ju, W.Q.; Wu, J.L.; Hu, R.D.; Chen, G.H.; Huang, J.F. Safe time to warm ischemia and posttransplant survival of liver graft from non-heart-beating donors. World J. Gastroenterol. 2004, 10, 3157–3160. [Google Scholar] [CrossRef]
- Pan, E.T.; Yoeli, D.; Galvan, N.T.N.; Kueht, M.L.; Cotton, R.T.; O’Mahony, C.A.; Goss, J.A.; Rana, A. Cold ischemia time is an important risk factor for post-liver transplant prolonged length of stay. Liver Transplant. 2018, 24, 762–768. [Google Scholar] [CrossRef]
- Dar, W.A.; Sullivan, E.; Bynon, J.S.; Eltzschig, H.; Ju, C. Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms. Liver Int. 2019, 39, 788–801. [Google Scholar] [CrossRef]
- Pareja, E.; Cortes, M.; Hervas, D.; Mir, J.; Valdivieso, A.; Castell, J.V.; Lahoz, A. A score model for the continuous grading of early allograft dysfunction severity. Liver Transplant. 2015, 21, 38–46. [Google Scholar] [CrossRef]
- Serrano, M.T.; Sabroso, S.; Esteban, L.M.; Berenguer, M.; Fondevila, C.; Lorente, S.; Cortes, L.; Sanchez-Antolin, G.; Nuno, J.; De la Rosa, G.; et al. Mortality and Causes of Death After Liver Transplantation: Analysis of Sex Differences in a Large Nationwide Cohort. Transpl. Int. 2022, 35, 10263. [Google Scholar] [CrossRef]
- Agostini, C.; Buccianti, S.; Risaliti, M.; Fortuna, L.; Tirloni, L.; Tucci, R.; Bartolini, I.; Grazi, G.L. Complications in Post-Liver Transplant Patients. J. Clin. Med. 2023, 12, 6173. [Google Scholar] [CrossRef] [PubMed]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Fernando, J.J.; Biswas, R.; Biswas, L. Non-invasive molecular biomarkers for monitoring solid organ transplantation: A comprehensive overview. Int. J. Immunogenet. 2024, 51, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.P.; Mao, X.L.; Chen, Y.H.; Yan, L.L.; Ye, L.P.; Li, S.W. Reactive Oxygen Species Induce Fatty Liver and Ischemia-Reperfusion Injury by Promoting Inflammation and Cell Death. Front. Immunol. 2022, 13, 870239. [Google Scholar] [CrossRef]
- Cascales-Campos, P.A.; Ferreras, D.; Alconchel, F.; Febrero, B.; Royo-Villanova, M.; Martinez, M.; Rodriguez, J.M.; Fernandez-Hernandez, J.A.; Rios, A.; Pons, J.A.; et al. Controlled donation after circulatory death up to 80 years for liver transplantation: Pushing the limit again. Am. J. Transplant. 2020, 20, 204–212. [Google Scholar] [CrossRef]
- Lucas-Ruiz, F.; Mateo, S.V.; Jover-Aguilar, M.; Alconchel, F.; Martinez-Alarcon, L.; de Torre-Minguela, C.; Vidal-Correoso, D.; Villalba-Lopez, F.; Lopez-Lopez, V.; Rios-Zambudio, A.; et al. Danger signals released during cold ischemia storage activate NLRP3 inflammasome in myeloid cells and influence early allograft function in liver transplantation. EBioMedicine 2023, 87, 104419. [Google Scholar] [CrossRef]
- Vidal-Correoso, D.; Mateo, S.V.; Munoz-Morales, A.M.; Lucas-Ruiz, F.; Jover-Aguilar, M.; Alconchel, F.; Martinez-Alarcon, L.; Sanchez-Redondo, S.; Santos, V.; Lopez-Lopez, V.; et al. Cell-specific Extracellular Vesicles and Their miRNA Cargo Released Into the Organ Preservation Solution During Cold Ischemia Storage as Biomarkers for Liver Transplant Outcomes. Transplantation 2024, 108, e301–e312. [Google Scholar] [CrossRef]
- Mateo, S.V.; Vidal-Correoso, D.; Munoz-Morales, A.M.; Jover-Aguilar, M.; Alconchel, F.; de la Pena, J.; Martinez-Alarcon, L.; Lopez-Lopez, V.; Rios-Zambudio, A.; Cascales, P.; et al. Detection of inflammasome activation in liver tissue during the donation process as potential biomarker for liver transplantation. Cell Death Discov. 2024, 10, 266. [Google Scholar] [CrossRef]
- Ormonde, D.G.; de Boer, W.B.; Kierath, A.; Bell, R.; Shilkin, K.B.; House, A.K.; Jeffrey, G.P.; Reed, W.D. Banff schema for grading liver allograft rejection: Utility in clinical practice. Liver Transpl. Surg. 1999, 5, 261–268. [Google Scholar] [CrossRef]
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Breiman, L. Classification and Regression Trees, 1st ed.; Routledge: New York, NY, USA, 1984. [Google Scholar]
- van Buuren, S.; Groothuis-Oudshoorn, K. Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Shi, S.; Wang, L.; van der Laan, L.J.W.; Pan, Q.; Verstegen, M.M.A. Mitochondrial Dysfunction and Oxidative Stress in Liver Transplantation and Underlying Diseases: New Insights and Therapeutics. Transplantation 2021, 105, 2362–2373. [Google Scholar] [CrossRef] [PubMed]
- Saidi, R.F.; Hejazii Kenari, S.K. Challenges of organ shortage for transplantation: Solutions and opportunities. Int. J. Organ. Transplant. Med. 2014, 5, 87–96. [Google Scholar]
- Croome, K.P.; Taner, C.B. The Changing Landscapes in DCD Liver Transplantation. Curr. Transplant. Rep. 2020, 7, 194–204. [Google Scholar] [CrossRef]
- Villalba-Lopez, F.; García-Bernal, D.; Mateo, S.V.; Vidal-Correoso, D.; Jover-Aguilar, M.; Alconchel, F.; Martinez Alarcon, L.; Lopez-Lopez, V.; Rios-Zambudio, A.; Cascales, P.; et al. Endothelial cell activation mediated by cold ischemia-released mitochondria is partially inhibited by defibrotide and impacts on early allograft function following liver transplantation. Biomed. Pharmacother. 2023, 167, 115529. [Google Scholar] [CrossRef]
- Palleschi, S.; De Angelis, S.; Diana, L.; Rossi, B.; Papa, V.; Severini, G.; Splendiani, G. Reliability of oxidative stress biomarkers in hemodialysis patients: A comparative study. Clin. Chem. Lab. Med. 2007, 45, 1211–1218. [Google Scholar] [CrossRef]
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; et al. Clinical Relevance of Biomarkers of Oxidative Stress. Antioxid. Redox Signal. 2015, 23, 1144–1170. [Google Scholar] [CrossRef]
- Akbulut, S.; Uremis, M.M.; Sarici, K.B.; Uremis, N.; Hargura, A.S.; Karakas, S.; Dogan, U.G.; Turkoz, Y.; Yilmaz, S. Measurement of oxidant and antioxidant levels in liver tissue obtained from patients with liver transplantation: A case-control study. Transpl. Immunol. 2022, 75, 101697. [Google Scholar] [CrossRef]
- Aydin, M.; Dirik, Y.; Demir, C.; Tolunay, H.E.; Demir, H. Can we reduce oxidative stress with liver transplantation? J. Med. Biochem. 2021, 40, 351–357. [Google Scholar] [CrossRef]
- Ayala, A.; Munoz, M.F.; Arguelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Barrera, G.; Pizzimenti, S.; Daga, M.; Dianzani, C.; Arcaro, A.; Cetrangolo, G.P.; Giordano, G.; Cucci, M.A.; Graf, M.; Gentile, F. Lipid Peroxidation-Derived Aldehydes, 4-Hydroxynonenal and Malondialdehyde in Aging-Related Disorders. Antioxidants 2018, 7, 102. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.O.S.; Losada, D.M.; Jordani, M.C.; Evora, P.; Castro, E.S.O. Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. Int. J. Mol. Sci. 2019, 20, 5034. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.F.; Liu, F.C.; Sung, W.C.; Lin, C.C.; Chung, P.C.; Lee, W.C.; Yu, H.P. Ischemic reperfusion injury-induced oxidative stress and pro-inflammatory mediators in liver transplantation recipients. Transplant. Proc. 2014, 46, 1082–1086. [Google Scholar] [CrossRef] [PubMed]
- Ngo, V.; Duennwald, M.L. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants 2022, 11, 2345. [Google Scholar] [CrossRef]
- Liang, J.J.; Fraser, I.D.C.; Bryant, C.E. Lipid regulation of NLRP3 inflammasome activity through organelle stress. Trends Immunol. 2021, 42, 807–823. [Google Scholar] [CrossRef]
- Lucas-Ruiz, F.; Penin-Franch, A.; Pons, J.A.; Ramirez, P.; Pelegrin, P.; Cuevas, S.; Baroja-Mazo, A. Emerging Role of NLRP3 Inflammasome and Pyroptosis in Liver Transplantation. Int. J. Mol. Sci. 2022, 23, 14396. [Google Scholar] [CrossRef]
- Kehm, R.; Baldensperger, T.; Raupbach, J.; Hohn, A. Protein oxidation—Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol. 2021, 42, 101901. [Google Scholar] [CrossRef]
- Rayar, M.; Levi Sandri, G.B.; Cusumano, C.; Lombard, N.; Lakehal, M.; Desfourneaux, V.; Meunier, B.; Sulpice, L.; Boudjema, K. A score model for the continuous grading of early allograft dysfunction severity. Liver Transpl. 2016, 22, 859–860. [Google Scholar] [CrossRef]
- Jakubiak, G.K.; Osadnik, K.; Lejawa, M.; Kasperczyk, S.; Osadnik, T.; Pawlas, N.; Czuczejko, J. Oxidative Stress in Association with Metabolic Health and Obesity in Young Adults. Oxid. Med. Cell. Longev. 2021, 2021, 9987352. [Google Scholar] [CrossRef]
- Esteban-Zubero, E.; Garcia-Gil, F.A.; Lopez-Pingarron, L.; Alatorre-Jimenez, M.A.; Ramirez, J.M.; Tan, D.X.; Garcia, J.J.; Reiter, R.J. Melatonin role preventing steatohepatitis and improving liver transplantation results. Cell. Mol. Life Sci. CMLS 2016, 73, 2911–2927. [Google Scholar] [CrossRef] [PubMed]
- Stiegler, P.; Bausys, A.; Leber, B.; Strupas, K.; Schemmer, P. Impact of Melatonin in Solid Organ Transplantation-Is It Time for Clinical Trials? A Comprehensive Review. Int. J. Mol. Sci. 2018, 19, 3509. [Google Scholar] [CrossRef] [PubMed]
- Lorente, L.; Rodriguez, S.T.; Sanz, P.; Abreu-Gonzalez, P.; Gonzalez-Rivero, A.F.; Perez-Cejas, A.; Padilla, J.; Diaz, D.; Gonzalez, A.; Martin, M.M.; et al. Low Serum Melatonin Levels Prior to Liver Transplantation in Patients with Hepatocellular Carcinoma are Associated with Lower Survival after Liver Transplantation. Int. J. Mol. Sci. 2019, 20, 1696. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, Z.; Zhang, S.; Zhang, T.; Liu, Y.; Zhang, L. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics 2023, 13, 736–766. [Google Scholar] [CrossRef] [PubMed]
- Gan, Z.Y.; Callegari, S.; Cobbold, S.A.; Cotton, T.R.; Mlodzianoski, M.J.; Schubert, A.F.; Geoghegan, N.D.; Rogers, K.L.; Leis, A.; Dewson, G.; et al. Activation mechanism of PINK1. Nature 2022, 602, 328–335. [Google Scholar] [CrossRef]
- Wang, H.; Ni, H.M.; Chao, X.; Ma, X.; Rodriguez, Y.A.; Chavan, H.; Wang, S.; Krishnamurthy, P.; Dobrowsky, R.; Xu, D.X.; et al. Double deletion of PINK1 and Parkin impairs hepatic mitophagy and exacerbates acetaminophen-induced liver injury in mice. Redox Biol. 2019, 22, 101148. [Google Scholar] [CrossRef]
- Kong, W.N.; Li, W.; Bai, C.; Dong, Y.; Wu, Y.; An, W. Augmenter of liver regeneration-mediated mitophagy protects against hepatic ischemia/reperfusion injury. Am. J. Transplant. 2022, 22, 130–143. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, Y.; Lu, J.; Zhang, W.; Zhu, Y.; Zhang, S.; Ma, G.; Jiang, P.; Zhang, W. PINK1-mediated mitophagy protects against hepatic ischemia/reperfusion injury by restraining NLRP3 inflammasome activation. Free Radic. Biol. Med. 2020, 160, 871–886. [Google Scholar] [CrossRef]
- Gao, A.; Jiang, J.; Xie, F.; Chen, L. Bnip3 in mitophagy: Novel insights and potential therapeutic target for diseases of secondary mitochondrial dysfunction. Clin. Chim. Acta 2020, 506, 72–83. [Google Scholar] [CrossRef]
- Granger, D.N.; Kvietys, P.R. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 2015, 6, 524–551. [Google Scholar] [CrossRef]
- Kracun, D.; Lopes, L.R.; Cifuentes-Pagano, E.; Pagano, P.J. NADPH oxidases: Redox regulation of cell homeostasis and disease. Physiol. Rev. 2025, 105, 1291–1428. [Google Scholar] [CrossRef]
- Magnani, F.; Mattevi, A. Structure and mechanisms of ROS generation by NADPH oxidases. Curr. Opin. Struct. Biol. 2019, 59, 91–97. [Google Scholar] [CrossRef]
- Lia, G.; Giaccone, L.; Leone, S.; Bruno, B. Biomarkers for Early Complications of Endothelial Origin After Allogeneic Hematopoietic Stem Cell Transplantation: Do They Have a Potential Clinical Role? Front. Immunol. 2021, 12, 641427. [Google Scholar] [CrossRef] [PubMed]
- Burke, A.; FitzGerald, G.A.; Lucey, M.R. A prospective analysis of oxidative stress and liver transplantation. Transplantation 2002, 74, 217–221. [Google Scholar] [CrossRef] [PubMed]
- de Vries, D.K.; Kortekaas, K.A.; Tsikas, D.; Wijermars, L.G.; van Noorden, C.J.; Suchy, M.T.; Cobbaert, C.M.; Klautz, R.J.; Schaapherder, A.F.; Lindeman, J.H. Oxidative damage in clinical ischemia/reperfusion injury: A reappraisal. Antioxid. Redox Signal 2013, 19, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Tejchman, K.; Sierocka, A.; Kotfis, K.; Kotowski, M.; Dolegowska, B.; Ostrowski, M.; Sienko, J. Assessment of Oxidative Stress Markers in Hypothermic Preservation of Transplanted Kidneys. Antioxidants 2021, 10, 1263. [Google Scholar] [CrossRef]
- Ostrozka-Cieslik, A. Modification of Preservative Fluids with Antioxidants in Terms of Their Efficacy in Liver Protection before Transplantation. Int. J. Mol. Sci. 2024, 25, 1850. [Google Scholar] [CrossRef]
- Jochmans, I.; Hessheimer, A.J.; Neyrinck, A.P.; Paredes, D.; Bellini, M.I.; Dark, J.H.; Kimenai, H.; Pengel, L.H.M.; Watson, C.J.E. Consensus statement on normothermic regional perfusion in donation after circulatory death: Report from the European Society for Organ Transplantation’s Transplant Learning Journey. Transpl. Int. 2021, 34, 2019–2030. [Google Scholar] [CrossRef]
- Michelotto, J.; Gassner, J.; Moosburner, S.; Muth, V.; Patel, M.S.; Selzner, M.; Pratschke, J.; Sauer, I.M.; Raschzok, N. Ex vivo machine perfusion: Current applications and future directions in liver transplantation. Langenbecks Arch. Surg. 2021, 406, 39–54. [Google Scholar] [CrossRef]
- van Beekum, C.J.; Vilz, T.O.; Glowka, T.R.; von Websky, M.W.; Kalff, J.C.; Manekeller, S. Normothermic Machine Perfusion (NMP) of the Liver—Current Status and Future Perspectives. Ann. Transpl. 2021, 26, e931664-1–e931664-8. [Google Scholar] [CrossRef]
- Dengu, F.; Abbas, S.H.; Ebeling, G.; Nasralla, D. Normothermic Machine Perfusion (NMP) of the Liver as a Platform for Therapeutic Interventions during Ex-Vivo Liver Preservation: A Review. J. Clin. Med. 2020, 9, 1046. [Google Scholar] [CrossRef]
- Palomo-Lopez, N.; Rodriguez-Rodriguez, A.; Martin-Villen, L.; Mendoza-Prieto, M.; Ruiz de Azua-Lopez, Z.; Sempere-Bordes, L.; Boyero-Corral, L.; Daga-Ruiz, D.; Gordillo-Brenes, A.; Pacheco-Sanchez, M.; et al. Immunomodulation of Oxidative Stress during Organ Donation Process: Preliminary Results. Healthcare 2022, 10, 762. [Google Scholar] [CrossRef]
- Panconesi, R.; Carvalho, M.F.; Eden, J.; Fazi, M.; Ansari, F.; Mancina, L.; Navari, N.; Sousa Da Silva, R.X.; Dondossola, D.; Borrego, L.B.; et al. Mitochondrial injury during normothermic regional perfusion (NRP) and hypothermic oxygenated perfusion (HOPE) in a rodent model of DCD liver transplantation. EBioMedicine 2023, 98, 104861. [Google Scholar] [CrossRef]
- CougCarcy, R.; Cougnon, M.; Poet, M.; Durandy, M.; Sicard, A.; Counillon, L.; Blondeau, N.; Hauet, T.; Tauc, M.; Pisani, D.F. Targeting oxidative stress, a crucial challenge in renal transplantation outcome. Free Radic. Biol. Med. 2021, 169, 258–270. [Google Scholar] [CrossRef]
Variables | Donors (n = 74) | p | Recipients (n = 74) | ||
---|---|---|---|---|---|
DBD (n = 46) | DCD (n = 28) | ||||
SRR (n = 21) | NRP (n = 7) | ||||
Age | 60.3 ± 13.6; 65 (22–87) | 61.24 ± 12.6; 65 (30–77) | 59.6 ± 21.6; 69 (26–82) | 0.952 a | 57.4 ± 9.4; 58.5 (24–72) |
Sex | |||||
Male | 27 (58.7) | 13 (61.9) | 4 (57.1) | 48 (64.9) | |
Female | 19 (41.3) | 9 (38.1) | 3 (42.9) | 0.931 b | 26 (35.1) |
Body mass index | 25.5 ± 4.3; 25.1 (18.4–36.2) | 25.5 ± 2.8; 25.4 (20.1–31.6) | 28.0 ± 3.7; 28.6 (23.4–32.3) | 0.269 a | 26.8 ± 4.2; 26.7 (18.7–36.8) |
CIT (min) | 312.7 ± 151.; 295 (90–960) | 371.8 ± 137.3; 360 (180–630) | 302.3 ± 153.4; 240 (150–540) | 0.287 a | |
Cause of death | 0.012 b | ||||
CVA | 31 (67.4) | 8 (38.1) | 5 (71.4) | ||
TBI | 10 (21.7) | 4 (19) | 1 (14.3) | ||
Anoxic encephalopathy | 4 (8.7) | 2 (9.5) | 0 (0) | ||
Cardiomyopathy | 0 (0) | 6 (28.6) | 0 (0) | ||
Other | 1 (2.2) | 1 (4.8) | 1 (14.3) | ||
Functional warm ischemia (min) | 17.6 ± 7.5; 17 (5–30) | 13.1 ± 3.9; 15 (7–18) | 0.149 c | ||
Diseases | |||||
Alcoholic cirrhosis | 36 (48.6) | ||||
Hepatitis C virus | 8 (10.8) | ||||
Arterial thrombosis | 5 (6.8) | ||||
Primary biliary cholangitis | 4 (5.4) | ||||
MASH | 4 (5.4) | ||||
Cryptogenetic Cirrhosis | 3 (4.1) | ||||
Hepatitis B virus | 3 (4.1) | ||||
Polycystic disease | 3 (4.1) | ||||
Autoimmune hepatitis | 3 (4.1) | ||||
Other | 5 (6.8) | ||||
Re-transplant patients | 10 (13.5) | ||||
Arterial thrombosis | 5 (50) | ||||
Primary graft dysfunction | 1 (10) | ||||
Cryptogenetic Cirrhosis | 1 (10) | ||||
Ischemic cholangiopathy | 1 (10) | ||||
Recurrent primary biliary cholangitis | 2 (20) | ||||
Intraoperative death | 2 (2.7) | ||||
Immunosuppressive treatment | |||||
Tacrolimus | 72 (97.3) |
Oxidative Stress Marker | Concentration 1 |
---|---|
Oxidized DNA (ng 8-OHdG/mL) | 25.75 (0.58–183.4) |
Lipid peroxidation (nmol MDA/mg prot) | 8.81 (0–345.5) |
Protein carbonylation (nmol carbonyl/mg prot) | 0.44 (0–20) |
Total antioxidant capacity (nmol/µL) | 139.6 (0–560.4) |
Post-Transplant Event | Donation | p-Value | |
---|---|---|---|
DBD (46) | DCD (28) | ||
Acute rejection | 10 (13.5) | 7 (9.5) | 0.632 a |
Hepatic arterial thrombosis | 3 (4) | 3 (4) | 0.560 a |
Biliary complications | 0.438 a | ||
Strictures | 4 (5.4) | 2 (2.7) | |
Leaks | 2 (2.7) | 3 (4) | |
Cholangitis | 0 (0) | 1 (1.4) | |
Primary graft dysfunction | 0 (0) | 2 (2.7) | 0.072 a |
Graft loss (re-transplantation) | 2 (2.7) | 4 (5.4) | 0.145 a |
Deceased | 7 (9.5) | 5 (6.8) | 0.829 a |
MEAF (Model for Early Allograft Function) score | 2.95 (0.59–7.42) | 4.14 (0.40–7.88) | 0.041 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal-Correoso, D.; Caballero-Herrero, M.J.; Muñoz-Morales, A.M.; Mateo, S.V.; Jover-Aguilar, M.; Alconchel, F.; Martínez-Alarcón, L.; López-López, V.; Ríos-Zambudio, A.; Cascales, P.; et al. Non-Invasive Redox Biomarkers Detected in Organ Preservation Outflow Solution Enable Early Prediction of Human Liver Allograft Dysfunction. Antioxidants 2025, 14, 1104. https://doi.org/10.3390/antiox14091104
Vidal-Correoso D, Caballero-Herrero MJ, Muñoz-Morales AM, Mateo SV, Jover-Aguilar M, Alconchel F, Martínez-Alarcón L, López-López V, Ríos-Zambudio A, Cascales P, et al. Non-Invasive Redox Biomarkers Detected in Organ Preservation Outflow Solution Enable Early Prediction of Human Liver Allograft Dysfunction. Antioxidants. 2025; 14(9):1104. https://doi.org/10.3390/antiox14091104
Chicago/Turabian StyleVidal-Correoso, Daniel, María José Caballero-Herrero, Ana M. Muñoz-Morales, Sandra V. Mateo, Marta Jover-Aguilar, Felipe Alconchel, Laura Martínez-Alarcón, Víctor López-López, Antonio Ríos-Zambudio, Pedro Cascales, and et al. 2025. "Non-Invasive Redox Biomarkers Detected in Organ Preservation Outflow Solution Enable Early Prediction of Human Liver Allograft Dysfunction" Antioxidants 14, no. 9: 1104. https://doi.org/10.3390/antiox14091104
APA StyleVidal-Correoso, D., Caballero-Herrero, M. J., Muñoz-Morales, A. M., Mateo, S. V., Jover-Aguilar, M., Alconchel, F., Martínez-Alarcón, L., López-López, V., Ríos-Zambudio, A., Cascales, P., Pons, J. A., Ramírez, P., Stromsnes, K., Gambini, J., Cuevas, S., & Baroja-Mazo, A. (2025). Non-Invasive Redox Biomarkers Detected in Organ Preservation Outflow Solution Enable Early Prediction of Human Liver Allograft Dysfunction. Antioxidants, 14(9), 1104. https://doi.org/10.3390/antiox14091104