Oxidative Stress and Biomarkers in Craniofacial Fractures Healing: From Lipid Peroxidation to Antioxidant Therapies
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategy
- “oxidative stress” AND “bone healing”;
- “biomarkers” AND “facial fracture”;
- “reactive oxygen species” AND “fracture regeneration”;
- “MDA” OR “4-HNE” OR “SOD” OR “GPx” OR “glutathione” AND “bone repair”.
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection and Data Extraction
2.4. Methodological Quality Considerations
3. Bone Healing Physiology
4. Oxidative Stress Mechanisms
5. Oxidative Stress Biomarkers in Fracture Healing
5.1. Oxidative Damage Biomarkers
5.1.1. Malondialdehyde
5.1.2. 4-Hydroxynonenal
5.1.3. F2-Isoprostanes (F2-IsoPs)
5.2. Antioxidant Biomarkers
5.2.1. Glutathione
5.2.2. Superoxide Dismutase (SOD)
5.2.3. Glutathione Peroxidases (GPxs)
5.2.4. Catalase (CAT)
6. Clinical Applications and Limitations
6.1. The Role of Oxidative Stress Markers in Bone Healing and Fracture Monitoring—Clinical Applications and Limitations
6.2. Future Prospects
6.3. Anitioxidant Therapeutic Strategies
- Bone healing, particularly in craniofacial fractures, is critically influenced by the delicate balance between reactive oxygen species (ROS) and the antioxidant defense system. While physiological levels of ROS contribute to angiogenesis, immune cell recruitment, and osteoblast differentiation, sustained oxidative stress disrupts these processes, leading to delayed union or non-union of fractures [33,62]. This has prompted increasing interest in antioxidant-based therapeutic strategies as potential adjuvants in maxillofacial trauma care.
- Vitamin C (ascorbic acid) is one of the most studied antioxidants in bone biology. It is an essential cofactor for collagen synthesis, thereby directly supporting extracellular matrix production and callus stability. Supplementation with 500–1000 mg/day has been shown to accelerate fracture repair, especially in populations at risk of vitamin C deficiency, such as smokers and the elderly [39,134].
- Vitamin E (α-tocopherol), a lipid-soluble antioxidant, protects cellular membranes against lipid peroxidation. Experimental studies demonstrated that oral doses of 200–400 IU/day reduce malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) levels, improving the biomechanical strength of the healing callus [66,137].
- Selenium, an essential trace element, exerts its effects mainly through glutathione peroxidase (GPx) activation. Daily supplementation of 100–200 µg of selenium (in the form of selenomethionine) has been shown to enhance mineralization of the fracture callus and reduce systemic oxidative burden [62].
- Polyphenols, such as resveratrol, quercetin, and curcumin, have also been studied for their osteoprotective roles. These compounds modulate signaling pathways such as Wnt/β-catenin and NF-κB, promoting osteoblast activity and inhibiting osteoclastogenesis [134].
- An interesting candidate is caffeine, traditionally associated with negative effects on calcium metabolism. Recent studies, however, suggest that at moderate doses (200–400 mg/day), caffeine exhibits radical scavenging activity comparable to glutathione and even higher than vitamin C, which may contribute to fracture healing [137].
- Beyond supplementation, dietary strategies are of paramount importance. Diets rich in fresh fruits, vegetables, legumes, and whole grains—exemplified by the Mediterranean diet—supply a wide range of antioxidants including vitamins, carotenoids, and polyphenols, all of which contribute to improved redox homeostasis and bone regeneration [39]. Conversely, ultraprocessed foods, alcohol, and tobacco use exacerbate oxidative stress, impair angiogenesis, and are consistently associated with delayed or impaired fracture healing [33,62].
- Taken together, antioxidant strategies should be viewed as supportive measures that complement, rather than replace, surgical and pharmacological interventions. Future clinical studies are needed to establish optimal timing, dosage, and combinations of antioxidant compounds. Personalized approaches, integrating biomarker monitoring with targeted antioxidant therapy, may significantly improve outcomes in patients with craniofacial fractures.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chukwulebe, S.; Hogrefe, C. The diagnosis and management of facial bone fractures. Emer. Med. Clin. 2019, 37, 137–151. [Google Scholar] [CrossRef]
- Gómez Roselló, E.; Quiles Granado, A.M.; Artajona Garcia, M.; Juanpere Martí, S.; Laguillo Sala, G.; Beltrán Mármol, B.; Pedraza Gutiérrez, S. Facial fractures: Classification and highlights for a useful report. Insights Into Imaging 2020, 11, 49. [Google Scholar] [CrossRef]
- Ghosh, R.; Gopalkrishnan, K. Facial fractures. J. Craniofac. Surg. 2018, 29, e334–e340. [Google Scholar] [CrossRef]
- Khan, S.R.; Khan, Z.A.; Hanif, S.; Riaz, N.; Warraich, R.A. Patterns of facial fractures in children. Br. Oral. Maxillofac. Surg. 2019, 57, 1009–1013. [Google Scholar] [CrossRef]
- Wu, V.; Helder, M.N.; Bravenboer, N.; Ten Bruggenkate, C.M.; Jin, J.; Klein-Nulend, J.; Schulten, E.A. Bone tissue regeneration in the oral and maxillofacial region: A review on the application of stem cells and new strategies to improve vascularization. Stem Cells Int. 2019, 1, 6279721. [Google Scholar] [CrossRef]
- Diaz, R.C.; Cervenka, B.; Brodie, H.A. Treatment of temporal bone fractures. J. Neurol. Surg. B Skull Base 2016, 77, 419–429. [Google Scholar] [CrossRef]
- Dong, C.; Tan, G.; Zhang, G.; Lin, W.; Wang, G. The function of immunomodulation and biomaterials for scaffold in the process of bone defect repair: A review. Front. Bioeng. Biotechnol. 2023, 11, 1133995. [Google Scholar] [CrossRef]
- Conforte, J.J.; Alves, C.P.; Ponzoni, D. Impact of trauma and surgical treatment on the quality of life of patients with facial fractures. Int. J. Oral. Maxillofac. Surg. 2016, 45, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Merchán, E.C. A review of recent developments in the molecular mechanisms of bone healing. Int. J. Mol. Sci. 2021, 22, 767. [Google Scholar] [CrossRef] [PubMed]
- Fujita, H.; Ochi, M.; Ono, M.; Aoyama, E.; Ogino, T.; Kondo, Y.; Ohuchi, H. Glutathione accelerates osteoclast differentiation and inflammatory bone destruction. Free Radic. Res. 2019, 53, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Shen, S.; Zhang, S.; Huang, M.; Zhang, L.; Chen, X. Autophagy in bone remodeling: A regulator of oxidative stress. Front. Endocrinol. 2022, 13, 898634. [Google Scholar] [CrossRef]
- Hua, R.; Zhang, J.; Riquelme, M.A.; Jiang, J.X. Connexin gap junctions and hemichannels link oxidative stress to skeletal physiology and pathology. Curr. Osteoporos. Rep. 2021, 19, 66–74. [Google Scholar] [CrossRef]
- Dhama, K.; Latheef, S.K.; Dadar, M.; Samad, H.A.; Munjal, A.; Khandia, R.; Joshi, S.K. Biomarkers in stress related diseases/disorders: Diagnostic, prognostic, and therapeutic values. Front. Mol. Biosci. 2019, 6, 465402. [Google Scholar] [CrossRef]
- Danieli, M.G.; Antonelli, E.; Piga, M.A.; Cozzi, M.F.; Allegra, A.; Gangemi, S. Oxidative stress, mitochondrial dysfunction, and respiratory chain enzyme defects in inflammatory myopathies. Autoimmun. Rev. 2023, 22, 103308. [Google Scholar] [CrossRef]
- Einhorn, T.A.; Gerstenfeld, L.C. Fracture healing: Mechanisms and interventions. Nat. Rev. Rheumatol. 2015, 11, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Oryan, A.; Monazzah, S.; Bigham-Sadegh, A. Bone injury and fracture healing biology. Biomed. Environ. Sci. 2015, 28, 57–71. [Google Scholar]
- Bigham-Sadegh, A.; Oryan, A. Basic concepts regarding fracture healing and the current options and future directions in managing bone fractures. Int. Wound J. 2015, 12, 238–247. [Google Scholar] [CrossRef]
- Migliorini, F.; Cocconi, F.; Vecchio, G.; Schäefer, L.; Koettnitz, J.; Maffulli, N. Pharmacological agents for bone fracture healing: Talking points from recent clinical trials. Expert. Opin. Investig. Drugs 2023, 32, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, M.; Rhee, C.; Utsunomiya, T.; Zhang, N.; Ueno, M.; Yao, Z.; Goodman, S.B. Modulation of the inflammatory response and bone healing. Front. Endocrinol. 2020, 11, 386. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Bleek, K.; Schell, H.; Schulz, N.; Hoff, P.; Perka, C.; Buttgereit, F.; Duda, G.N. Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res. 2012, 347, 567–573. [Google Scholar] [CrossRef]
- Filipowska, J.; Tomaszewski, K.A.; Niedźwiedzki, Ł.; Walocha, J.A.; Niedźwiedzki, T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis 2017, 20, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Pan, J.; Jing, W. Motivating role of type H vessels in bone regeneration. Cell Prolif. 2022, 53, e12874. [Google Scholar] [CrossRef] [PubMed]
- Blázquez-Carmona, P.; Mora-Macías, J.; Pajares, A.; Mármol, Á.; Reina-Romo, E. On the influence of structural and chemical properties on the elastic modulus of woven bone under healing. Front. Bioeng. Biotechnol. 2024, 12, 1476473. [Google Scholar] [CrossRef]
- Wähnert, D.; Greiner, J.; Brianza, S.; Kaltschmidt, C.; Vordemvenne, T.; Kaltschmidt, B. Strategies to improve bone healing: Innovative surgical implants meet nano-/micro-topography of bone scaffolds. Biomedicines 2021, 9, 746. [Google Scholar] [CrossRef]
- Ghiasi, M.S.; Chen, J.; Vaziri, A.; Rodriguez, E.K.; Nazarian, A. Bone fracture healing in mechanobiological modeling: A review of principles and methods. Bone Rep. 2017, 6, 87–100. [Google Scholar] [CrossRef]
- Terkawi, M.A.; Matsumae, G.; Shimizu, T.; Takahashi, D.; Kadoya, K.; Iwasaki, N. Interplay between inflammation and pathological bone resorption: Insights into recent mechanisms and pathways in related diseases for future perspectives. Int. J. Mol. Sci. 2022, 23, 1786. [Google Scholar] [CrossRef]
- Bădilă, A.E.; Rădulescu, D.M.; Ilie, A.; Niculescu, A.G.; Grumezescu, A.M.; Rădulescu, A.R. Bone regeneration and oxidative stress: An updated overview. Antioxidants 2022, 11, 318. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Z.; Yi, J. Biomaterials Designed to Modulate Reactive Oxygen Species for Enhanced Bone Regeneration in Diabetic Conditions. J. Funct. Biomater. 2024, 15, 220. [Google Scholar] [CrossRef]
- Agidigbi, T.S.; Kim, C. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. Int. J. Mol. Sci. 2019, 20, 3576. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Han, F.; Meng, Q.; Wang, H.; Wei, Q.; Han, F. A multifunctional composite hydrogel that rescues the ROS microenvironment and guides the immune response for repair of osteoporotic bone defects. Adv. Funct. Mater. 2022, 32, 2201067. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Q.; Zhu, J.; Xiao, Q.; Zhang, L. Reactive oxygen species: Key regulators in vascular health and diseases. Br. J. Pharmacol. 2018, 175, 1279–1292. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Han, X.; Zhang, T.; Tian, K.; Li, Z.; Luo, F. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: From mechanism to therapy. J. Hematol. Oncol. 2023, 16, 116. [Google Scholar] [CrossRef]
- Bai, R.; Guo, J.; Ye, X.Y.; Xie, Y.; Xie, T. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res. Rev. 2022, 77, 101619. [Google Scholar] [CrossRef]
- Bardaweel, S.K.; Gul, M.; Alzweiri, M.; Ishaqat, A.; ALSalamat, H.A.; Bashatwah, R.M. Reactive oxygen species: The dual role in physiological and pathological conditions of the human body. Eurasian J. Med. 2018, 50, 193. [Google Scholar] [CrossRef]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef]
- Marcucci, G.; Domazetovic, V.; Nediani, C.; Ruzzolini, J.; Favre, C.; Brandi, M.L. Oxidative stress and natural antioxidants in osteoporosis: Novel preventive and therapeutic approaches. Antioxidants 2023, 12, 373. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kim, M.; Oh, S.B.; Kim, H.Y.; Kim, C.; Kim, T.Y.; Park, Y.H. Superoxide dismutase 3 prevents early stage diabetic retinopathy in streptozotocin-induced diabetic rat model. PLoS ONE 2022, 17, e0262396. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Żukowski, P.; Maciejczyk, M.; Waszkiel, D. Sources of free radicals and oxidative stress in the oral cavity. Arch. Oral. Biol. 2018, 92, 8–17. [Google Scholar] [CrossRef]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Wang, K.; Zhou, C.; Li, L.; Dai, C.; Wang, Z.; Zhang, W.; Pan, Z. Aucubin promotes bone-fracture healing via the dual effects of anti-oxidative damage and enhancing osteoblastogenesis of hBM-MSCs. Stem Cell Res. Ther. 2022, 13, 424. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Tang, Q.; Zhang, Y.; Yin, Y.; Chen, L. Application of antioxidant compounds in bone defect repair. Antioxidants 2024, 13, 789. [Google Scholar] [CrossRef]
- Lacina, L.; Kolář, M.; Pfeiferová, L.; Gal, P.; Smetana Jr, K. Wound healing: Insights into autoimmunity, ageing, and cancer ecosystems through inflammation and IL-6 modulation. Front. Immunol. 2024, 15, 1403570. [Google Scholar] [CrossRef]
- Kolar, P.; Schmidt-Bleek, K.; Schell, H.; Gaber, T.; Toben, D.; Schmidmaier, G.; Duda, G.N. The early fracture hematoma and its potential role in fracture healing. Tissue Eng. Part B Rev. 2010, 16, 427–434. [Google Scholar] [CrossRef]
- Leyane, T.S.; Jere, S.W.; Houreld, N.N. Oxidative stress in ageing and chronic degenerative pathologies: Molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. Int. J. Mol. Sci. 2022, 23, 7273. [Google Scholar] [CrossRef]
- Domazetovic, V.; Marcucci, G.; Iantomasi, T.; Brandi, M.L.; Vincenzini, M.T. Oxidative stress in bone remodeling: Role of antioxidants. Clin. Cases Min. Bone Metab. 2017, 14, 209. [Google Scholar] [CrossRef]
- Sczepanik, F.S.C.; Grossi, M.L.; Casati, M.; Goldberg, M.; Glogauer, M.; Fine, N.; Tenenbaum, H.C. Periodontitis is an inflammatory disease of oxidative stress: We should treat it that way. Periodontology 2020, 84, 45–68. [Google Scholar] [CrossRef] [PubMed]
- Jitjumnong, M.; Chalermkitpanit, P.; Suantawee, T.; Dechsupa, S.; Vajarintarangoon, L.; Honsawek, S. Telomere shortening and increased oxidative stress in lumbar disc degeneration. Int. J. Mol. Sci. 2022, 23, 10125. [Google Scholar] [CrossRef] [PubMed]
- Menzel, A.; Samouda, H.; Dohet, F.; Loap, S.; Ellulu, M.S.; Bohn, T. Common and novel markers for measuring inflammation and oxidative stress ex vivo in research and clinical practice—Which to use regarding disease outcomes? Antioxidants 2021, 10, 414. [Google Scholar] [CrossRef] [PubMed]
- Viglianisi, G.; Tartaglia, G.M.; Santonocito, S.; Amato, M.; Polizzi, A.; Mascitti, M.; Isola, G. The emerging role of salivary oxidative stress biomarkers as prognostic markers of periodontitis: New insights for a personalized approach in dentistry. J. Pers. Med. 2023, 13, 166. [Google Scholar] [CrossRef]
- Jing, W.; Liu, C.; Su, C.; Liu, L.; Chen, P.; Li, X.; Du, X. Role of reactive oxygen species and mitochondrial damage in rheumatoid arthritis and targeted drugs. Front. Immunol. 2023, 14, 1107670. [Google Scholar] [CrossRef]
- Zhou, H.; He, Z.; Cao, Y.; Chu, L.; Liang, B.; Yu, K.; Deng, Z. An injectable magnesium-loaded hydrogel releases hydrogen to promote osteoporotic bone repair via ROS scavenging and immunomodulation. Theranostics 2024, 14, 3739. [Google Scholar] [CrossRef] [PubMed]
- Capuzzi, E.; Ossola, P.; Caldiroli, A.; Auxilia, A.M.; Buoli, M. Malondialdehyde as a candidate biomarker for bipolar disorder: A meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2022, 113, 110469. [Google Scholar] [CrossRef] [PubMed]
- Mas-Bargues, C.; Escriva, C.; Dromant, M.; Borras, C.; Vina, J. Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. Arch. Biochem. Biophys. 2021, 709, 108941. [Google Scholar] [CrossRef]
- Valgimigli, L. Lipid peroxidation and antioxidant protection. Biomolecules 2023, 13, 1291. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, L.; Guo, Z.; Wang, G.; Xu, J.; Zheng, Z.; Guo, F. Lipid peroxidation in osteoarthritis: Focusing on 4-hydroxynonenal, malondialdehyde, and ferroptosis. Cell Death discov. 2023, 9, 320. [Google Scholar] [CrossRef]
- Sandukji, A.; Al-Sawaf, H.; Mohamadin, A.; Alrashidi, Y.; Sheweita, S.A. Oxidative stress and bone markers in plasma of patients with long-bone fixative surgery: Role of antioxidants. Hum. Exp. Toxicol. 2011, 30, 435–442. [Google Scholar] [CrossRef]
- Coon, D.; Gulati, A.; Cowan, C.; He, J. The role of cyclooxygenase-2 (COX-2) in inflammatory bone resorption. J. Endod. 2007, 33, 432–436. [Google Scholar] [CrossRef]
- Huang, C.; Xue, M.; Chen, H.; Jiao, J.; Herschman, H.R.; O’Keefe, R.J.; Zhang, X. The spatiotemporal role of COX-2 in osteogenic and chondrogenic differentiation of periosteum-derived mesenchymal progenitors in fracture repair. PLoS ONE 2014, 9, e100079. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, M.; Zhou, H.; He, X.; Shi, W.; Yuan, Q.; Xie, Y. COX-2/PGE2/VEGF signaling promotes ERK-mediated BMSCs osteogenic differentiation under hypoxia by the paracrine action of ECs. Cytokine 2023, 161, 156058. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, C.; Song, Y.; Wu, F. The effect of low-level laser irradiation on the proliferation, osteogenesis, inflammatory reaction, and oxidative stress of human periodontal ligament stem cells under inflammatory conditions. Lasers Med. Sci. 2022, 37, 3591–3599. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Verma, M.K.; Tripathi, P.; Singh, D. Study of oxidant (MDA) and antioxidants (SOD & vitamin E) in hypertensive patients and normotensive individuals. Int. J. Life Sci. Sci. Res. 2016, 2, 9–14. [Google Scholar] [CrossRef]
- Choi, S.W.; Benzie, I.F.F.; Collins, A.R.; Hannigan, B.M.; Strain, J.J. Vitamins C and E: Acute interactive effects on biomarkers of antioxidant defence and oxidative stress. Mutat. Res. Fund. Mol. Mech. Mutagen. 2004, 551, 109–117. [Google Scholar] [CrossRef]
- Aghajanian, P.; Hall, S.; Wongworawat, M.D.; Mohan, S. The roles and mechanisms of actions of vitamin C in bone: New developments. J. Bone Miner. Res. 2015, 30, 1945–1955. [Google Scholar] [CrossRef] [PubMed]
- Toto, A.; Wild, P.; Graille, M.; Turcu, V.; Crézé, C.; Hemmendinger, M.; Hopf, N.B. Urinary malondialdehyde (MDA) concentrations in the general population—A systematic literature review and meta-analysis. Toxics 2022, 10, 160. [Google Scholar] [CrossRef]
- Alvarez-Mon, M.A.; Ortega, M.A.; García-Montero, C.; Fraile-Martinez, O.; Lahera, G.; Monserrat, J.; Alvarez-Mon, M. Differential malondialdehyde (MDA) detection in plasma samples of patients with major depressive disorder (MDD): A potential biomarker. J. Int. Med. Res. 2022, 50, 1–9. [Google Scholar] [CrossRef]
- Montecillo-Aguado, M.; Tirado-Rodriguez, B.; Huerta-Yepez, S. The involvement of polyunsaturated fatty acids in apoptosis mechanisms and their implications in cancer. Int. J. Mol. Sci. 2023, 24, 11691. [Google Scholar] [CrossRef] [PubMed]
- Stojkovic, L.; Rankovic, S.; Dincic, E.; Boskovic, M.; Kolakovic, A.; Seke, M.; Zivkovic, M. The Erythrocyte Fatty Acid Profile in Multiple Sclerosis Is Linked to the Disease Course, Lipid Peroxidation, and Dietary Influence. Nutrients 2025, 17, 974. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, T.; Li, J.; Xia, M.; Li, Y.; Wang, X.; Sun, P. Oxidative stress and 4-hydroxy-2-nonenal (4-HNE): Implications in the pathogenesis and treatment of aging-related diseases. J. Immunol. Res. 2022, 1, 2233906. [Google Scholar] [CrossRef]
- Perkovic, M.N.; Jaganjac, M.; Milkovic, L.; Horvat, T.; Rojo, D.; Zarkovic, K.; Zarkovic, N. Relationship between 4-hydroxynonenal (4-HNE) as systemic biomarker of lipid peroxidation and metabolomic profiling of patients with prostate cancer. Biomolecules 2023, 13, 145. [Google Scholar] [CrossRef]
- Žarković, N.; Gęgotek, A.; Łuczaj, W.; Jaganjac, M.; Šunjić, S.B.; Žarković, K.; Skrzydlewska, E. Overview of the lipid peroxidation measurements in patients by the enzyme-linked immunosorbent assay specific for the 4-hydroxynonenal-protein adducts (4-HNE-ELISA). Front. Biosci.-Landmark 2024, 29, 153. [Google Scholar] [CrossRef] [PubMed]
- Milkovic, L.; Zarkovic, N.; Marusic, Z.; Zarkovic, K.; Jaganjac, M. The 4-hydroxynonenal–protein adducts and their biological relevance: Are some proteins preferred targets? Antioxidants 2023, 12, 856. [Google Scholar] [CrossRef]
- Xiao, F.; Wei, T.; Xiao, H.; He, W.; Wei, Q. Decreased serum 4-Hydroxynonenal level as a biomarker for the progression of steroid-induced osteonecrosis of the femoral head. J. Orthop. Surg. Res. 2023, 18, 732. [Google Scholar] [CrossRef]
- Vaillancourt, F.; Fahmi, H.; Shi, Q.; Lavigne, P.; Ranger, P.; Fernandes, J.C.; Benderdour, M. 4-Hydroxynonenal induces apoptosis in human osteoarthritic chondrocytes: The protective role of glutathione-S-transferase. Arthritis Res. Ther. 2008, 10, R107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Y.; Gong, H.B.; Jiang, M.Y.; Jin, F.; Wang, G.; Yan, C.Y.; Li, Y.F. Regulation of enzymatic lipid peroxidation in osteoblasts protects against postmenopausal osteoporosis. Nat. Commun. 2025, 16, 758. [Google Scholar] [CrossRef]
- Tang, Y.; Su, S.; Yu, R.; Liao, C.; Dong, Z.; Jia, C.; Zheng, J. Unraveling ferroptosis in osteogenic lineages: Implications for dysregulated bone remodeling during periodontitis progression. Cell Death Discov. 2024, 10, 195. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Ren, Y.; Park, M.S.; Kim, H.K. Damage associated molecular patterns in necrotic femoral head inhibit osteogenesis and promote fibrogenesis of mesenchymal stem cells. Bone 2022, 154, 116215. [Google Scholar] [CrossRef]
- Morrow, J.D.; Hill, K.E.; Burk, R.F.; Nammour, T.M.; Badr, K.F.; Roberts, L.J., 2nd. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. USA 1990, 87, 9383–9387. [Google Scholar] [CrossRef]
- Moretti, E.; Signorini, C.; Menchiari, S.; Liguori, L.; Corsaro, R.; Gambera, L.; Collodel, G. Are F2-isoprostanes a better marker of semen lipid peroxidation than MDA in reproductive pathologies with inflammatory basis? Cytokine 2025, 188, 156889. [Google Scholar] [CrossRef]
- Roberts II, L.J.; Morrow, J.D. Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radic. Biol. Med. 2000, 28, 505–513. [Google Scholar] [CrossRef]
- Milne, G.L.; Sanchez, S.C.; Musiek, E.S.; Morrow, J.D. Quantification of F2-isoprostanes as a biomarker of oxidative stress. Nat. Protoc. 2007, 2, 221–226. [Google Scholar] [CrossRef]
- Yen, H.C.; Wei, H.J.; Lin, C.L. Unresolved issues in the analysis of F2-isoprostanes, F4-neuroprostanes, isofurans, neurofurans, and F2-dihomo-isoprostanes in body fluids and tissue using gas chromatography/negative-ion chemical-ionization mass spectrometry. Free Radic. Res. 2015, 49, 861–880. [Google Scholar] [CrossRef]
- Jadoon, S.; Malik, A. A comprehensive review article on isoprostanes as biological markers. Biochem. Pharmacol. 2018, 7, 1000246. [Google Scholar] [CrossRef]
- Milne, G.L. Classifying oxidative stress by F2-Isoprostane levels in human disease: The re-imagining of a biomarker. Redox Biol. 2017, 12, 897–898. [Google Scholar] [CrossRef] [PubMed]
- Trares, K.; Chen, L.J.; Schoettker, B. Association of F2-isoprostane levels with Alzheimer’s disease in observational studies: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 74, 101552. [Google Scholar] [CrossRef]
- Zhao, Y.; Nogueira, M.S.; Chen, Q.; Dai, Q.; Cai, Q.; Wen, W.; Yang, G. Association between F2-isoprostane metabolites and weight change in older women: A longitudinal analysis. Gerontology 2024, 70, 134–142. [Google Scholar] [CrossRef]
- Il’yasova, D.; Wong, B.J.; Waterstone, A.; Kinev, A.; Okosun, I.S. Systemic F2-isoprostane levels in predisposition to obesity and type 2 diabetes: Emphasis on racial differences. Divers. Equal. Health Care 2017, 14, 91. [Google Scholar] [CrossRef]
- Kumar, P.; Osahon, O.; Vides, D.B.; Hanania, N.; Minard, C.G.; Sekhar, R.V. Severe glutathione deficiency, oxidative stress and oxidant damage in adults hospitalized with COVID-19: Implications for GlyNAC (glycine and N-acetylcysteine) supplementation. Antioxidants 2021, 11, 50. [Google Scholar] [CrossRef] [PubMed]
- Fam, S.S.; Morrow, J.D. The isoprostanes: Unique products of arachidonic acid oxidation-a review. Curr. Med. Chem. 2023, 10, 1723–1740. [Google Scholar] [CrossRef] [PubMed]
- Boldeanu, L.; Văduva, C.C.; Caragea, D.C.; Novac, M.B.; Manasia, M.; Siloși, I.; Dijmărescu, A.L. Association between serum 8-iso-prostaglandin F2α as an oxidative stress marker and immunological markers in a cohort of preeclampsia patients. Life 2023, 13, 2242. [Google Scholar] [CrossRef] [PubMed]
- Rubino, F.M. Toxicity of glutathione-binding metals: A review of targets and mechanisms. Toxics 2015, 3, 20–62. [Google Scholar] [CrossRef] [PubMed]
- Kalinina, E.; Novichkova, M. Glutathione in protein redox modulation through S-glutathionylation and S-nitrosylation. Molecules 2021, 26, 435. [Google Scholar] [CrossRef]
- Wei, T.; Thakur, S.S.; Liu, M.; Wen, J. Oral delivery of glutathione: Antioxidant function, barriers and strategies. Acta Mater. Med. 2022, 1, 177–192. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, M.A.; Mendoza-Núñez, V.M. Oxidative stress indexes for diagnosis of health or disease in humans. Oxid. Med. Cell Longev. 2019, 1, 4128152. [Google Scholar] [CrossRef]
- Diaz-Vivancos, P.; de Simone, A.; Kiddle, G.; Foyer, C.H. Glutathione–linking cell proliferation to oxidative stress. Free Radic. Biol. Med. 2015, 89, 1154–1164. [Google Scholar] [CrossRef] [PubMed]
- Vairetti, M.; Di Pasqua, L.G.; Cagna, M.; Richelmi, P.; Ferrigno, A.; Berardo, C. Changes in glutathione content in liver diseases: An update. Antioxidants 2021, 10, 364. [Google Scholar] [CrossRef]
- Bocedi, A.; Fabrini, R.; Bello, M.L.; Caccuri, A.M.; Federici, G.; Mannervik, B.; Ricci, G. Evolution of negative cooperativity in glutathione transferase enabled preservation of enzyme function. J. Biol. Chem. 2016, 291, 26739–26749. [Google Scholar] [CrossRef]
- Lushchak, V.I. Glutathione homeostasis and functions: Potential targets for medical interventions. J. Amino Acids 2012, 1, 736837. [Google Scholar] [CrossRef]
- Ding, P.; Gao, C.; Zhou, J.; Mei, J.; Li, G.; Liu, D.; Gao, J. Mitochondria from osteolineage cells regulate myeloid cell-mediated bone resorption. Nat. Commun. 2024, 15, 5094. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Hou, H.; Ouyang, J.; Dai, J. Advances in osteoblast and mitochondrial dynamics and their transfer in osteoporosis. J. Cell Mol. Med. 2024, 28, e70299. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, C.; Donato, L.; Alibrandi, S.; Scimone, C.; D’Angelo, R.; Sidoti, A. Oxidative stress and the neurovascular unit. Life 2021, 11, 767. [Google Scholar] [CrossRef]
- Vacek, T.P.; Kalani, A.; Voor, M.J.; Tyagi, S.C.; Tyagi, N. The role of homocysteine in bone remodeling. Clin. Chem. Lab. Med. 2013, 51, 579–590. [Google Scholar] [CrossRef]
- Banfi, G.; Iorio, E.L.; Corsi, M.M. Oxidative stress, free radicals and bone remodeling. Clin. Chem. Lab. Med. 2008, 46, 1550–1555. [Google Scholar] [CrossRef] [PubMed]
- Borys, J.; Maciejczyk, M.; Antonowicz, B.; Krętowski, A.; Sidun, J.; Domel, E.; Zalewska, A. Glutathione metabolism, mitochondria activity, and nitrosative stress in patients treated for mandible fractures. J. Clin. Med. 2019, 8, 127. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.C.; Corsi, D.; Cavi, N.; Bruni, N.; Dosio, F. Superoxide dismutase administration: A review of proposed human uses. Molecules 2021, 26, 1844. [Google Scholar] [CrossRef]
- Robinett, N.G.; Peterson, R.L.; Culotta, V.C. Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains. J. Biol. Chem. 2018, 293, 4636–4643. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, D.; Lv, M.; Sun, H.; Ren, J.; Wang, X.; Zhou, H. Identification and functional characterization of interleukin-12 receptor beta 1 and 2 in grass carp (Ctenopharyngodon idella). Mol. Immunol. 2022, 143, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Rajgarhia, A.; Ayasolla, K.R.; Zaghloul, N.; Lopez Da Re, J.M.; Miller, E.J.; Ahmed, M. Extracellular superoxide dismutase (EC-SOD) regulates gene methylation and cardiac fibrosis during chronic hypoxic stress. Front. Cardiovasc. Med. 2021, 8, 669975. [Google Scholar] [CrossRef]
- Grujicic, J.; Allen, A.R. MnSOD mimetics in therapy: Exploring their role in combating oxidative stress-related diseases. Antioxidants 2024, 13, 1444. [Google Scholar] [CrossRef]
- Dworzański, J.; Strycharz-Dudziak, M.; Kliszczewska, E.; Kiełczykowska, M.; Dworzańska, A.; Drop, B.; Polz-Dacewicz, M. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activity in patients with diabetes mellitus type 2 infected with Epstein-Barr virus. PLoS ONE 2020, 15, e0230374. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, F.; Ma, Y.; Wei, F. Vitamin D3 contributes to enhanced osteogenic differentiation of MSCs under oxidative stress condition via activating the endogenous antioxidant system. Osteoporos. Int. 2018, 29, 1917–1926. [Google Scholar] [CrossRef] [PubMed]
- Gaffney-Stomberg, E. The impact of trace minerals on bone metabolism. Biol. Trace Elem. Res. 2019, 188, 26–34. [Google Scholar] [CrossRef]
- Karakus, Y.; Ekin, S.; Ilter, S.; Ediz, L.; Ekin, E.C. Antioxidant enzyme activities, total sialic acid, vitamin, and trace element status in the patient with osteoporosis and osteopenia. Clin. Transl. Metab. 2024, 22, 12. [Google Scholar] [CrossRef]
- Ciosek, Ż.; Kot, K.; Rotter, I. Iron, zinc, copper, cadmium, mercury, and bone tissue. Int. J. Environ. Res. Public Health 2023, 20, 2197. [Google Scholar] [CrossRef] [PubMed]
- Flohé, L.; Toppo, S.; Orian, L. The glutathione peroxidase family: Discoveries and mechanism. Free Radic. Biol. Med. 2022, 187, 113–122. [Google Scholar] [CrossRef]
- Cheff, D.M.; Cheng, Q.; Guo, H.; Travers, J.; Klumpp-Thomas, C.; Shen, M.; Hall, M.D. Development of an assay pipeline for the discovery of novel small molecule inhibitors of human glutathione peroxidases GPX1 and GPX4. Redox Biol. 2023, 63, 102719. [Google Scholar] [CrossRef]
- Tumilaar, S.G.; Hardianto, A.; Dohi, H.; Kurnia, D. A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. J. Chem. 2024, 1, 5594386. [Google Scholar] [CrossRef]
- Zinellu, E.; Zinellu, A.; Pau, M.C.; Piras, B.; Fois, A.G.; Mellino, S.; Pirina, P. Glutathione peroxidase in stable chronic obstructive pulmonary disease: A systematic review and meta-analysis. Antioxidants 2021, 10, 1745. [Google Scholar] [CrossRef]
- Pei, J.; Pan, X.; Wei, G.; Hua, Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front. Pharmacol. 2023, 14, 1147414. [Google Scholar] [CrossRef]
- Zhang, N.; Liao, H.; Lin, Z.; Tang, Q. Insights into the role of glutathione peroxidase 3 in non-neoplastic diseases. Biomolecules 2024, 14, 689. [Google Scholar] [CrossRef]
- Buday, K.; Conrad, M. Emerging roles for non-selenium containing ER-resident glutathione peroxidases in cell signaling and disease. Biol. Chem. 2021, 402, 271–287. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Liu, J.; Wang, H. Antioxidant scaffolds for enhanced bone regeneration: Recent advances and challenges. Biomed. Eng. OnLine 2025, 24, 41. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shen, M.; Hou, Q.; Wu, Z.; Xu, J.; Wang, L. 3D printing of reduced glutathione grafted gelatine methacrylate hydrogel scaffold promotes diabetic bone regeneration by activating PI3K/Akt signaling pathway. Int. J. Biol. Macromol. 2022, 222, 1175–1191. [Google Scholar] [CrossRef] [PubMed]
- Anwar, S.; Alrumaihi, F.; Sarwar, T.; Babiker, A.Y.; Khan, A.A.; Prabhu, S.V.; Rahmani, A.H. Exploring therapeutic potential of catalase: Strategies in disease prevention and management. Biomolecules 2024, 14, 697. [Google Scholar] [CrossRef]
- Takio, N.; Yadav, M.; Yadav, H.S. Catalase-mediated remediation of environmental pollutants and potential application–A review. Biocatal. Biotransform 2021, 39, 389–407. [Google Scholar] [CrossRef]
- Nandi, A.; Yan, L.J.; Jana, C.K.; Das, N. Role of catalase in oxidative stress-and age-associated degenerative diseases. Oxid. Med. Cell Longev. 2019, 1, 9613090. [Google Scholar] [CrossRef] [PubMed]
- Hansberg, W. Monofunctional heme-catalases. Antioxidants 2022, 11, 2173. [Google Scholar] [CrossRef]
- Matsui, T.; Sugiyama, R.; Sakanashi, K.; Tamura, Y.; Iida, M.; Nambu, Y.; Ikeda-Saito, M. Hydrogen sulfide bypasses the rate-limiting oxygen activation of heme oxygenase. J. Biol. Chem. 2018, 293, 16931–16939. [Google Scholar] [CrossRef]
- Gebicka, L.; Krych-Madej, J. The role of catalases in the prevention/promotion of oxidative stress. J. Inorg. Biochem. 2019, 197, 110699. [Google Scholar] [CrossRef]
- Kruk, J.; Aboul-Enein, H.Y.; Kładna, A.; Bowser, J.E. Oxidative stress in biological systems and its relation with pathophysiological functions: The effect of physical activity on cellular redox homeostasis. Free Radic. Res. 2019, 53, 497–521. [Google Scholar] [CrossRef]
- Balogh, E.; Tóth, A.; Csiki, D.M.; Jeney, V. Zinc Ameliorates High Pi and Ca-Mediated Osteogenic Differentiation of Mesenchymal Stem Cells. Nutrients 2024, 16, 4012. [Google Scholar] [CrossRef] [PubMed]
- Balogh, E.; Paragh, G.; Jeney, V. Influence of iron on bone homeostasis. Pharmaceuticals 2018, 11, 107. [Google Scholar] [CrossRef] [PubMed]
- Marrocco, I.; Altieri, F.; Peluso, I. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid. Med. Cell Longev. 2017, 1, 6501046. [Google Scholar] [CrossRef]
- Patel, T.A.; Kevadiya, B.D.; Bajwa, N.; Singh, P.A.; Zheng, H.; Kirabo, A.; Patel, K.P. Role of nanoparticle-conjugates and nanotheranostics in abrogating oxidative stress and ameliorating neuroinflammation. Antioxidants 2023, 12, 1877. [Google Scholar] [CrossRef] [PubMed]
- Riegger, J.; Joos, H.; Palm, H.G.; Friemert, B.; Reichel, H.; Ignatius, A.; Brenner, R.E. Striking a new path in reducing cartilage breakdown: Combination of antioxidative therapy and chondroanabolic stimulation after blunt cartilage trauma. J. Cell Mol. Med. 2018, 22, 77–88. [Google Scholar] [CrossRef]
- Riegger, J.; Palm, H.G.; Brenner, R.E. The functional role of chondrogenic stem/progenitor cells: Novel evidence for immunomodulatory properties and regenerative potential after cartilage injury. Eur. Cell Mater. 2018, 36, 110–127. [Google Scholar] [CrossRef]
- Riegger, J.; Schoppa, A.; Ruths, L.; Haffner-Luntzer, M.; Ignatius, A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: A narrative review. Cell Mol. Biol. Lett. 2023, 28, 76. [Google Scholar] [CrossRef]
Mechanism | Positive Role (Physiological ROS) | Negative Role (Excess ROS) | Antioxidant Counteraction |
---|---|---|---|
Inflammation | Early recruitment of neutrophils, macrophages | Chronic inflammation, tissue damage | GSH, SOD, CAT neutralize radicals |
Angiogenesis | VEGF signalling enhanced by ROS | Endothelial dysfunction, reduced perfusion | Antioxidants preserve endothelial NO |
Osteoblasts | Differentiation signalling (Wnt/β-catenin, MAPK) | Apoptosis, impaired differentiation | NAC, vitamin C support osteogenesis |
Osteoclasts | Normal resorption/remodelling | Excessive activation → bone loss | GPx, SOD inhibit osteoclastogenesis |
Collagen synthesis | Controlled ROS stimulate ECM production | Excess ROS → impaired collagen, weak callus | Antioxidants preserve ECM integrity |
Marker | Function | Impact on Bone Healing | Detection Methods | Adv. | Limitat. | Ref. |
---|---|---|---|---|---|---|
MDA | End product of lipid peroxidation; indicates oxidative damage to cell membranes | Elevated levels indicate increased lipid peroxidation and tissue damage, associated with impaired bone regeneration and chronic inflammation | Thiobarbituric acid reactive substances (TBARS) assay, HPLC, spectrophotometry | Easy to measure | Low specificity | [62,65,79] |
4-HNE | Reactive aldehyde formed during lipid peroxidation; modulates cell signalling and apoptosis | High 4-HNE impairs osteoblast function and promotes inflammation, potentially delaying bone healing | ELISA, HPLC, mass spectrometry | High sensitivity | Unstable, difficult to quantify | [70,71] |
F2-Isoprostanes | Stable products of free radical-induced lipid peroxidation; reliable oxidative stress biomarkers | Elevated levels indicate membrane lipid damage and chronic oxidative stress, associated with impaired bone remodelling and inflammation | Mass spectrometry (GC-MS or LC-MS), ELISA | Highly specific | Mass spectrometry required | [79,80,81,82] |
GSH | Major intracellular antioxidant; reduces ROS and maintains redox balance | Supports osteoblast survival and differentiation by neutralizing ROS; depletion correlates with oxidative stress and poor healing | Spectrophotometric assays, HPLC, fluorometric assays | Central redox regulator | Low oral bioavailability | [90,91,92,93,94] |
SOD | Enzyme catalysing dismutation of superoxide radicals into hydrogen peroxide and oxygen | Protects bone cells from superoxide damage; increased activity indicates antioxidant defense during early healing | Activity assays, spectrophotometry, ELISA | Stable, measurable | Requires isoform-specific methods | [105,106,107,108] |
GPx | Enzyme reducing hydrogen peroxide to water using GSH as substrate | Reduces H2O2 toxicity, protecting osteoblasts and promoting normal bone formation | Activity assays, spectrophotometry, ELISA | Protects osteoblasts | Selenium-dependent | [109,115,118] |
CAT | Breaks down hydrogen peroxide into water and oxygen | Prevents H2O2 accumulation; protects bone cells from oxidative damage, promoting effective healing | Activity assays, spectrophotometry, ELISA | Highly efficient | Reduced by stress | [123,124,125,126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, Ł.; Mierzejewska, Ż.A.; Borys, J.; Ratajczak-Wrona, W.; Antonowicz, B. Oxidative Stress and Biomarkers in Craniofacial Fractures Healing: From Lipid Peroxidation to Antioxidant Therapies. Antioxidants 2025, 14, 1070. https://doi.org/10.3390/antiox14091070
Woźniak Ł, Mierzejewska ŻA, Borys J, Ratajczak-Wrona W, Antonowicz B. Oxidative Stress and Biomarkers in Craniofacial Fractures Healing: From Lipid Peroxidation to Antioxidant Therapies. Antioxidants. 2025; 14(9):1070. https://doi.org/10.3390/antiox14091070
Chicago/Turabian StyleWoźniak, Łukasz, Żaneta Anna Mierzejewska, Jan Borys, Wioletta Ratajczak-Wrona, and Bożena Antonowicz. 2025. "Oxidative Stress and Biomarkers in Craniofacial Fractures Healing: From Lipid Peroxidation to Antioxidant Therapies" Antioxidants 14, no. 9: 1070. https://doi.org/10.3390/antiox14091070
APA StyleWoźniak, Ł., Mierzejewska, Ż. A., Borys, J., Ratajczak-Wrona, W., & Antonowicz, B. (2025). Oxidative Stress and Biomarkers in Craniofacial Fractures Healing: From Lipid Peroxidation to Antioxidant Therapies. Antioxidants, 14(9), 1070. https://doi.org/10.3390/antiox14091070