Vitamin D Protects Pancreatic Cancer (PC) Cells from Death and DNA Damage Induced by Oxidative Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture and Treatment
2.2. Cell Viability Determination—MTT Assay
2.3. Evaluation of DNA Damage—The Alkaline Comet Assay
2.4. mRNA Expression—qRT-PCR
2.5. Protein Expression Analysis—Western Blotting
2.6. Determination of ROS Level
2.7. Determination of Antioxidant Enzymes’ Activity
2.8. Statistical Analysis
3. Results
3.1. Vit. D3 Protects 1.2B4 and PANC-1 Cells from the Cytotoxic Effect of H2O2
3.2. Vit. D3 Exerts a Protective Effect Against H2O2-Induced DNA Damage in PC Cells, but Less than NAC
3.3. Vit. D3 Is More Effective than NAC at Increasing the mRNA Expression of Antioxidant Enzymes Lowered by H2O2 in PC Cells
3.4. Vit. D3 Elevates CAT Protein Expression During H2O2-Induced Oxidative Stress in 1.2B4 Cells
3.5. Vit. D3 Increases Activity of CAT After 24 h in 1.2B4 Cells and Elevates Activity of CAT and Gpx After 2 h in PANC-1 Cells Leading to Reduction of H2O2-Induced Level of ROS
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeng, S.; Pöttler, M.; Lan, B.; Grützmann, R.; Pilarsky, C.; Yang, H. Chemoresistance in Pancreatic Cancer. Int. J. Mol. Sci. 2019, 20, 4504. [Google Scholar] [CrossRef] [PubMed]
- Espona-Fiedler, M.; Patthey, C.; Lindblad, S.; Sarró, I.; Öhlund, D. Overcoming Therapy Resistance in Pancreatic Cancer: New Insights and Future Directions. Biochem. Pharmacol. 2024, 229, 116492. [Google Scholar] [CrossRef]
- Jiang, H.; Zuo, J.; Li, B.; Chen, R.; Luo, K.; Xiang, X.; Lu, S.; Huang, C.; Liu, L.; Tang, J.; et al. Drug-Induced Oxidative Stress in Cancer Treatments: Angel or Devil? Redox Biol. 2023, 63, 102754. [Google Scholar] [CrossRef] [PubMed]
- Stoop, T.F.; Javed, A.A.; Oba, A.; Koerkamp, B.G.; Seufferlein, T.; Wilmink, J.W.; Besselink, M.G. Pancreatic Cancer. Lancet Lond. Engl. 2025, 405, 1182–1202. [Google Scholar] [CrossRef]
- Lencioni, G.; Gregori, A.; Toledo, B.; Rebelo, R.; Immordino, B.; Amrutkar, M.; Xavier, C.P.R.; Kocijančič, A.; Pandey, D.P.; Perán, M.; et al. Unravelling the Complexities of Resistance Mechanism in Pancreatic Cancer: Insights from in Vitro and Ex-Vivo Model Systems. Semin. Cancer Biol. 2024, 106–107, 217–233. [Google Scholar] [CrossRef]
- Haussler, M.R.; Whitfield, G.K.; Kaneko, I.; Haussler, C.A.; Hsieh, D.; Hsieh, J.-C.; Jurutka, P.W. Molecular Mechanisms of Vitamin D Action. Calcif. Tissue Int. 2013, 92, 77–98. [Google Scholar] [CrossRef]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef] [PubMed]
- Pike, J.W.; Meyer, M.B. Fundamentals of Vitamin D Hormone-Regulated Gene Expression. J. Steroid Biochem. Mol. Biol. 2014, 144, 5–11. [Google Scholar] [CrossRef]
- Voltan, G.; Cannito, M.; Ferrarese, M.; Ceccato, F.; Camozzi, V. Vitamin D: An Overview of Gene Regulation, Ranging from Metabolism to Genomic Effects. Genes 2023, 14, 1691. [Google Scholar] [CrossRef]
- Carlberg, C. Vitamin D and Its Target Genes. Nutrients 2022, 14, 1354. [Google Scholar] [CrossRef]
- Warwick, T.; Schulz, M.H.; Günther, S.; Gilsbach, R.; Neme, A.; Carlberg, C.; Brandes, R.P.; Seuter, S. A Hierarchical Regulatory Network Analysis of the Vitamin D Induced Transcriptome Reveals Novel Regulators and Complete VDR Dependency in Monocytes. Sci. Rep. 2021, 11, 6518. [Google Scholar] [CrossRef]
- Hii, C.S.; Ferrante, A. The Non-Genomic Actions of Vitamin D. Nutrients 2016, 8, 135. [Google Scholar] [CrossRef] [PubMed]
- Żmijewski, M.A. Nongenomic Activities of Vitamin D. Nutrients 2022, 14, 5104. [Google Scholar] [CrossRef] [PubMed]
- Zmijewski, M.A. Vitamin D and Human Health. Int. J. Mol. Sci. 2019, 20, 145. [Google Scholar] [CrossRef]
- Bikle, D.D. Extraskeletal Actions of Vitamin D. Ann. N. Y. Acad. Sci. 2016, 1376, 29–52. [Google Scholar] [CrossRef]
- Silva, I.C.J.; Lazaretti-Castro, M. Vitamin D Metabolism and Extraskeletal Outcomes: An Update. Arch. Endocrinol. Metab. 2022, 66, 748–755. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, L.; Xu, H.-J.; Li, Y.; Hu, C.-M.; Yang, J.-Y.; Sun, M.-Y. The Anti-Inflammatory Effects of Vitamin D in Tumorigenesis. Int. J. Mol. Sci. 2018, 19, 2736. [Google Scholar] [CrossRef]
- Krajewska, M.; Witkowska-Sędek, E.; Rumińska, M.; Stelmaszczyk-Emmel, A.; Sobol, M.; Majcher, A.; Pyrżak, B. Vitamin D Effects on Selected Anti-Inflammatory and Pro-Inflammatory Markers of Obesity-Related Chronic Inflammation. Front. Endocrinol. 2022, 13, 920340. [Google Scholar] [CrossRef] [PubMed]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef]
- Weydert, C.; Roling, B.; Liu, J.; Hinkhouse, M.M.; Ritchie, J.M.; Oberley, L.W.; Cullen, J.J. Suppression of the Malignant Phenotype in Human Pancreatic Cancer Cells by the Overexpression of Manganese Superoxide Dismutase. Mol. Cancer Ther. 2003, 2, 361–369. [Google Scholar]
- Cullen, J.J.; Weydert, C.; Hinkhouse, M.M.; Ritchie, J.; Domann, F.E.; Spitz, D.; Oberley, L.W. The Role of Manganese Superoxide Dismutase in the Growth of Pancreatic Adenocarcinoma. Cancer Res. 2003, 63, 1297–1303. [Google Scholar]
- Martinez-Useros, J.; Li, W.; Cabeza-Morales, M.; Garcia-Foncillas, J. Oxidative Stress: A New Target for Pancreatic Cancer Prognosis and Treatment. J. Clin. Med. 2017, 6, 29. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Zong, L.; Chen, X.; Chen, K.; Jiang, Z.; Nan, L.; Li, X.; Li, W.; Shan, T.; et al. Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer. Oxid. Med. Cell. Longev. 2016, 2016, 1616781. [Google Scholar] [CrossRef]
- Afanas’ev, I. Reactive Oxygen Species Signaling in Cancer: Comparison with Aging. Aging Dis. 2011, 2, 219–230. [Google Scholar]
- Vaquero, E.C.; Edderkaoui, M.; Pandol, S.J.; Gukovsky, I.; Gukovskaya, A.S. Reactive Oxygen Species Produced by NAD(P)H Oxidase Inhibit Apoptosis in Pancreatic Cancer Cells. J. Biol. Chem. 2004, 279, 34643–34654. [Google Scholar] [CrossRef]
- Jena, A.B.; Samal, R.R.; Bhol, N.K.; Duttaroy, A.K. Cellular Red-Ox System in Health and Disease: The Latest Update. Biomed. Pharmacother. 2023, 162, 114606. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.G.; Vatamaniuk, M.Z. Two Tales of Antioxidant Enzymes on β Cells and Diabetes. Antioxid. Redox Signal. 2011, 14, 489–503. [Google Scholar] [CrossRef] [PubMed]
- Ighodaro, O.M.; Akinloye, O.A. First Line Defence Antioxidants-Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione Peroxidase (GPX): Their Fundamental Role in the Entire Antioxidant Defence Grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Fukai, T.; Ushio-Fukai, M. Superoxide Dismutases: Role in Redox Signaling, Vascular Function, and Diseases. Antioxid. Redox Signal. 2011, 15, 1583–1606. [Google Scholar] [CrossRef]
- Pei, J.; Pan, X.; Wei, G.; Hua, Y. Research Progress of Glutathione Peroxidase Family (GPX) in Redoxidation. Front. Pharmacol. 2023, 14, 1147414. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Li, L.; Leung, P.S. Gracia-Sancho, J., Salvadó, J., Eds.; Chapter 13-Pancreatic Cancer, Pancreatitis, and Oxidative Stress. In Gastrointestinal Tissue; Academic Press: Cambridge, MA, USA, 2017; pp. 173–186. ISBN 978-0-12-805377-5. [Google Scholar]
- Weeden, C.E.; Hill, W.; Lim, E.L.; Grönroos, E.; Swanton, C. Impact of Risk Factors on Early Cancer Evolution. Cell 2023, 186, 1541–1563. [Google Scholar] [CrossRef] [PubMed]
- Seraphin, G.; Rieger, S.; Hewison, M.; Capobianco, E.; Lisse, T.S. The Impact of Vitamin D on Cancer: A Mini Review. J. Steroid Biochem. Mol. Biol. 2023, 231, 106308. [Google Scholar] [CrossRef]
- Evans, T.R.J.; Colston, K.W.; Lofts, F.J.; Cunningham, D.; Anthoney, D.A.; Gogas, H.; de Bono, J.S.; Hamberg, K.J.; Skov, T.; Mansi, J.L. A Phase II Trial of the Vitamin D Analogue Seocalcitol (EB1089) in Patients with Inoperable Pancreatic Cancer. Br. J. Cancer 2002, 86, 680–685. [Google Scholar] [CrossRef]
- Blanke, C.D.; Beer, T.M.; Todd, K.; Mori, M.; Stone, M.; Lopez, C. Phase II Study of Calcitriol-Enhanced Docetaxel in Patients with Previously Untreated Metastatic or Locally Advanced Pancreatic Cancer. Investig. New Drugs 2009, 27, 374–378. [Google Scholar] [CrossRef]
- Wang, K.; Dong, M.; Sheng, W.; Liu, Q.; Yu, D.; Dong, Q.; Li, Q.; Wang, J. Expression of Vitamin D Receptor as a Potential Prognostic Factor and Therapeutic Target in Pancreatic Cancer. Histopathology 2015, 67, 386–397. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Harbeck, N.; Jeschke, U.; Doisneau-Sixou, S. Influence of Vitamin D Signaling on Hormone Receptor Status and HER2 Expression in Breast Cancer. J. Cancer Res. Clin. Oncol. 2017, 143, 1107–1122. [Google Scholar] [CrossRef]
- Hummel, D.; Aggarwal, A.; Borka, K.; Bajna, E.; Kállay, E.; Horváth, H.C. The Vitamin D System Is Deregulated in Pancreatic Diseases. J. Steroid Biochem. Mol. Biol. 2014, 144, 402–409. [Google Scholar] [CrossRef]
- Almeida Moreira Leal, L.K.; Lima, L.A.; Alexandre de Aquino, P.E.; Costa de Sousa, J.A.; Jataí Gadelha, C.V.; Felício Calou, I.B.; Pereira Lopes, M.J.; Viana Lima, F.A.; Tavares Neves, K.R.; Matos de Andrade, G.; et al. Vitamin D (VD3) Antioxidative and Anti-Inflammatory Activities: Peripheral and Central Effects. Eur. J. Pharmacol. 2020, 879, 173099. [Google Scholar] [CrossRef]
- Sepidarkish, M.; Farsi, F.; Akbari-Fakhrabadi, M.; Namazi, N.; Almasi-Hashiani, A.; Maleki Hagiagha, A.; Heshmati, J. The Effect of Vitamin D Supplementation on Oxidative Stress Parameters: A Systematic Review and Meta-Analysis of Clinical Trials. Pharmacol. Res. 2019, 139, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Della Nera, G.; Sabatino, L.; Gaggini, M.; Gorini, F.; Vassalle, C. Vitamin D Determinants, Status, and Antioxidant/Anti-Inflammatory-Related Effects in Cardiovascular Risk and Disease: Not the Last Word in the Controversy. Antioxidants 2023, 12, 948. [Google Scholar] [CrossRef]
- Russo, C.; Valle, M.S.; Malaguarnera, L. Antioxidative Effects of Vitamin D in Muscle Dysfunction. Redox Exp. Med. 2023, 2023, e230013. [Google Scholar] [CrossRef]
- Teoh, M.L.T.; Sun, W.; Smith, B.J.; Oberley, L.W.; Cullen, J.J. Modulation of Reactive Oxygen Species in Pancreatic Cancer. Clin. Cancer Res. 2007, 13, 7441–7450. [Google Scholar] [CrossRef]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A Simple Technique for Quantitation of Low Levels of DNA Damage in Individual Cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Klaude, M.; Eriksson, S.; Nygren, J.; Ahnström, G. The Comet Assay: Mechanisms and Technical Considerations. Mutat. Res. 1996, 363, 89–96. [Google Scholar] [CrossRef]
- Blasiak, J.; Gloc, E.; Drzewoski, J.; Wozniak, K.; Zadrozny, M.; Skórski, T.; Pertynski, T. Free Radical Scavengers Can Differentially Modulate the Genotoxicity of Amsacrine in Normal and Cancer Cells. Mutat. Res. 2003, 535, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Pedre, B.; Barayeu, U.; Ezeriņa, D.; Dick, T.P. The Mechanism of Action of N-Acetylcysteine (NAC): The Emerging Role of H2S and Sulfane Sulfur Species. Pharmacol. Ther. 2021, 228, 107916. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Yu, B.; Shao, S.; Ma, W. Frontiers in Pancreatic Cancer on Biomarkers, Microenvironment, and Immunotherapy. Cancer Lett. 2025, 610, 217350. [Google Scholar] [CrossRef]
- Koren, R.; Hadari-Naor, I.; Zuck, E.; Rotem, C.; Liberman, U.A.; Ravid, A. Vitamin D Is a Prooxidant in Breast Cancer Cells. Cancer Res. 2001, 61, 1439–1444. [Google Scholar]
- Somjen, D.; Katzburg, S.; Knoll, E.; Sharon, O.; Posner, G.H.; Stern, N. Vitamin D Analogs Induce Lipoxygenase mRNA Expression and Activity as Well as Reactive Oxygen Species (ROS) Production in Human Bone Cells. J. Steroid Biochem. Mol. Biol. 2010, 121, 265–267. [Google Scholar] [CrossRef]
- Eftekhari, M.H.; Akbarzadeh, M.; Dabbaghmanesh, M.H.; Hassanzadeh, J. The Effect of Calcitriol on Lipid Profile and Oxidative Stress in Hyperlipidemic Patients with Type 2 Diabetes Mellitus. ARYA Atheroscler. 2014, 10, 82–88. [Google Scholar] [PubMed]
- Hamden, K.; Carreau, S.; Jamoussi, K.; Miladi, S.; Lajmi, S.; Aloulou, D.; Ayadi, F.; Elfeki, A. 1Alpha,25 Dihydroxyvitamin D3: Therapeutic and Preventive Effects against Oxidative Stress, Hepatic, Pancreatic and Renal Injury in Alloxan-Induced Diabetes in Rats. J. Nutr. Sci. Vitaminol. 2009, 55, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Chwa, M.; Shao, Z.; Atilano, S.; Park, J.Y.; Karageozian, H.; Karageozian, V.; Kenney, M.C. Cell Viability and Transcriptome Changes Associated with Hydrogen Peroxide and Risuteganib Exposure in Human Retinal Cells In Vitro. Investig. Ophthalmol. Vis. Sci. 2021, 62, 3000. [Google Scholar]
- Park, W.H. H2O2 Inhibits the Growth of Human Pulmonary Fibroblast Cells by Inducing Cell Death, GSH Depletion and G1 Phase Arrest. Mol. Med. Rep. 2013, 7, 1235–1240. [Google Scholar] [CrossRef]
- Park, W.H. The Effects of Exogenous H2O2 on Cell Death, Reactive Oxygen Species and Glutathione Levels in Calf Pulmonary Artery and Human Umbilical Vein Endothelial Cells. Int. J. Mol. Med. 2013, 31, 471–476. [Google Scholar] [CrossRef]
- Konyalilar, N.; Yıldız, A.B.; Yazıcı, D.; Bayram, H. Effects of Hydrogen Peroxide and Butyrate on A549 Cell Viability and Permeability. Eur. Respir. J. 2019, 54, PA2402. [Google Scholar] [CrossRef]
- Anasooya Shaji, C.; Robinson, B.D.; Yeager, A.; Beeram, M.R.; Davis, M.L.; Isbell, C.L.; Huang, J.H.; Tharakan, B. The Tri-Phasic Role of Hydrogen Peroxide in Blood-Brain Barrier Endothelial Cells. Sci. Rep. 2019, 9, 133. [Google Scholar] [CrossRef]
- Luo, Y.; Wen, X.; Wang, L.; Gao, J.; Wang, Z.; Zhang, C.; Zhang, P.; Lu, C.; Duan, L.; Tian, Y. Identification of MicroRNAs Involved in Growth Arrest and Apoptosis in Hydrogen Peroxide-Treated Human Hepatocellular Carcinoma Cell Line HepG2. Oxid. Med. Cell. Longev. 2016, 2016, 7530853. [Google Scholar] [CrossRef]
- Nogueira-Pedro, A.; Cesário, T.A.M.; Dias, C.C.; Origassa, C.S.T.; Eça, L.P.M.; Paredes-Gamero, E.J.; Ferreira, A.T. Hydrogen Peroxide (H2O2) Induces Leukemic but Not Normal Hematopoietic Cell Death in a Dose-Dependent Manner. Cancer Cell Int. 2013, 13, 123. [Google Scholar] [CrossRef] [PubMed]
- Sliwinska, A.; Rogalska, A.; Szwed, M.; Kasznicki, J.; Jozwiak, Z.; Drzewoski, J. Gliclazide May Have an Antiapoptotic Effect Related to Its Antioxidant Properties in Human Normal and Cancer Cells. Mol. Biol. Rep. 2012, 39, 5253–5267. [Google Scholar] [CrossRef]
- Tohari, A.M.; Zhou, X.; Shu, X. Protection against Oxidative Stress by Vitamin D in Cone Cells. Cell Biochem. Funct. 2016, 34, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Rogers, C.S.; Yedjou, C.G.; Sutton, D.J.; Tchounwou, P.B. Vitamin D3 Potentiates the Antitumorigenic Effects of Arsenic Trioxide in Human Leukemia (HL-60) Cells. Exp. Hematol. Oncol. 2014, 3, 9. [Google Scholar] [CrossRef]
- Piatek, K.; Kutner, A.; Cacsire Castillo-Tong, D.; Manhardt, T.; Kupper, N.; Nowak, U.; Chodyński, M.; Marcinkowska, E.; Kallay, E.; Schepelmann, M. Vitamin D Analogs Regulate the Vitamin D System and Cell Viability in Ovarian Cancer Cells. Int. J. Mol. Sci. 2021, 23, 172. [Google Scholar] [CrossRef]
- Bajbouj, K.; Sahnoon, L.; Shafarin, J.; Al-Ali, A.; Muhammad, J.S.; Karim, A.; Guraya, S.Y.; Hamad, M. Vitamin D-Mediated Anti-Cancer Activity Involves Iron Homeostatic Balance Disruption and Oxidative Stress Induction in Breast Cancer. Front. Cell Dev. Biol. 2021, 9, 766978. [Google Scholar] [CrossRef]
- Lisse, T.S. Vitamin D Regulation of a SOD1-to-SOD2 Antioxidative Switch to Prevent Bone Cancer. Appl. Sci. 2020, 10, 2554. [Google Scholar] [CrossRef]
- Varghese, J.E.; Shanmugam, V.; Rengarajan, R.L.; Meyyazhagan, A.; Arumugam, V.A.; Al-Misned, F.A.; El-Serehy, H.A. Role of Vitamin D3 on Apoptosis and Inflammatory-Associated Gene in Colorectal Cancer: An in Vitro Approach. J. King Saud Univ. -Sci. 2020, 32, 2786–2789. [Google Scholar] [CrossRef]
- Cataldi, S.; Ceccarini, M.R.; Patria, F.; Beccari, T.; Mandarano, M.; Ferri, I.; Lazzarini, A.; Curcio, F.; Albi, E. The Effect of Vitamin D3 and Silver Nanoparticles on HaCaT Cell Viability. Int. J. Mol. Sci. 2022, 23, 1410. [Google Scholar] [CrossRef]
- Tohari, A.M.; Alhasani, R.H.; Biswas, L.; Patnaik, S.R.; Reilly, J.; Zeng, Z.; Shu, X. Vitamin D Attenuates Oxidative Damage and Inflammation in Retinal Pigment Epithelial Cells. Antioxidants 2019, 8, 341. [Google Scholar] [CrossRef]
- Abdul Wahab, S.M.; Abd Hamid, Z.; Mathialagan, R.D.; Taib, I.S. Effect of N-Acetylcysteine Supplementation on Oxidative Stress-Mediated Cryoinjury of Bone Marrow Derived-Hematopoietic Stem Cells. Sains Malays. 2019, 48, 1937–1946. [Google Scholar] [CrossRef]
- Kim, G.-H.; Song, D.-K.; Cho, C.-H.; Yoo, S.K.; Kim, D.-K.; Park, G.-Y.; Suh, S.; Jang, B.-C.; Lim, J.-G. Muscular Cell Proliferative and Protective Effects of N-Acetylcysteine by Modulating Activity of Extracellular Signal-Regulated Protein Kinase. Life Sci. 2006, 79, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Calvo, R.; Espinosa, M.; Figueroa, D.; Pozo, L.M.; Conget, P. Assessment of Cell Viability of Fresh Osteochondral Allografts in N-Acetylcysteine-Enriched Medium. Cartilage 2020, 11, 117–121. [Google Scholar] [CrossRef]
- Yu, Z.; Yu, K.; Wu, S.; Zhao, Q.; Guo, Y.; Liu, H.; Huang, X. Two Contradictory Facades of N-Acetylcysteine Activity towards Renal Carcinoma Cells. J. Taibah Univ. Sci. 2022, 16, 423–431. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, K.; Wang, N.; Zhang, H. N-acetylcysteine Induces Apoptosis via the Mitochondria-dependent Pathway but Not via Endoplasmic Reticulum Stress in H9c2 Cells. Mol. Med. Rep. 2017, 16, 6626–6633. [Google Scholar] [CrossRef]
- Jurkowska, H.; Wróbel, M. Inhibition of Human Neuroblastoma Cell Proliferation by N-Acetyl-L-Cysteine as a Result of Increased Sulfane Sulfur Level. Anticancer Res. 2018, 38, 5109–5113. [Google Scholar] [CrossRef]
- Mitsopoulos, P.; Suntres, Z.E. Protective Effects of Liposomal N-Acetylcysteine against Paraquat-Induced Cytotoxicity and Gene Expression. J. Toxicol. 2011, 2011, 808967. [Google Scholar] [CrossRef]
- Liao, C.-Y.; Wu, T.-C.; Yang, S.-F.; Chang, J.T. Effects of NAC and Gallic Acid on the Proliferation Inhibition and Induced Death of Lung Cancer Cells with Different Antioxidant Capacities. Molecules 2021, 27, 75. [Google Scholar] [CrossRef]
- Piotrowska, A.; Wierzbicka, J.; Ślebioda, T.; Woźniak, M.; Tuckey, R.C.; Slominski, A.T.; Żmijewski, M.A. Vitamin D Derivatives Enhance Cytotoxic Effects of H2O2 or Cisplatin on Human Keratinocytes. Steroids 2016, 110, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Tosi, G.M.; Giustarini, D.; Franci, L.; Minetti, A.; Imperatore, F.; Caldi, E.; Fiorenzani, P.; Aloisi, A.M.; Sparatore, A.; Rossi, R.; et al. Superior Properties of N-Acetylcysteine Ethyl Ester over N-Acetyl Cysteine to Prevent Retinal Pigment Epithelial Cells Oxidative Damage. Int. J. Mol. Sci. 2021, 22, 600. [Google Scholar] [CrossRef]
- Liu, X.; Wang, L.; Cai, J.; Liu, K.; Liu, M.; Wang, H.; Zhang, H. N-Acetylcysteine Alleviates H2O2-Induced Damage via Regulating the Redox Status of Intracellular Antioxidants in H9c2 Cells. Int. J. Mol. Med. 2019, 43, 199–208. [Google Scholar] [CrossRef]
- Ali, F.; Khan, M.; Khan, S.N.; Riazuddin, S. N-Acetyl Cysteine Protects Diabetic Mouse Derived Mesenchymal Stem Cells from Hydrogen-Peroxide-Induced Injury: A Novel Hypothesis for Autologous Stem Cell Transplantation. J. Chin. Med. Assoc. JCMA 2016, 79, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Terluk, M.R.; Basso, L.; Mishra, U.R.; Orchard, P.J.; Cloyd, J.C.; Schröder, H.; Kartha, R.V. N-Acetylcysteine Provides Cytoprotection in Murine Oligodendrocytes through Heme Oxygenase-1 Activity. Biomedicines 2020, 8, 240. [Google Scholar] [CrossRef]
- Terluk, M.R.; Ebeling, M.C.; Fisher, C.R.; Kapphahn, R.J.; Yuan, C.; Kartha, R.V.; Montezuma, S.R.; Ferrington, D.A. N-Acetyl-L-Cysteine Protects Human Retinal Pigment Epithelial Cells from Oxidative Damage: Implications for Age-Related Macular Degeneration. Oxid. Med. Cell. Longev. 2019, 2019, 5174957. [Google Scholar] [CrossRef]
- Wu, W.; Liu, B.-H.; Xie, C.-L.; Xia, X.-D.; Zhang, Y.-M. Neuroprotective Effects of N-Acetyl Cysteine on Primary Hippocampus Neurons against Hydrogen Peroxide-Induced Injury Are Mediated via Inhibition of Mitogen-Activated Protein Kinases Signal Transduction and Antioxidative Action. Mol. Med. Rep. 2018, 17, 6647–6654. [Google Scholar] [CrossRef]
- Berridge, M.J. Vitamin D Cell Signalling in Health and Disease. Biochem. Biophys. Res. Commun. 2015, 460, 53–71. [Google Scholar] [CrossRef] [PubMed]
- Nair-Shalliker, V.; Armstrong, B.K.; Fenech, M. Does Vitamin D Protect against DNA Damage? Mutat. Res. 2012, 733, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Nakai, K.; Fujii, H.; Kono, K.; Goto, S.; Kitazawa, R.; Kitazawa, S.; Hirata, M.; Shinohara, M.; Fukagawa, M.; Nishi, S. Vitamin D Activates the Nrf2-Keap1 Antioxidant Pathway and Ameliorates Nephropathy in Diabetic Rats. Am. J. Hypertens. 2014, 27, 586–595. [Google Scholar] [CrossRef]
- Vázquez-Lorente, H.; Herrera-Quintana, L.; Jiménez-Sánchez, L.; Fernández-Perea, B.; Plaza-Diaz, J. Antioxidant Functions of Vitamin D and CYP11A1-Derived Vitamin D, Tachysterol, and Lumisterol Metabolites: Mechanisms, Clinical Implications, and Future Directions. Antioxidants 2024, 13, 996. [Google Scholar] [CrossRef]
- Maltese, G.; Psefteli, P.-M.; Rizzo, B.; Srivastava, S.; Gnudi, L.; Mann, G.E.; Siow, R.C.M. The Anti-Ageing Hormone Klotho Induces Nrf2-Mediated Antioxidant Defences in Human Aortic Smooth Muscle Cells. J. Cell. Mol. Med. 2017, 21, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Kállay, E.; Bareis, P.; Bajna, E.; Kriwanek, S.; Bonner, E.; Toyokuni, S.; Cross, H.S. Vitamin D Receptor Activity and Prevention of Colonic Hyperproliferation and Oxidative Stress. Food Chem. Toxicol. 2002, 40, 1191–1196. [Google Scholar] [CrossRef]
- Fedirko, V.; Bostick, R.M.; Long, Q.; Flanders, W.D.; McCullough, M.L.; Sidelnikov, E.; Daniel, C.R.; Rutherford, R.E.; Shaukat, A. Effects of Supplemental Vitamin D and Calcium on Oxidative DNA Damage Marker in Normal Colorectal Mucosa: A Randomized Clinical Trial. Cancer Epidemiol. Biomark. Prev. 2010, 19, 280–291. [Google Scholar] [CrossRef]
- Wenclewska, S.; Szymczak-Pajor, I.; Drzewoski, J.; Bunk, M.; Śliwińska, A. Vitamin D Supplementation Reduces Both Oxidative DNA Damage and Insulin Resistance in the Elderly with Metabolic Disorders. Int. J. Mol. Sci. 2019, 20, 2891. [Google Scholar] [CrossRef]
- Graziano, S.; Johnston, R.; Deng, O.; Zhang, J.; Gonzalo, S. Vitamin D/Vitamin D Receptor Axis Regulates DNA Repair during Oncogene-Induced Senescence. Oncogene 2016, 35, 5362–5376. [Google Scholar] [CrossRef]
- Zentout, S.; Smith, R.; Jacquier, M.; Huet, S. New Methodologies to Study DNA Repair Processes in Space and Time Within Living Cells. Front. Cell Dev. Biol. 2021, 9, 730998. [Google Scholar] [CrossRef] [PubMed]
- Peehl, D.M.; Shinghal, R.; Nonn, L.; Seto, E.; Krishnan, A.V.; Brooks, J.D.; Feldman, D. Molecular Activity of 1,25-Dihydroxyvitamin D3 in Primary Cultures of Human Prostatic Epithelial Cells Revealed by cDNA Microarray Analysis. J. Steroid Biochem. Mol. Biol. 2004, 92, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Swami, S.; Raghavachari, N.; Muller, U.R.; Bao, Y.P.; Feldman, D. Vitamin D Growth Inhibition of Breast Cancer Cells: Gene Expression Patterns Assessed by cDNA Microarray. Breast Cancer Res. Treat. 2003, 80, 49–62. [Google Scholar] [CrossRef]
- Lambert, J.R.; Kelly, J.A.; Shim, M.; Huffer, W.E.; Nordeen, S.K.; Baek, S.J.; Eling, T.E.; Lucia, M.S. Prostate Derived Factor in Human Prostate Cancer Cells: Gene Induction by Vitamin D via a P53-Dependent Mechanism and Inhibition of Prostate Cancer Cell Growth. J. Cell. Physiol. 2006, 208, 566–574. [Google Scholar] [CrossRef]
- Rathor, R.; Suryakumar, G. Exploring miRNA Function in Maintaining Redox Mechanism of High Altitude Hypoxia Associated Maladies: An Evidence Based Study. Adv. Redox Res. 2024, 11, 100103. [Google Scholar] [CrossRef]
- Zhao, H.; Forcellati, M.; Buschittari, D.; Heckel, J.E.; Machado, C.J.; Ramulu, N.; Pullagura, S.; Lisse, T.S. Hewison, M., Bouillon, R., Giovannucci, E., Goltzman, D., Meyer, M., Welsh, J., Eds.; Chapter 14-Vitamin D and microRNAs. In Feldman and Pike’ s Vitamin D, 5th ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 261–290. ISBN 978-0-323-91386-7. [Google Scholar]
- Zhao, S.; Mao, L.; Wang, S.-G.; Chen, F.-L.; Ji, F.; Fei, H.-D. MicroRNA-200a Activates Nrf2 Signaling to Protect Osteoblasts from Dexamethasone. Oncotarget 2017, 8, 104867–104876. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Ahmadi, Z.; Samarghandian, S.; Mohammadinejad, R.; Yaribeygi, H.; Sathyapalan, T.; Sahebkar, A. MicroRNA-Mediated Regulation of Nrf2 Signaling Pathway: Implications in Disease Therapy and Protection against Oxidative Stress. Life Sci. 2020, 244, 117329. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kang, M.-I.; Okawa, H.; Ohtsuji, M.; Zenke, Y.; Chiba, T.; Igarashi, K.; Yamamoto, M. Oxidative Stress Sensor Keap1 Functions as an Adaptor for Cul3-Based E3 Ligase to Regulate Proteasomal Degradation of Nrf2. Mol. Cell. Biol. 2004, 24, 7130–7139. [Google Scholar] [CrossRef]
- Zhang, M.; An, C.; Gao, Y.; Leak, R.K.; Chen, J.; Zhang, F. Emerging Roles of Nrf2 and Phase II Antioxidant Enzymes in Neuroprotection. Prog. Neurobiol. 2013, 100, 30–47. [Google Scholar] [CrossRef]
- Batliwala, S.; Xavier, C.; Liu, Y.; Wu, H.; Pang, I.-H. Involvement of Nrf2 in Ocular Diseases. Oxid. Med. Cell. Longev. 2017, 2017, 1703810. [Google Scholar] [CrossRef] [PubMed]
- Middleton, R.P.; Nelson, R.; Li, Q.; Blanton, A.; Labuda, J.A.; Vitt, J.; Inpanbutr, N. 1,25-Dihydroxyvitamin D3 and Its Analogues Increase Catalase at the mRNA, Protein and Activity Level in a Canine Transitional Carcinoma Cell Line. Vet. Comp. Oncol. 2015, 13, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Banakar, M.C.; Paramasivan, S.K.; Chattopadhyay, M.B.; Datta, S.; Chakraborty, P.; Chatterjee, M.; Kannan, K.; Thygarajan, E. 1alpha, 25-Dihydroxyvitamin D3 Prevents DNA Damage and Restores Antioxidant Enzymes in Rat Hepatocarcinogenesis Induced by Diethylnitrosamine and Promoted by Phenobarbital. World J. Gastroenterol. 2004, 10, 1268–1275. [Google Scholar] [CrossRef]
- AlJohri, R.; AlOkail, M.; Haq, S.H. Neuroprotective Role of Vitamin D in Primary Neuronal Cortical Culture. eNeurologicalSci 2019, 14, 43–48. [Google Scholar] [CrossRef]
- Bhat, M.; Ismail, A. Vitamin D Treatment Protects against and Reverses Oxidative Stress Induced Muscle Proteolysis. J. Steroid Biochem. Mol. Biol. 2015, 152, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Saif-Elnasr, M.; Ibrahim, I.M.; Alkady, M.M. Role of Vitamin D on Glycemic Control and Oxidative Stress in Type 2 Diabetes Mellitus. J. Res. Med. Sci. 2017, 22, 22. [Google Scholar] [CrossRef]
- Sánchez-Virosta, P.; Espín, S.; Ruiz, S.; Stauffer, J.; Kanerva, M.; García-Fernández, A.J.; Eeva, T. Effects of Calcium Supplementation on Oxidative Status and Oxidative Damage in Great Tit Nestlings Inhabiting a Metal-Polluted Area. Environ. Res. 2019, 171, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Szlacheta, Z.; Wąsik, M.; Machoń-Grecka, A.; Kasperczyk, A.; Dobrakowski, M.; Bellanti, F.; Szlacheta, P.; Kasperczyk, S. Potential Antioxidant Activity of Calcium and Selected Oxidative Stress Markers in Lead- and Cadmium-Exposed Workers. Oxid. Med. Cell. Longev. 2020, 2020, 8035631. [Google Scholar] [CrossRef] [PubMed]
- Taneera, J.; Yaseen, D.; Youssef, M.; Khalique, A.; Al Shehadat, O.S.; Mohammed, A.K.; Bustanji, Y.; Madkour, M.I.; El-Huneidi, W. Vitamin D Augments Insulin Secretion via Calcium Influx and Upregulation of Voltage Calcium Channels: Findings from INS-1 Cells and Human Islets. Mol. Cell. Endocrinol. 2025, 599, 112472. [Google Scholar] [CrossRef]
- Bittiner, B.; Bleehen, S.S.; Macneil, S. 1α,25(OH)2 Vitamin D3 Increases Intracellular Calcium in Human Keratinocytes. Br. J. Dermatol. 1991, 124, 230–235. [Google Scholar] [CrossRef]
- Alatawi, F.S.; Faridi, U.A.; Alatawi, M.S. Effect of Treatment with Vitamin D plus Calcium on Oxidative Stress in Streptozotocin-Induced Diabetic Rats. Saudi Pharm. J. 2018, 26, 1208–1213. [Google Scholar] [CrossRef]
- Giorello, M.B.; Borzone, F.R.; Labovsky, V.; Piccioni, F.V.; Chasseing, N.A. Cancer-Associated Fibroblasts in the Breast Tumor Microenvironment. J. Mammary Gland Biol. Neoplasia 2021, 26, 135–155. [Google Scholar] [CrossRef]
- Brichkina, A.; Polo, P.; Sharma, S.D.; Visestamkul, N.; Lauth, M. A Quick Guide to CAF Subtypes in Pancreatic Cancer. Cancers 2023, 15, 2614. [Google Scholar] [CrossRef]
- Łabędź, N.; Anisiewicz, A.; Stachowicz-Suhs, M.; Banach, J.; Kłopotowska, D.; Maciejczyk, A.; Gazińska, P.; Piotrowska, A.; Dzięgiel, P.; Matkowski, R.; et al. Dual Effect of Vitamin D3 on Breast Cancer-Associated Fibroblasts. BMC Cancer 2024, 24, 209. [Google Scholar] [CrossRef]
- Li, H.; Ruan, Y.; Liu, C.; Fan, X.; Yao, Y.; Dai, Y.; Song, Y.; Jiang, D.; Sun, N.; Jiao, G.; et al. VDR Promotes Pancreatic Cancer Progression in Vivo by Activating CCL20-Mediated M2 Polarization of Tumor Associated Macrophage. Cell Commun. Signal. CCS 2024, 22, 224. [Google Scholar] [CrossRef] [PubMed]
- Gradiz, R.; Silva, H.C.; Carvalho, L.; Botelho, M.F.; Mota-Pinto, A. MIA PaCa-2 and PANC-1 - Pancreas Ductal Adenocarcinoma Cell Lines with Neuroendocrine Differentiation and Somatostatin Receptors. Sci. Rep. 2016, 6, 21648. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymczak-Pajor, I.; Antanaviciute, E.M.; Drzewoski, J.; Majsterek, I.; Śliwińska, A. Vitamin D Protects Pancreatic Cancer (PC) Cells from Death and DNA Damage Induced by Oxidative Stress. Antioxidants 2025, 14, 1101. https://doi.org/10.3390/antiox14091101
Szymczak-Pajor I, Antanaviciute EM, Drzewoski J, Majsterek I, Śliwińska A. Vitamin D Protects Pancreatic Cancer (PC) Cells from Death and DNA Damage Induced by Oxidative Stress. Antioxidants. 2025; 14(9):1101. https://doi.org/10.3390/antiox14091101
Chicago/Turabian StyleSzymczak-Pajor, Izabela, Egle Morta Antanaviciute, Józef Drzewoski, Ireneusz Majsterek, and Agnieszka Śliwińska. 2025. "Vitamin D Protects Pancreatic Cancer (PC) Cells from Death and DNA Damage Induced by Oxidative Stress" Antioxidants 14, no. 9: 1101. https://doi.org/10.3390/antiox14091101
APA StyleSzymczak-Pajor, I., Antanaviciute, E. M., Drzewoski, J., Majsterek, I., & Śliwińska, A. (2025). Vitamin D Protects Pancreatic Cancer (PC) Cells from Death and DNA Damage Induced by Oxidative Stress. Antioxidants, 14(9), 1101. https://doi.org/10.3390/antiox14091101