Overload of Glucose Metabolism as Initiating Factor in Diabetic Embryopathy and Prevention by Glyoxalase 1 Inducer Dietary Supplement
Abstract
1. Introduction
2. Methods
2.1. Rat Whole-Embryo Culture
2.2. Western Blotting
2.3. Metabolic Flux Measurements
2.4. Statistical Analyses
3. Results
3.1. Dysmorphogenesis of Rat Embryo in Culture Induced by High Glucose Concentration: Effect of Glyoxalase 1 Inducer
3.2. Embryonic Hexokinase-2 and Glyoxalase 1 Concentration in Model Hyperglycemia
3.3. Embryonic Consumption of Glucose and Formation of Methylglyoxal in Model Hyperglycemia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loeken, M.R. Advances in Understanding the Molecular Causes of Diabetes-Induced Birth Defects. J. Soc. Gynecol. Investig. 2006, 13, 2–10. [Google Scholar] [CrossRef]
- Kucera, J. Rate and type of congenital anomalies among offspring of diabetic women. J. Reprod. Med. 1971, 7, 73–82. [Google Scholar]
- Correa, A.; Gilboa, S.M.; Besser, L.M.; Botto, L.D.; Moore, C.A.; Hobbs, C.A.; Cleves, M.A.; Riehle-Colarusso, T.J.; Waller, D.K.; Reece, E.A. Diabetes mellitus and birth defects. Am. J. Obstet. Gynecol. 2008, 199, 237.e1–237.e9. [Google Scholar] [CrossRef]
- Evers, I.M.; de Valk, H.W.; Visser, G.H. Risk of complications of pregnancy in women with type 1 diabetes: Nationwide prospective study in the Netherlands. BMJ 2004, 328, 915. [Google Scholar] [CrossRef] [PubMed]
- Loeken, M.R. Mechanisms of Congenital Malformations in Pregnancies with Pre-existing Diabetes. Curr. Diab. Rep. 2020, 20, 54. [Google Scholar] [CrossRef]
- Zhang, T.N.; Huang, X.M.; Zhao, X.Y.; Wang, W.; Wen, R.; Gao, S.Y. Risks of specific congenital anomalies in offspring of women with diabetes: A systematic review and meta-analysis of population-based studies including over 80 million births. PLoS Med. 2022, 19, e1003900. [Google Scholar] [CrossRef] [PubMed]
- Mills, J.L.; Baker, L.; Goldman, A.S. Malformations in infants of diabetic mothers occur before the seventh gestational week. Implications for treatment. Diabetes 1979, 28, 292–293. [Google Scholar] [CrossRef] [PubMed]
- Balsells, M.; García-Patterson, A.; Gich, I.; Corcoy, R. Maternal and fetal outcome in women with type 2 versus type 1 diabetes mellitus: A systematic review and metaanalysis. J. Clin. Endocrinol. Metab. 2009, 94, 4284–4291. [Google Scholar] [CrossRef]
- Gizzo, S.; Patrelli, T.S.; Rossanese, M.; Noventa, M.; Berretta, R.; Di Gangi, S.; Bertin, M.; Gangemi, M.; Nardelli, G.B. An update on diabetic women obstetrical outcomes linked to preconception and pregnancy glycemic profile: A systematic literature review. Sci. World J. 2013, 2013, 254901. [Google Scholar] [CrossRef]
- Becerra, J.E.; Khoury, M.J.; Cordero, J.F.; Erickson, J.D. Diabetes mellitus during pregnancy and the risks for specific birth defects: A population-based case-control study. Pediatrics 1990, 85, 1–9. [Google Scholar] [CrossRef]
- Miller, E.; Hare, J.W.; Cloherty, J.P.; Dunn, P.J.; Gleason, R.E.; Soeldner, J.S.; Kitzmiller, J.L. Elevated maternal hemoglobin A1c in early pregnancy and major congenital anomalies in infants of diabetic mothers. N. Engl. J. Med. 1981, 304, 1331–1334. [Google Scholar] [CrossRef]
- Hanson, U.; Persson, B.; Thunell, S. Relationship between haemoglobin A1C in early type 1 (insulin-dependent) diabetic pregnancy and the occurrence of spontaneous abortion and fetal malformation in Sweden. Diabetologia 1990, 33, 100–104. [Google Scholar] [CrossRef]
- Ylinen, K.; Aula, P.; Stenman, U.H.; Kesäniemi-Kuokkanen, T.; Teramo, K. Risk of minor and major fetal malformations in diabetics with high haemoglobin A1c values in early pregnancy. BMJ 1984, 289, 345–346. [Google Scholar] [CrossRef]
- Akazawa, S. Diabetic embryopathy: Studies using a rat embryo culture system and an animal model. Congen. Anomal. 2005, 45, 73–79. [Google Scholar] [CrossRef]
- Phelan, S.A.; Ito, M.; Loeken, M.R. Neural Tube Defects in Embryos of Diabetic Mice: Role of the Pax-3 Gene and Apoptosis. Diabetes 1997, 46, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Deuchar, E.M. Embryonic malformations in rats, resulting from maternal diabetes: Preliminary observations. Development 1977, 41, 93–99. [Google Scholar] [CrossRef]
- Eriksson, U.J.; Borg, L.A.H. Protection by free oxygen radical scavenging enzymes against glucose-induced embryonic malformations in vitro. Diabetologia 1991, 34, 325–331. [Google Scholar] [CrossRef]
- Cockroft, D.L.; Coppola, P.T. Teratogenic effects of excess glucose on head-fold rat embryos in culture. Teratology 1977, 16, 141–146. [Google Scholar] [CrossRef]
- Garnham, E.A.; Beck, F.; Clarke, C.A.; Stanisstreet, M. Effects of glucose on rat embryos in culture. Diabetologia 1983, 25, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Ornoy, A.; Cohen, A.M. Teratogenic effects of sucrose diet in diabetic and nondiabetic rats. Isr. J. Med. Sci. 1980, 16, 789–791. [Google Scholar]
- Hughes, A.F.; Freeman, R.B.; Fadem, T. The teratogenic effects of sugars on the chick embryo. J. Embryol. Exp. Morphol. 1974, 32, 661–674. [Google Scholar] [CrossRef]
- Eriksson, U.J.; Borg, L.A.H. Diabetes and embryonic malformations. Role of substrate-induced free-oxygen radical production for dysmorphogenesis in cultured rat embryos. Diabetes 1993, 42, 411–419. [Google Scholar] [CrossRef]
- Ornoy, A. Embryonic oxidative stress as a mechanism of teratogenesis with special emphasis on diabetic embryopathy. Reprod. Toxicol. 2007, 24, 31–41. [Google Scholar] [CrossRef]
- Horal, M.; Zhang, Z.; Stanton, R.; Virkamäki, A.; Loeken, M.R. Activation of the hexosamine pathway causes oxidative stress and abnormal embryo gene expression: Involvement in diabetic teratogenesis. Birth Defects Res. Part A Clin. Mol. Teratol. 2004, 70, 519–527. [Google Scholar] [CrossRef]
- Kim, G.; Cao, L.; Reece, E.A.; Zhao, Z. Impact of protein O-GlcNAcylation on neural tube malformation in diabetic embryopathy. Sci. Rep. 2017, 7, 11107. [Google Scholar] [CrossRef]
- Hiramatsu, Y.; Sekiguchi, N.; Hayashi, M.; Isshiki, K.; Yokota, T.; King, G.L.; Loeken, M.R. Diacylglycerol Production and Protein Kinase C Activity Are Increased in a Mouse Model of Diabetic Embryopathy. Diabetes 2002, 51, 2804–2810. [Google Scholar] [CrossRef]
- Gäreskog, M.; Wentzel, P. Altered protein kinase C activation associated with rat embryonic dysmorphogenesis. Pediatr. Res. 2004, 56, 849–857. [Google Scholar] [CrossRef]
- Eriksson, U.J.; Wentzel, P.; Minhas, H.S.; Thornalley, P.J. Teratogenicity of 3-deoxyglucosone and diabetic embryopathy. Diabetes 1998, 47, 1960–1966. [Google Scholar] [CrossRef]
- Wang, F.; Reece, E.A.; Yang, P. Superoxide dismutase 1 overexpression in mice abolishes maternal diabetes-induced endoplasmic reticulum stress in diabetic embryopathy. Am. J. Obstet. Gynecol. 2013, 209, 345.e1–345.e7. [Google Scholar] [CrossRef]
- Li, X.; Xu, C.; Yang, P. c-Jun NH2-terminal kinase 1/2 and endoplasmic reticulum stress as interdependent and reciprocal causation in diabetic embryopathy. Diabetes 2013, 62, 599–608. [Google Scholar] [CrossRef]
- Chen, X.; Zhong, J.; Dong, D.; Liu, G.; Yang, P. Endoplasmic Reticulum Stress-Induced CHOP Inhibits PGC-1α and Causes Mitochondrial Dysfunction in Diabetic Embryopathy. Toxicol. Sci. 2017, 158, 275–285. [Google Scholar] [CrossRef]
- Rabbani, N.; Thornalley, P.J. Hexokinase-linked glycolytic overload and unscheduled glycolysis in hyperglycemia-induced pathogenesis of insulin resistance, beta-cell glucotoxicity, and diabetic vascular complications. Front. Endocrinol. 2024, 14, 1268308. [Google Scholar] [CrossRef]
- Takao, Y.; Akazawa, S.; Matsumoto, K.; Takino, H.; Akazawa, M.; Trocino, R.A.; Maeda, Y.; Okuno, S.; Kawasaki, E.; Uotani, S.; et al. Glucose transporter gene expression in rat conceptus during high glucose culture. Diabetologia 1993, 36, 696–706. [Google Scholar] [CrossRef]
- Sussman, I.; Matschinsky, F.M. Diabetes Affects Sorbitol and myo-Inositol Levels of Neuroectodermal Tissue During Embryogenesis in Rat. Diabetes 1988, 37, 974–981. [Google Scholar] [CrossRef]
- Sigman, B.; Hawkins, R.L.; Tildon, J.T. Fetal development of the multiple forms of rat hexokinase. Biochem. Med. 1972, 6, 29–35. [Google Scholar] [CrossRef]
- Traut, T. Hexokinase. In Allosteric Regulatory Enzymes; Springer: Boston, MA, USA, 2008; pp. 179–198. [Google Scholar] [CrossRef]
- Ellington, S.K.L. Effects of excess glucose on mammalian post-implantation embryos. Internat. J. Dev. BioI. 1997, 41, 299–306. [Google Scholar]
- Irshad, Z.; Xue, M.; Ashour, A.; Larkin, J.R.; Thornalley, P.J.; Rabbani, N. Activation of the unfolded protein response in high glucose treated endothelial cells is mediated by methylglyoxal. Sci. Rep. 2019, 9, 7889. [Google Scholar] [CrossRef]
- Xue, M.; Weickert, M.O.; Qureshi, S.; Ngianga-Bakwin, K.; Anwar, A.; Waldron, M.; Shafie, A.; Messenger, D.; Fowler, M.; Jenkins, G.; et al. Improved glycemic control and vascular function in overweight and obese subjects by glyoxalase 1 inducer formulation. Diabetes 2016, 65, 2282–2294. [Google Scholar] [CrossRef]
- New, D.A.T. Whole-embryo culture and the study of mammalian embryos during oncogenesis. Biol. Rev. 1978, 53, 81–122. [Google Scholar] [CrossRef]
- Wentzel, P.; Thunberg, L.; Eriksson, U.J. Teratogenic effect of diabetic serum is prevented by supplementation of superoxide dismtuase and N -acetylcysteine in rat embryo culture. Diabetologia 1997, 40, 7–14. [Google Scholar] [CrossRef]
- Wentzel, P.; Ejdesjo, A.; Eriksson, U.J. Maternal Diabetes In Vivo and High Glucose In Vitro Diminish GAPDH Activity in Rat Embryos. Diabetes 2003, 52, 1222–1228. [Google Scholar] [CrossRef]
- Wentzel, P.; Eriksson, U.J. A diabetes-like environment increases malformation rate and diminishes prostaglandin E(2) in rat embryos: Reversal by administration of vitamin E and folic acid. Birth Defects Res. A Clin. Mol. Teratol. 2005, 73, 506–511. [Google Scholar] [CrossRef]
- Shepard, T.H.; Tanimura, T.; Park, H.W. Glucose absorption and utilization by rat embryos. Internat. J. Dev. Biol. 1997, 41, 307–314. [Google Scholar]
- Ashour, A.; Xue, M.; Al-Motawa, M.; Thornalley, P.J.; Rabbani, N. Glycolytic overload-driven dysfunction of periodontal ligament fibroblasts in high glucose concentration, corrected by glyoxalase 1 inducer. BMJ Open Diabetes Res. Care 2020, 8, e001458. [Google Scholar] [CrossRef]
- Quijano, C.; Castro, L.; Peluffo, G.; Valez, V.; Radi, R. Enhanced mitochondrial superoxide in hyperglycemic endothelial cells: Direct measurements and formation of hydrogen peroxide and peroxynitrite. Am. J. Physiol.—Heart Circ. Physiol. 2007, 293, H3404–H3414. [Google Scholar] [CrossRef]
- Wakisaka, M.; Yoshinari, M.; Yamamoto, M.; Nakamura, S.; Asano, T.; Himeno, T.; Ichikawa, K.; Doi, Y.; Fujishima, M. Na+-dependent glucose uptake and collagen synthesis by cultured bovine retinal pericytes. Biochim. Biophys. Acta 1997, 1362, 87–96. [Google Scholar] [CrossRef]
- Asano, T.; Wakisaka, M.; Yoshinari, M.; Nakamura, S.; Doi, Y.; Fujishima, M. Troglitazone enhances glycolysis and improves intracellular glucose metabolism in rat mesangial cells. Metabolism 2000, 49, 308–313. [Google Scholar] [CrossRef]
- Eleftheriadis, T.; Pissas, G.; Tsogka, K.; Nikolaou, E.; Liakopoulos, V.; Stefanidis, I. A unifying model of glucotoxicity in human renal proximal tubular epithelial cells and the effect of the SGLT2 inhibitor dapagliflozin. Internat. Urol. Nephrol. 2020, 52, 1179–1189. [Google Scholar] [CrossRef]
- Kim, E.S.; Isoda, F.; Kurland, I.; Mobbs, C.V. Glucose-Induced Metabolic Memory in Schwann Cells: Prevention by PPAR Agonists. Endocrinology 2013, 154, 3054–3066. [Google Scholar] [CrossRef]
- Wentzel, P.; Eriksson, U.J. 8-Iso-PGF(2alpha) administration generates dysmorphogenesis and increased lipid peroxidation in rat embryos in vitro. Teratology 2002, 66, 164–168. [Google Scholar] [CrossRef]
- Pavlinkova, G.; Salbaum, J.M.; Kappen, C. Maternal diabetes alters transcriptional programs in the developing embryo. BMC Genom. 2009, 10, 274. [Google Scholar] [CrossRef]
- Yang, X.; Håkan Borg, L.A.; Eriksson, U.J. Altered mitochondrial morphology of rat embryos in diabetic pregnancy. Anat. Rec. 1995, 241, 255–267. [Google Scholar] [CrossRef]
- Wu, Y.; Viana, M.; Thirumangalathu, S.; Loeken, M.R. AMP-activated protein kinase mediates effects of oxidative stress on embryo gene expression in a mouse model of diabetic embryopathy. Diabetologia 2012, 55, 245–254. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, Y.-K.; Reece, E.A. Demonstration of the Essential Role of Protein Kinase C Isoforms in Hyperglycemia-Induced Embryonic Malformations. Reprod. Sci. 2008, 15, 349–356. [Google Scholar] [CrossRef]
- Xue, M.; Irshad, Z.; Rabbani, N.; Thornalley, P.J. Increased cellular protein modification by methylglyoxal activates endoplasmic reticulum-based sensors of the unfolded protein response. Redox Biol. 2024, 69, 103025. [Google Scholar] [CrossRef]
- Wang, F.; Wu, Y.; Gu, H.; Reece, E.A.; Fang, S.; Gabbay-Benziv, R.; Aberdeen, G.; Yang, P. Ask1 gene deletion blocks maternal diabetes-induced endoplasmic reticulum stress in the developing embryo by disrupting the unfolded protein response signalosome. Diabetes 2015, 64, 973–988. [Google Scholar] [CrossRef]
- Dong, D.; Reece, E.A.; Yang, P. The Nrf2 Activator Vinylsulfone Reduces High Glucose-Induced Neural Tube Defects by Suppressing Cellular Stress and Apoptosis. Reprod. Sci. 2016, 23, 993–1000. [Google Scholar] [CrossRef]
- Akazawa, S.; Unterman, T.; Metzger, B.E. Glucose metabolism in separated embryos and investing membranes during organogenesis in the rat. Metabolism 1994, 43, 830–835. [Google Scholar] [CrossRef]
- Rabbani, N.; Thornalley, P.J. Glyoxalase 1 modulation in obesity and diabetes. Antioxid. Redox Signal. 2018, 30, 354–374. [Google Scholar] [CrossRef]
- Malhotra, D.; Portales-Casamar, E.; Singh, A.; Srivastava, S.; Arenillas, D.; Happel, C.; Shyr, C.; Wakabayashi, N.; Kensler, T.W.; Wasserman, W.W.; et al. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis. Nucleic Acids Res. 2010, 38, 5718–5734. [Google Scholar] [CrossRef]
- Takumi, H.; Nakamura, H.; Simizu, T.; Harada, R.; Kometani, T.; Nadamoto, T.; Mukai, R.; Murota, K.; Kawai, Y.; Terao, J. Bioavailability of orally administered water-dispersible hesperetin and its effect on peripheral vasodilatation in human subjects: Implication of endothelial functions of plasma conjugated metabolites. Food Funct. 2012, 3, 389–398. [Google Scholar] [CrossRef]
- Walle, T.; Hsieh, F.; DeLegge, M.H.; Oatis, J.E.; Walle, U.K. High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab. Disposit. 2004, 32, 1377–1382. [Google Scholar] [CrossRef]
- Boocock, D.J.; Faust, G.E.S.; Patel, K.R.; Schinas, A.M.; Brown, V.A.; Ducharme, M.P.; Booth, T.D.; Crowell, J.A.; Perloff, M.; Gescher, A.J.; et al. Phase I Dose Escalation Pharmacokinetic Study in Healthy Volunteers of Resveratrol, a Potential Cancer Chemopreventive Agent. Cancer Epidemiol. Biomark. Prevent. 2007, 16, 1246–1252. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on the safety of synthetic trans-resveratrol as a novel food pursuant to Regulation (EC) No 258/97. EFSA J. 2016, 14, 4368. [Google Scholar] [CrossRef]
- Wang, X.Y.; Liu, Y.J.; Wang, X.H.; Yu, W.Q.; Yu, J.; Wu, J. Synthesis and biological activity of transition metal complexes of hesperetin. Lishizhen Med. Mater. Medica Res. 2021, 32, 836–839. [Google Scholar]
- Park, S.-J.; Ahmad, F.; Philp, A.; Baar, K.; Williams, T.; Luo, H.; Ke, H.; Rehmann, H.; Taussig, R.; Brown, A.L.; et al. Resveratrol Ameliorates Aging-Related Metabolic Phenotypes by Inhibiting cAMP Phosphodiesterases. Cell 2012, 148, 421–433. [Google Scholar] [CrossRef]
- Hwang, S.-L.; Lin, J.-A.; Shih, P.-H.; Yeh, C.-T.; Yen, G.-C. Pro-cellular survival and neuroprotection of citrus flavonoid: The actions of hesperetin in PC12 cells. Food Funct. 2012, 3, 1082–1090. [Google Scholar] [CrossRef]
- Xue, M.; Momiji, H.; Rabbani, N.; Barker, G.; Bretschneider, T.; Shmygol, A.; Rand, D.A.; Thornalley, P.J. Frequency modulated translocational oscillations of Nrf2 mediate the ARE cytoprotective transcriptional response. Antioxid. Redox Signal. 2015, 23, 613–629. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Ramirez, V.D. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Brit. J. Pharmacol. 2000, 130, 1115–1123. [Google Scholar] [CrossRef] [PubMed]
- Hawley, S.A.; Ross, F.A.; Chevtzoff, C.; Green, K.A.; Evans, A.; Fogarty, S.; Towler, M.C.; Brown, L.J.; Ogunbayo, O.A.; Evans, A.M.; et al. Use of Cells Expressing gamma Subunit Variants to Identify Diverse Mechanisms of AMPK Activation. Cell Metab. 2010, 11, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Fröjdö, S.; Cozzone, D.; Vidal, H.; Pirola, L. Resveratrol is a class IA phosphoinositide 3-kinase inhibitor. Biochem. J. 2007, 406, 511–518. [Google Scholar] [CrossRef]
- Suzawa, M.; Bland, M.L. Insulin signaling in development. Development 2023, 150, dev201599. [Google Scholar] [CrossRef]
- Lee, S.H.; Liu, X.; Jimenez-Morales, D.; Rinaudo, P.F. Murine blastocysts generated by in vitro fertilization show increased Warburg metabolism and altered lactate production. Elife 2022, 11, e79153. [Google Scholar] [CrossRef]
- Singh, C.K.; Kumar, A.; Hitchcock, D.B.; Fan, D.; Goodwin, R.; LaVoie, H.A.; Nagarkatti, P.; DiPette, D.J.; Singh, U.S. Resveratrol prevents embryonic oxidative stress and apoptosis associated with diabetic embryopathy and improves glucose and lipid profile of diabetic dam. Mol. Nutrit. Food Res. 2011, 55, 1186–1196. [Google Scholar] [CrossRef]
- Cao, L.; Tan, C.; Meng, F.; Liu, P.; Reece, E.A.; Zhao, Z. Amelioration of intracellular stress and reduction of neural tube defects in embryos of diabetic mice by phytochemical quercetin. Sci. Rep. 2016, 6, 21491. [Google Scholar] [CrossRef]
- Zhong, J.; Xu, C.; Reece, E.A.; Yang, P. The green tea polyphenol EGCG alleviates maternal diabetes-induced neural tube defects by inhibiting DNA hypermethylation. Am. J. Obstet. Gynecol. 2016, 215, 368.e1–368.e10. [Google Scholar] [CrossRef]
- Gabbay, K.H. Hyperglycaemia, polyol metabolism, and complications of diabetes mellitus. Ann. Rev. Med. 1975, 26, 521–536. [Google Scholar] [CrossRef] [PubMed]
- Hod, M.; Star, S.; Passonneau, J.V.; Unterman, T.G.; Freinkel, N. Effect of hyperglycemia on sorbitol and myo-inositol content of cultured rat conceptus: Failure of aldose reductase inhibitors to modify myo-inositol depletion and dysmorphogenesis. Biochem. Biophys. Res. Commun. 1986, 140, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Akazawa, S.; Akazawa, M.; Akashi, M.; Yamamoto, H.; Maeda, Y.; Yamaguchi, Y.; Yamazaki, H.; Tahara, D.; Nakanishi, T.; et al. Effects of hyperglycaemia on sorbitol and myo -inositol contents of cultured embryos: Treatment with aldose reductase inhibitor and myo -inositol supplementation. Diabetologia 1990, 33, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, U.J.; Brolin, S.E.; Naeser, P. Influence of sorbitol accumulation on growth and development of embryos cultured in elevated levels of glucose and fructose. Diabetes Res. 1989, 11, 27–32. [Google Scholar] [PubMed]
- Jung, J.H.; Loeken, M.R. Diabetic Embryopathy Susceptibility in Mice Is Associated with Differential Dependence on Glucosamine and Modulation of High Glucose-Induced Oxidative Stress. Antioxidants 2021, 10, 1156. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wentzel, P.; Xue, M.; Rabbani, N.; Eriksson, U.J.; Thornalley, P.J. Overload of Glucose Metabolism as Initiating Factor in Diabetic Embryopathy and Prevention by Glyoxalase 1 Inducer Dietary Supplement. Antioxidants 2025, 14, 1022. https://doi.org/10.3390/antiox14081022
Wentzel P, Xue M, Rabbani N, Eriksson UJ, Thornalley PJ. Overload of Glucose Metabolism as Initiating Factor in Diabetic Embryopathy and Prevention by Glyoxalase 1 Inducer Dietary Supplement. Antioxidants. 2025; 14(8):1022. https://doi.org/10.3390/antiox14081022
Chicago/Turabian StyleWentzel, Parri, Mingzhan Xue, Naila Rabbani, Ulf J. Eriksson, and Paul J. Thornalley. 2025. "Overload of Glucose Metabolism as Initiating Factor in Diabetic Embryopathy and Prevention by Glyoxalase 1 Inducer Dietary Supplement" Antioxidants 14, no. 8: 1022. https://doi.org/10.3390/antiox14081022
APA StyleWentzel, P., Xue, M., Rabbani, N., Eriksson, U. J., & Thornalley, P. J. (2025). Overload of Glucose Metabolism as Initiating Factor in Diabetic Embryopathy and Prevention by Glyoxalase 1 Inducer Dietary Supplement. Antioxidants, 14(8), 1022. https://doi.org/10.3390/antiox14081022