Synergistic Effects of Antioxidant Blends: A Comparative Study on Oxidative Stability of Lipids in Feed Matrices
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Experiment Design, Feed Oxidized Oil Extraction and Antioxidant Samples Preparation
2.3. DPPH (2,2-Diphenyl-1-picrylhydrazyl) Degradation Efficiency, ABTS (2,2′-Azinobis(3-ethylbenzothiazoline-6-sulfonic acid) Radical Absorbing Capacity and Total Antioxidant Capacity Assay
2.4. Determination of Color Parameters (L*, a*, b*)
2.5. Determination of Oxidation
2.6. Data Processing and Statistical Analysis
3. Results
3.1. Degradation of Different Antioxidant Combinations
3.1.1. DPPH Scavenging Efficiency
3.1.2. ABTS Radical Absorbing Capacity
3.1.3. Total Antioxidant Capacity (TAC)assay
3.2. The Effects of Antioxidant Combinations on Color Variation
3.2.1. The Effects of Antioxidant Combinations on L* Values
3.2.2. The Effects of Different Antioxidant Combinations on a*
3.2.3. The Impact of Different Antioxidant Combinations on b* Values
3.3. Impact of the Various Antioxidant Previously Combinations on the Variation in Conjugated Diene Value (CD)
3.4. The Process of Lipid Oxidation in Previously Basal Diet and the Effects of Different Combinations of Antioxidants on the Changes in p-Anisidine Value
3.5. The Effects of Different Combinations of Antioxidants on Changes in Malondialdehyde Value (MDA)
3.6. The Effects of Different Antioxidant Combinations on Acid Value Changes
3.7. The Lipid Oxidation Process in Feed Oils and the Effects of Different Combinations of Antioxidants on Peroxide Value Changes
3.8. The Effects of Different Combinations of Antioxidants on Total Oxidation Value Changes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Zamora-Ledezma, C.; Martínez-Hernandez, J.M.; Elango, J.; Garcia-Garrido, J.; Morillas-Ruiz, J.M.; Díaz-Cruces, E.; Miró-Colmenárez, P.J.; Zamora-Ledezma, E. Trans Fats in Spanish Pastries and Their Influence on Mesenchymal Stem Cell Behavior In Vitro and Related Health Risks. Foods 2025, 14, 2247. [Google Scholar] [CrossRef]
- Bao, Y.; Osowiecka, M.; Ott, C.; Tziraki, V.; Meusburger, L.; Blaßnig, C.; Krivda, D.; Pjevac, P.; Séneca, J.; Strauss, M. Dietary oxidized lipids in redox biology: Oxidized olive oil disrupts lipid metabolism and induces intestinal and hepatic inflammation in C57BL/6J mice. Redox Biol. 2025, 81, 103575. [Google Scholar] [CrossRef]
- Lian, D.; Chen, M.-M.; Wu, H.; Deng, S.; Hu, X. The role of oxidative stress in skeletal muscle myogenesis and muscle disease. Antioxidants 2022, 11, 755. [Google Scholar] [CrossRef]
- Gunathilake, T.; Akanbi, T.O.; Suleria, H.A.; Nalder, T.D.; Francis, D.S.; Barrow, C.J. Seaweed phenolics as natural antioxidants, aquafeed additives, veterinary treatments and cross-linkers for microencapsulation. Mar. Drugs 2022, 20, 445. [Google Scholar] [CrossRef]
- Abou-Hadeed, A.; Mohamed, A.; Hegab, D.; Ghoneim, M. Ethoxyquin and butylated hydroxy toluene distrub the hematological parameters and induce structural and functional alterations in liver of rats. Arch. Razi Inst. 2021, 76, 1765. [Google Scholar]
- Berdikova Bohne, V.J.; Hamre, K.; Arukwe, A. Hepatic biotransformation and metabolite profile during a 2-week depuration period in Atlantic salmon fed graded levels of the synthetic antioxidant, ethoxyquin. Toxicol. Sci. 2006, 93, 11–21. [Google Scholar] [CrossRef][Green Version]
- Xiao, Y.; Gao, X.; Yuan, J. Comparative Study of an Antioxidant Compound and Ethoxyquin on Feed Oxidative Stability and on Performance, Antioxidant Capacity, and Intestinal Health in Starter Broiler Chickens. Antioxidants 2024, 13, 1229. [Google Scholar] [CrossRef]
- Hegab, D.; Mohammed, A.; Metwally, M.; Ghoneim, M.; Abou-Hadeed, A. Ethoxyquin and Butylated Hydroxyl Toluene Induced Hepatotoxic Effect Via Apoptosis, Oxidative Stress in Rats: Tissue Injury-Related CYP1A1 Gene Expression. Zagazig Vet. J. 2021, 49, 456–470. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, Q.; Zheng, N.; Wang, R.; Visentin, S.; He, L.; Liu, S. Plant Polyphenol-Based Injectable Hydrogels: Advances and Biomedical Applications. Adv. Healthc. Mater. 2025, 14, 2500445. [Google Scholar] [CrossRef]
- Laranjinha, J.; Cadenas, E. Redox cycles of caffeic acid, alpha-tocopherol, and ascorbate: Implications for protection of low-density lipoproteins against oxidation. IUBMB Life 1999, 48, 57–65. [Google Scholar]
- Valdés, A.; Alvarez-Rivera, G.; Socas-Rodríguez, B.; Herrero, M.; Ibanez, E.; Cifuentes, A. Foodomics: Analytical opportunities and challenges. Anal. Chem. 2021, 94, 366–381. [Google Scholar] [CrossRef]
- Kamal Eldin, A. 8—Methods to determine the extent of lipid oxidation in foods. In Oxidation in Foods and Beverages and Antioxidant Applications; Decker, E.A., Ed.; Woodhead Publishing: Cambridge, UK, 2010; pp. 181–195. [Google Scholar]
- Durand, E.; Laguerre, M.; Bourlieu-Lacanal, C.; Lecomte, J.; Villeneuve, P. Navigating the complexity of lipid oxidation and antioxidation: A review of evaluation methods and emerging approaches. Prog. Lipid Res. 2025, 97, 101317. [Google Scholar] [CrossRef]
- Gharby, S.; Asbbane, A.; Nid Ahmed, M.; Gagour, J.; Hallouch, O.; Oubannin, S.; Bijla, L.; Goh, K.W.; Bouyahya, A.; Ibourki, M. Vegetable oil oxidation: Mechanisms, impacts on quality, and approaches to enhance shelf life. Food Chem X 2025, 28, 102541. [Google Scholar] [CrossRef]
- Xiao, Y.; Gao, X.; Yuan, J. Substituting ethoxyquin with tea polyphenols and propyl gallate enhanced feed oxidative stability, broiler hepatic antioxidant capacity and gut health. Poult. Sci. 2024, 103, 104368. [Google Scholar] [CrossRef]
- Câmara, O.P.; Costa, E.; do Prado, N.V.; Lucchetta, L.; Moresco, K.S.; Burgardt, V.C.F.; Machado-Lunkes, A. NIX quality control colorimeter can evaluate color of yerba mate. Food Sci. Technol. 2025, 45, e00460. [Google Scholar] [CrossRef]
- Khabbaz, E.S.; Jooyandeh, M.; Jaldani, S.; Farhoosh, R. Cut-off conjugated diene values for rejection of vegetable oils. LWT 2024, 192, 115712. [Google Scholar] [CrossRef]
- Aladedunye, F.; Dellaporta, R. Two new chemical methods for quantifying carbonyl secondary oxidation products in frying oils and their correlation with the p-anisidine value. J. Am. Oil Chem. Soc. 2025, 102, 913–921. [Google Scholar] [CrossRef]
- Varona, E.; Tres, A.; Rafecas, M.; Vichi, S.; Barroeta, A.C.; Guardiola, F. Methods to determine the quality of acid oils and fatty acid distillates used in animal feeding. MethodsX 2021, 8, 101334. [Google Scholar] [CrossRef]
- Ozyurt, V.H.; Çakaloğlu, B.; Otles, S. Optimization of cold press and enzymatic-assisted aqueous oil extraction from tomato seed by response surface methodology: Effect on quality characteristics. J. Food Process. Preserv. 2021, 45, e15471. [Google Scholar] [CrossRef]
- Dragoev, S.G. Lipid peroxidation in muscle foods: Impact on quality, safety and human health. Foods 2024, 13, 797. [Google Scholar] [CrossRef]
- Geng, L.; Liu, K.; Zhang, H. Lipid oxidation in foods and its implications on proteins. Front. Nutr. 2023, 10, 1192199. [Google Scholar] [CrossRef]
- Yong, A.S.K.; Syed Mubarak, N.S.; Zhuo, L.-C.; Lin, Y.-H.; Shapawi, R. Oxidized palm oil diet affects fatty acid profiles, apparent digestibility coefficients and liver of hybrid grouper juvenile (Epinephelus fuscoguttatus× Epinephelus lanceolatus). Front. Sustain. Food Syst. 2022, 6, 837469. [Google Scholar] [CrossRef]
- Prates, J.A. Impact of Heat Stress on Carcass Traits, Meat Quality, and Nutritional Value in Monogastric Animals: Underlying Mechanisms and Nutritional Mitigation Strategies. Foods 2025, 14, 1612. [Google Scholar] [CrossRef]
- Prates, J.A. Nutritional Value and Health Implications of Meat from Monogastric Animals Exposed to Heat Stress. Nutrients 2025, 17, 1390. [Google Scholar] [CrossRef]
- Faraji, P.; Borchert, A.; Ahmadian, S.; Kuhn, H. Butylated hydroxytoluene (BHT) protects SH-SY5Y neuroblastoma cells from ferroptotic cell death: Insights from in vitro and in vivo studies. Antioxidants 2024, 13, 242. [Google Scholar] [CrossRef]
- Błaszczyk, A.; Augustyniak, A.; Skolimowski, J. Ethoxyquin: An antioxidant used in animal feed. Int. J. Food Sci. 2013, 2013, 585931. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Wetterskog, D.; Undeland, I. Loss of redness (a*) as a tool to follow hemoglobin-mediated lipid oxidation in washed cod mince. J. Agric. Food Chem. 2004, 52, 7214–7221. [Google Scholar] [CrossRef]
- Thanonkaew, A.; Benjakul, S.; Visessanguan, W.; Decker, E.A. Lipid oxidation in microsomal fraction of squid muscle (Loligo peali). J. Food Sci. 2005, 70, c478–c482. [Google Scholar] [CrossRef]
- Sanna, D.; Fadda, A. Oxidative Stability of Sunflower Oil: Effect of Blending with an Oil Extracted from Myrtle Liqueur By-Product. Antioxidants 2025, 14, 300. [Google Scholar] [CrossRef]
- Xu, R.; Molenaar, A.J.; Chen, Z.; Yuan, Y. Mode and Mechanism of Action of Omega-3 and Omega-6 Unsaturated Fatty Acids in Chronic Diseases. Nutrients 2025, 17, 1540. [Google Scholar] [CrossRef]
- Anconi, A.C.S.A.; de Jesus Fonseca, J.L.; Nunes, C.A. A digital image-based colorimetric method for measuring free acidity in edible vegetable oils. Food Chem. 2024, 443, 138555. [Google Scholar] [CrossRef]
- Sarkar, A.; Golay, P.-A.; Acquistapace, S.; Craft, B.D. Increasing the oxidative stability of soybean oil through fortification with antioxidants. Int. J. Food Sci. Technol. 2015, 50, 666–673. [Google Scholar] [CrossRef]
- Valgimigli, L. Lipid Peroxidation and Antioxidant Protection. Biomolecules 2023, 13, 1291. [Google Scholar] [CrossRef]
- Kaskah, S.E.; Ehrenhaft, G.; Gollnick, J.; Fischer, C.B. N-b-Hydroxyethyl Oleyl Imidazole as Synergist to Enhance the Corrosion Protection Effect of Natural Cocoyl Sarcosine on Steel. Corros. Mater. Degrad. 2022, 3, 536–552. [Google Scholar] [CrossRef]
- Tavakoli, H.R.; Naderi, M.; Jafari, S.M.; Naeli, M.H. Postmarketing surveillance of the oxidative stability for cooking oils, frying oils, and vanaspati supplied in the retail market. Food Sci. Nutr. 2019, 7, 1455–1465. [Google Scholar] [CrossRef]
- Roveda, A.C.; de Oliveira, I.P.; Caires, A.R.L.; Rinaldo, D.; Ferreira, V.S.; Trindade, M.A.G. Improving butylhydroxytoluene activity with alternative secondary antioxidants: High synergistic effect in stabilizing biodiesel/diesel fuel blends in the presence of pro-oxidative metal. Ind. Crops Prod. 2022, 178, 114558. [Google Scholar] [CrossRef]
- Van Den Berg, A.; Halkes, S.; Quarles Van Ufford, H.; Hoekstra, M.; Beukelman, C. A novel formulation of metal ions and citric acid reduces reactive oxygen species in vitro. J. Wound Care 2003, 12, 413–418. [Google Scholar] [CrossRef]
- Kunjiappan, S.; Ramasamy, L.K.; Kannan, S.; Pavadai, P.; Theivendren, P.; Palanisamy, P. Optimization of ultrasound-aided extraction of bioactive ingredients from Vitis vinifera seeds using RSM and ANFIS modeling with machine learning algorithm. Sci. Rep. 2024, 14, 1219. [Google Scholar] [CrossRef]
- Quesada-Vázquez, S.; Codina Moreno, R.; Della Badia, A.; Castro, O.; Riahi, I. Promising phytogenic feed additives used as anti-mycotoxin solutions in animal nutrition. Toxins 2024, 16, 434. [Google Scholar] [CrossRef]
- Maniwara, P.; Meesombat, R.; Malang, S.; Chailangka, K.; Fong-in, S.; Prommajak, T. Determination of oil quality during crispy pork rind frying: Near infrared spectra and color values as predictors. J. Food Eng. 2024, 383, 112251. [Google Scholar] [CrossRef]
- Sun, M.; Cao, Y.; Liu, H.; Huang, T.; Zhu, Z.; Gao, Y.; Huang, M. Effect of four different cooking methods on the fat digestion characteristics of yellow-feathered chicken. Appl. Food Res. 2024, 4, 100465. [Google Scholar] [CrossRef]
- Ratshoshi, S.; Mukaya, H.E.; Nkazi, D. Hydrocracking of non-edible vegetable oil and waste cooking oils for the production of light hydrocarbon fuels: A review. Can. J. Chem. Eng. 2024, 102, 3014–3028. [Google Scholar] [CrossRef]
- Novais, C.; Molina, A.K.; Abreu, R.M.; Santo-Buelga, C.; Ferreira, I.C.; Pereira, C.; Barros, L. Natural food colorants and preservatives: A review, a demand, and a challenge. J. Agric. Food Chem. 2022, 70, 2789–2805. [Google Scholar] [CrossRef]
Treatment | BHT (99%) | EQ (95%) | CA (99%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Purity (%) | Effective Content (g/ton) | Addition Volume in Diet (g/ton) | Purity (%) | Effective Content (g/ton) | Addition Volume in Diet (g/ton) | Purity (%) | Effective Content (g/ton) | Addition Volume in Diet (g/ton) | |
A | 18 | 36 | 36.36 | ||||||
B | 30 | 60 | 63.16 | ||||||
C | 66 | 132 | 138.95 | ||||||
D | 6 | 12 | 5 | 10 | 10.53 | ||||
E | 6 | 12 | 5 | 10 | 10.53 | 3 | 6 | 6.06 | |
F | 3 | 6 | 10 | 20 | 21.05 | 3 | 6 | 6.06 | |
G | 12.5 | 25 | 1 | 2 | 2.11 | 3 | 6 | 6.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Xiao, Y.; Li, W.; Xu, L.; Yuan, J. Synergistic Effects of Antioxidant Blends: A Comparative Study on Oxidative Stability of Lipids in Feed Matrices. Antioxidants 2025, 14, 981. https://doi.org/10.3390/antiox14080981
Gao X, Xiao Y, Li W, Xu L, Yuan J. Synergistic Effects of Antioxidant Blends: A Comparative Study on Oxidative Stability of Lipids in Feed Matrices. Antioxidants. 2025; 14(8):981. https://doi.org/10.3390/antiox14080981
Chicago/Turabian StyleGao, Xuyang, Yong Xiao, Wen Li, Liting Xu, and Jianmin Yuan. 2025. "Synergistic Effects of Antioxidant Blends: A Comparative Study on Oxidative Stability of Lipids in Feed Matrices" Antioxidants 14, no. 8: 981. https://doi.org/10.3390/antiox14080981
APA StyleGao, X., Xiao, Y., Li, W., Xu, L., & Yuan, J. (2025). Synergistic Effects of Antioxidant Blends: A Comparative Study on Oxidative Stability of Lipids in Feed Matrices. Antioxidants, 14(8), 981. https://doi.org/10.3390/antiox14080981