Synthesis, Characterization, Antioxidant Activity, Antibacterial Activity, and Cytotoxicity of Quaternized Inulin Derivatives Bearing Aromatic Amides
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Reagents
2.1.2. Bacterial Strains and Cell Line
2.2. Chemical Synthesis
2.2.1. Preparation of Anionic Aromatic Amides
2.2.2. Preparation of QIL
2.2.3. Preparation of QIL Derivatives Bearing Aromatic Amide
2.3. Characterization of Native Inulin and Inulin Derivatives
2.3.1. FTIR (Fourier-Transform Infrared) Spectroscopy
2.3.2. 1H NMR (Nuclear Magnetic Resonance) Spectroscopy
2.3.3. Degrees of Substitution (DS)
2.4. Antioxidant Assays
2.4.1. Hydroxyl Radical Scavenging Assay
2.4.2. DPPH Radical Scavenging Assay
2.4.3. Superoxide Radical Scavenging Assay
2.5. Antibacterial Assay
2.5.1. Preparation of Sample Solutions
2.5.2. Minimum Inhibitory Concentration (MIC) and Minimum Biocidal Concentration (MBC) Assay
2.6. Cytotoxicity Assay
2.7. Statistical Analysis
3. Results
3.1. Characterization of Native Inulin, QIL, and QIL Derivatives
3.2. Yields and DS Analysis
3.3. Antioxidant Activity
3.3.1. Hydroxyl Radical Scavenging Activity
3.3.2. DPPH Radical Scavenging Activity
3.3.3. Superoxide Radical Scavenging Activity
3.4. Antibacterial Activity
3.5. Cytotoxicity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CCK-8 | cell counting kit-8 |
DP | degree of polymerization |
CHPTAC | (3-chloro-2-hydroxypropyl) trimethylammonium chloride |
QIL | quaternized inulin |
EDTA-2Na | disodium ethylenediaminetetraacetate |
NBT | nitrotetrazolium blue chloride |
Tris | tris(hydroxymethyl)aminomethane |
PMS | phenazine methosulfate |
NADH | nicotinamide adenine dinucleotide |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
CDI | carbonyldiimidazole |
DMSO | dimethyl sulfoxide |
RT | room temperature |
MWCO | molecular weight cutoff |
FTIR | Fourier-transform infrared |
TMS | tetramethyl silane |
NMR | nuclear magnetic resonance |
AFU | anhydrofructose units |
VC | Vitamin C |
MIC | minimum inhibitory concentration |
MBC | minimum biocidal concentration |
ROS | reactive oxygen species |
HAT | hydrogen-atom-transfer |
ET | electron transfer |
FDA | Food and Drug Administration |
RPMI | Roswell Park Memorial Institute |
References
- George, E.M.; Gannabathula, S.; Lakshitha, R.; Liu, Y.; Kantono, K.; Hamid, N. Antibacterial properties, arabinogalactan proteins, and bioactivities of New Zealand honey. Antioxidants 2025, 14, 375. [Google Scholar] [CrossRef] [PubMed]
- Kong, A.S.-Y.; Maran, S.; Yap, P.S.-X.; Lim, S.-H.E.; Yang, S.-K.; Cheng, W.-H.; Tan, Y.-H.; Lai, K.-S. Anti- and pro-oxidant properties of essential oils against antimicrobial resistance. Antioxidants 2022, 11, 1819. [Google Scholar] [CrossRef]
- Zhang, R.; Mao, D.; Fu, Y.; Ju, R.; Wei, G. A self-assembled and H2O2-activatable hybrid nanoprodrug for lung infection and wound healing therapy. Theranostics 2025, 15, 5953–5968. [Google Scholar] [CrossRef]
- Arifuzzaman, M.; Won, T.H.; Li, T.T.; Yano, H.; Digumarthi, S.; Heras, A.F.; Zhang, W.; Parkhurst, C.N.; Kashyap, S.; Jin, W.B.; et al. Inulin fibre promotes microbiota-derived bile acids and type 2 inflammation. Nature 2022, 611, 578–584. [Google Scholar] [CrossRef]
- Han, K.Y.; Li, S.S.; Yang, Y.L.; Feng, X.; Tang, X.Z.; Chen, Y.M. Mechanisms of inulin addition affecting the properties of chicken myofibrillar protein gel. Food Hydrocoll. 2022, 131, 107843. [Google Scholar] [CrossRef]
- Hou, Y.; Jin, J.Z.; Duan, H.X.; Liu, C.; Chen, L.Q.; Huang, W.; Jin, M.J. Targeted therapeutic effects of oral inulin-modified double-layered nanoparticles containing chemotherapeutics on orthotopic colon cancer. Biomaterials 2022, 283, 121440. [Google Scholar] [CrossRef]
- Gruskiene, R.; Lavelli, V.; Sereikaite, J. Application of inulin for the formulation and delivery of bioactive molecules and live cells. Carbohydr. Polym. 2024, 327, 121670. [Google Scholar] [CrossRef] [PubMed]
- Hufnagel, B.; Muellner, V.; Hlatky, K.; Tallian, C.; Vielnascher, R.; Guebitz, G.M.; Wirth, M.; Gabor, M. Chemically modified inulin for intestinal drug delivery—A new dual bioactivity concept for inflammatory bowel disease treatment. Carbohydr. Polym. 2021, 252, 117091. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, J.; Yu, C.; Li, Q.; Dong, F.; Wang, G.; Guo, Z. Synthesis, characterization, and antioxidant properties of novel inulin derivatives with amino-pyridine group. Int. J. Biol. Macromol. 2014, 70, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, H.; Chen, Q.; Mi, Y.; Guo, Z. Synthesis and characterization of novel carboxymethyl inulin derivatives bearing cationic Schiff bases with antioxidant potential. Int. J. Biol. Macromol. 2024, 275, 133761. [Google Scholar] [CrossRef]
- Yang, Y.; Tan, W.; Zhang, J.; Guo, Z.; Jiang, A.; Li, Q. Novel coumarin-functionalized inulin derivatives: Chemical modification and antioxidant activity assessment. Carbohydr. Res. 2022, 518, 108597. [Google Scholar] [CrossRef]
- Wei, L.; Sui, H.; Zhang, J.; Guo, Z. Synthesis and antioxidant activity of the inulin derivative bearing 1,2,3-triazole and diphenyl phosphate. Int. J. Biol. Macromol. 2021, 186, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Zhu, Y.; Wang, X.; Peng, H.; Wang, Z.; Yue, C.; Wang, L.; Bai, Z.; Li, P.; Luo, D. Study of the structural characterization, physicochemical properties and antioxidant activities of phosphorylated long-chain inulin with different degrees of substitution. Int. J. Biol. Macromol. 2024, 263, 130139. [Google Scholar] [CrossRef]
- Tan, W.; Li, Y.; Guo, X.; Wei, L.; Duan, J.; Qi, Z.; Yuan, Y.; Chen, Q.; Guo, Z. Enhanced ultraviolet barrier, antioxidant and antibacterial properties of chitosan-based films incorporated with caffeic acid-grafted inulin for strawberry preservation. Food Chem. X 2025, 29, 102811. [Google Scholar] [CrossRef]
- Hevira, L.; Ighalo, J.O.; Sondari, D. Chitosan-based polysaccharides for effective synthetic dye adsorption. J. Mol. Liq. 2024, 393, 123604. [Google Scholar] [CrossRef]
- Yang, H.; Wu, K.; Zhu, J.; Lin, Y.; Ma, X.; Cao, Z.; Ma, W.; Gong, F.; Liu, C.; Pan, J. Highly efficient and selective removal of anionic dyes from aqueous solutions using polyacrylamide/peach gum polysaccharide/attapulgite composite hydrogels with positively charged hybrid network. Int. J. Biol. Macromol. 2024, 266, 131213. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mahmood, S.; Hilles, A.R.; Thomas, S.; Roy, S.; Provaznik, V.; Romero, E.L.; Ghosal, K. Cationic starch: A functionalized polysaccharide-based polymer for advancement of drug delivery and health care system—A review. Int. J. Biol. Macromol. 2023, 248, 125757. [Google Scholar] [CrossRef]
- Nirmal, N.; Demir, D.; Ceylan, S.; Ahmad, S.; Goksen, G.; Koirala, P.; Bono, G. Polysaccharides from shell waste of shellfish and their applications in the cosmeceutical industry: A review. Int. J. Biol. Macromol. 2024, 265, 131119. [Google Scholar] [CrossRef]
- Sood, A.; Gupta, A.; Agrawal, G. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydr. Polym. Technol. Appl. 2021, 2, 100067. [Google Scholar] [CrossRef]
- Rahul, R.; Kumar, S.; Jha, U.; Sen, G. Cationic inulin: A plant based natural biopolymer for algal biomass harvesting. Int. J. Biol. Macromol. 2015, 72, 868–874. [Google Scholar] [CrossRef]
- Amjadi, S.; Almasi, H.; Hamishehkar, H.; Khaledabad, M.A.; Lim, L.T. Coating of betanin and carvone Co-loaded nanoliposomes with synthesized cationic inulin: A strategy for enhancing the stability and bioavailability. Food Chem. 2022, 373, 131403. [Google Scholar] [CrossRef]
- Crocker, M.S.; Deng, Z.H.; Johnston, J.N. Preparation of N-Aryl Amides by Epimerization-Free Umpolung Amide Synthesis. J. Am. Chem. Soc. 2022, 144, 16708–16714. [Google Scholar] [CrossRef]
- Wang, C.A.; Rahman, M.M.; Bisz, E.; Szostak, R.; Dziuk, B.; Szostak, M. Palladium-NHC (NHC=N-heterocyclic Carbene)-Catalyzed Suzuki-Miyaura Cross-Coupling of Alkyl Amides. ACS Catal. 2022, 12, 2426–2433. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Z.; Feng, J.; Pan, G.; He, X.; Lv, M.; Chen, H.; Jiang, W.; Ji, J.; Yang, M. Synthesis and biological evaluation of novel aromatic amide derivatives as potential BCR-ABL inhibitors. Bioorg. Med. Chem. Lett. 2023, 81, 129144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Peng, L.Y.; Liu, X.X.; Xu, X.; Fang, W.H.; Cui, G.L.; Chen, Y.Z.; Tung, C.H.; Wu, L.Z. Aromatic Amides: A Smart Backbone toward Isolated Ultralong Bright Blue-Phosphorescence in Confined Polymeric Films. Angew. Chem. 2023, 62, e202300927. [Google Scholar] [CrossRef]
- Mi, Y.; Chen, Y.; Tan, W.; Zhang, J.; Li, Q.; Guo, Z. The influence of bioactive glyoxylate bearing Schiff base on antifungal and antioxidant activities to chitosan quaternary ammonium salts. Carbohydr. Polym. 2022, 278, 118970. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Mi, Y.; Li, Q.; Dong, F.; Guo, Z. Synthesis of Schiff bases modified inulin derivatives for potential antifungal and antioxidant applications. Int. J. Biol. Macromol. 2020, 143, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Zhang, J.; Mi, Y.; Miao, Q.; Tan, W.; Guo, Z. Preparation of imidazole acids grafted chitosan with enhanced antioxidant, antibacterial and antitumor activities. Carbohydr. Polym. 2023, 315, 120978. [Google Scholar] [CrossRef] [PubMed]
- Mi, Y.; Chen, Y.; Li, Q.; Tan, W.; Guo, Z. pH sensitive adriamycin-incorporated nanoparticles self-assembled from amphiphilic chitosan derivatives with enhanced antioxidant and antitumor activities. Carbohydr. Polym. Technol. Appl. 2024, 7, 100475. [Google Scholar] [CrossRef]
- Giri, S.; Dutta, P.; Giri, T.K. Inulin-based carriers for colon drug targeting. J. Drug Deliv. Sci. Technol. 2021, 64, 102595. [Google Scholar] [CrossRef]
- Hamed, M.; Soliman, H.A.M.; Said, R.E.M.; Martyniuk, C.J.; Osman, A.G.M.; Sayed, A.E.D.H. Oxidative stress, antioxidant defense responses, and histopathology: Biomarkers for monitoring exposure to pyrogallol in Clarias gariepinus. J. Environ. Manag. 2024, 351, 119845. [Google Scholar] [CrossRef]
- Orlo, E.; Nerín, C.; Lavorgna, M.; Wrona, M.; Russo, C.; Stanzione, M.; Nugnes, R.; Isidori, M. Antioxidant activity of coatings containing eugenol for flexible aluminium foils to preserve food shelf-life. Food Packag. Shelf Life 2023, 39, 101145. [Google Scholar] [CrossRef]
- Hassan, S.; Javaid, K.T.; Ali, M.N.; Bilal, N. Development of plant based bioactive, anticoagulant and antioxidant surface coatings for medical implants. Mater. Today Commun. 2022, 33, 104516. [Google Scholar] [CrossRef]
- Hun, K.J.; Liu, Q.; Lee, U.J.; Kumar, R.A.; Cho, M.; Amirthalingam, S.; Hoon, K.T.; Seok, K.B.; Park, G.G.; Kim, B.G.; et al. Antioxidant-Coated multifunctional whitlockite scaffold for the treatment of Steroid-Induced osteonecrosis of the femoral head. Chem. Eng. J. 2023, 474, 145362. [Google Scholar]
- Zhao, Z. Hydroxyl radical generations form the physiologically relevant Fenton-like reactions. Free Radic. Biol. Med. 2023, 208, 510–515. [Google Scholar] [CrossRef]
- Wang, N.; Li, Q. Study on extraction and antioxidant activity of polysaccharides from Radix Bupleuri by natural deep eutectic solvents combined with ultrasound-assisted enzymolysis. Sustain. Chem. Pharm. 2022, 30, 100877. [Google Scholar] [CrossRef]
- Akram, W.; Pandey, V.; Sharma, R.; Joshi, R.; Mishra, N.; Garud, N.; Haider, T. Inulin: Unveiling its potential as a multifaceted biopolymer in prebiotics, drug delivery, and therapeutics. Int. J. Biol. Macromol. 2024, 259, 129131. [Google Scholar] [CrossRef]
- Zhao, W.; He, J.; Yu, P.; Jiang, X.; Zhang, L. Recent progress in the rubber antioxidants: A review. Polym. Degrad. Stab. 2023, 207, 110223. [Google Scholar] [CrossRef]
- Kabanda, M.M. A theoretical study of the antioxidant properties of phenolic acid amides investigated through the radical-scavenging and metal chelation mechanisms. Eur. Food Res. Technol. 2015, 241, 553–572. [Google Scholar] [CrossRef]
- Halpani, C.G.; Mishra, S. Design, synthesis, characterization of ferulic acid and p-coumaric acid amide derivatives as an antibacterial/antioxidant agent. Pharm. Sci. Adv. 2024, 2, 100023. [Google Scholar] [CrossRef]
- Liu, Q.K.; Peng, D.G.; Wei, P.; Song, H.J.; Cong, C.B.; Meng, X.Y.; Zhou, Q. Synthesis of macromolecular antioxidants containing thioether and aromatic secondary amine to improve the anti-oxidation properties of EPDM. Polym. Degrad. Stab. 2023, 218, 110585. [Google Scholar] [CrossRef]
- Fu, Y.H.; Wang, F.; Zhou, Z.; Yang, L.; Shen, G.B.; Zhu, X.Q. A new method for determining the intrinsic resistance energy of H-atom transfer reaction and structure–activity relationship of H-donating ability. J. Phys. Org. Chem. 2024, 37, e4584. [Google Scholar] [CrossRef]
- Chevalier, A.; Khdour, O.M.; Schmierer, M.; Bandyopadhyay, I.; Hecht, S.M. Influence of substituent heteroatoms on the cytoprotective properties of pyrimidinol antioxidants. Bioorg. Med. Chem. 2017, 25, 1703–1716. [Google Scholar] [CrossRef] [PubMed]
- Saeidian, H.; Asadabad, S.M.M.; Mirjafary, Z. Density functional theory studies of maltol derivatives: The effect of heteroatom on aromaticity and antioxidant activity. Inorg. Chem. Commun. 2023, 157, 111387. [Google Scholar] [CrossRef]
- Li, K.; Zhong, W.; Li, P.; Ren, J.; Jiang, K.; Wu, W. Recent advances in lignin antioxidant: Antioxidant mechanism, evaluation methods, influence factors and various applications. Int. J. Biol. Macromol. 2023, 251, 125992. [Google Scholar] [CrossRef]
- Jeong, G.J.; Khan, F.; Tabassum, N.; Cho, K.J.; Kim, Y.M. Controlling biofilm and virulence properties of Gram-positive bacteria by targeting wall teichoic acid and lipoteichoic acid. Int. J. Antimicrob. Agents 2023, 62, 106941. [Google Scholar] [CrossRef]
- Huang, Y.J.; Zang, Y.P.; Peng, L.J.; Yang, M.H.; Lin, J.; Chen, W.M. Cajaninstilbene acid derivatives conjugated with siderophores of 3-hydroxypyridin-4(1H)-ones as novel antibacterial agents against Gram-negative bacteria based on the Trojan horse strategy. Eur. J. Med. Chem. 2024, 269, 116339. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Yoon, Y.; Lee, Y.; Oh, H.; Choi, J.; Shin, S.; Lee, S.; Lee, H.; Lee, Y.; Seo, J. Photosensitizer-peptoid conjugates for photoinactivation of Gram-negative bacteria: Structure–activity relationship and mechanistic studies. Org. Biomol. Chem. 2021, 19, 6546–6557. [Google Scholar] [CrossRef]
Compounds | Yields (%) | DS (%) |
---|---|---|
QIL | 84.22 | 91.90 |
AQI | 53.18 | 24.60 |
2FAQI | 64.49 | 39.85 |
3,4DFAQI | 61.72 | 32.90 |
3CAQI | 60.77 | 53.10 |
4CAQI | 67.34 | 51.35 |
3,4DCAQI | 62.18 | 56.60 |
2CBQI | 61.43 | 30.45 |
2BAQI | 60.52 | 29.60 |
2PQI | 58.44 | 28.40 |
3PQI | 57.38 | 30.30 |
4PQI | 57.15 | 13.10 |
2SQI | 57.47 | 25.10 |
Compounds | Escherichia coli | Staphylococcus aureus | ||
---|---|---|---|---|
MIC (mg/mL) | MBC (mg/mL) | MIC (mg/mL) | MBC (mg/mL) | |
Inulin | >16 | >16 | >16 | >16 |
QIL | 8 | 16 | 8 | 8 |
AQI | 4 | 8 | 2 | 4 |
2FAQI | 1 | 2 | 1 | 2 |
3,4DFAQI | 0.25 | 0.5 | 0.125 | 0.125 |
3CAQI | 4 | 8 | 0.5 | 0.5 |
4CAQI | 4 | 8 | 0.5 | 1 |
3,4DCAQI | 0.25 | 0.5 | 0.125 | 0.25 |
2CBQI | 2 | 4 | 2 | 4 |
2BAQI | 1 | 2 | 1 | 2 |
2PQI | 0.125 | 0.5 | 0.125 | 0.25 |
3PQI | 0.125 | 0.25 | 0.0625 | 0.125 |
4PQI | 0.125 | 0.25 | 0.125 | 0.125 |
2SQI | 0.25 | 0.5 | 1 | 2 |
Azithromycin | 0.0078 | 0.0078 | 0.0078 | 0.0078 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Mi, Y.; Guo, Z.; Zhang, H. Synthesis, Characterization, Antioxidant Activity, Antibacterial Activity, and Cytotoxicity of Quaternized Inulin Derivatives Bearing Aromatic Amides. Antioxidants 2025, 14, 1091. https://doi.org/10.3390/antiox14091091
Chen Y, Mi Y, Guo Z, Zhang H. Synthesis, Characterization, Antioxidant Activity, Antibacterial Activity, and Cytotoxicity of Quaternized Inulin Derivatives Bearing Aromatic Amides. Antioxidants. 2025; 14(9):1091. https://doi.org/10.3390/antiox14091091
Chicago/Turabian StyleChen, Yuan, Yingqi Mi, Zhanyong Guo, and Hongwu Zhang. 2025. "Synthesis, Characterization, Antioxidant Activity, Antibacterial Activity, and Cytotoxicity of Quaternized Inulin Derivatives Bearing Aromatic Amides" Antioxidants 14, no. 9: 1091. https://doi.org/10.3390/antiox14091091
APA StyleChen, Y., Mi, Y., Guo, Z., & Zhang, H. (2025). Synthesis, Characterization, Antioxidant Activity, Antibacterial Activity, and Cytotoxicity of Quaternized Inulin Derivatives Bearing Aromatic Amides. Antioxidants, 14(9), 1091. https://doi.org/10.3390/antiox14091091