Oxidative Stress, High Density Lipoproteins and Hidradenitis Suppurativa: A Prospective Study
Abstract
1. Introduction
2. Methods
2.1. Patients
2.2. Sample Collection
2.3. Levels of Serum Amyloid Protein (SAA)
2.4. Levels of Serum Monocyte Chemoattractant Protein 1 (MCP-1)
2.5. Paraoxonase 1 (PON1) Activities
2.6. Evaluation of the Functional Properties of HDL
2.7. Statistical Analysis
3. Results
3.1. Subjects
3.2. Inflammation Markers and HDL Functions
3.3. Relationship Between Biochemical Parameters and Clinical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bianchi, L.; Caposiena Caro, R.D.; Ganzetti, G.; Molinelli, E.; Dini, V.; Oranges, T.; Romanelli, M.; Fabbrocini, G.; Monfrecola, G.; Napolitano, M.; et al. Sex-related differences of clinical features in hidradenitis suppurativa: Analysis of an Italian-based cohort. Clin. Exp. Dermatol. 2019, 44, e177–e180. [Google Scholar] [CrossRef]
- Ingram, J.R. The epidemiology of hidradenitis suppurativa. Br. J. Dermatol. 2020, 183, 990–998. [Google Scholar] [CrossRef]
- Goldburg, S.R.; Strober, B.E.; Payette, M.J. Hidradenitis suppurativa: Epidemiology, clinical presentation, and pathogenesis. J. Am. Acad. Dermatol. 2020, 82, 1045–1058. [Google Scholar] [CrossRef] [PubMed]
- Kouris, A.; Platsidaki, E.; Christodoulou, C.; Efstathiou, V.; Dessinioti, C.; Tzanetakou, V.; Korkoliakou, P.; Zisimou, C.; Antoniou, C.; Kontochristopoulos, G. Quality of Life and Psychosocial Implications in Patients with Hidradenitis Suppurativa. Dermatology 2016, 232, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Caposiena Caro, R.D.; Molinelli, E.; Brisigotti, V.; Offidani, A.; Bianchi, L. Lymecycline vs. clindamycin plus rifampicin in hidradenitis suppurativa treatment: Clinical and ultrasonography evaluation. Clin. Exp. Dermatol. 2021, 46, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Fonjungo, F.E.; Barnes, L.A.; Aleshin, M.A. Antibiotic, hormonal/metabolic, and retinoid therapies for hidradenitis suppurativa. J. Am. Acad. Dermatol. 2024, 91, S37–S41. [Google Scholar] [CrossRef]
- Mehrmal, S.; Shalabi, M.M.K.; Cho, S.W.; Tolkachjov, S.N.; Aria, A.B. Energy-based device innovations including laser and non-laser therapies in hidradenitis suppurativa treatment. Arch. Dermatol. Res. 2025, 317, 697. [Google Scholar] [CrossRef]
- Molinelli, E.; Brisigotti, V.; Simonetti, O.; Campanati, A.; Sapigni, C.; D’Agostino, G.M.; Giacchetti, A.; Cota, C.; Offidani, A. Efficacy and safety of topical resorcinol 15% as long-term treatment of mild-to-moderate hidradenitis suppurativa: A valid alternative to clindamycin in the panorama of antibiotic resistance. Br. J. Dermatol. 2020, 183, 1117–1119. [Google Scholar] [CrossRef]
- Molinelli, E.; Campanati, A.; Ganzetti, G.; Offidani, A. Biologic Therapy in Immune Mediated Inflammatory Disease: Basic Science and Clinical Concepts. Curr. Drug Saf. 2016, 11, 35–43. [Google Scholar] [CrossRef]
- Vossen, A.; van der Zee, H.H.; Prens, E.P. Hidradenitis Suppurativa: A Systematic Review Integrating Inflammatory Pathways Into a Cohesive Pathogenic Model. Front. Immunol. 2018, 9, 2965. [Google Scholar] [CrossRef]
- Aarts, P.; Dudink, K.; Vossen, A.; van Straalen, K.R.; Ardon, C.B.; Prens, E.P.; van der Zee, H.H. Clinical Implementation of Biologics and Small Molecules in the Treatment of Hidradenitis Suppurativa. Drugs 2021, 81, 1397–1410. [Google Scholar] [CrossRef] [PubMed]
- Diotallevi, F.; Simonetti, O.; Rizzetto, G.; Molinelli, E.; Radi, G.; Offidani, A. Biological Treatments for Pediatric Psoriasis: State of the Art and Future Perspectives. Int. J. Mol. Sci. 2022, 23, 11128. [Google Scholar] [CrossRef] [PubMed]
- Bukvic Mokos, Z.; Mise, J.; Balic, A.; Marinovic, B. Understanding the Relationship Between Smoking and Hidradenitis Suppurativa. Acta Dermatovenerol. Croat. 2020, 28, 9–13. [Google Scholar]
- Maarouf, M.; Platto, J.F.; Shi, V.Y. The role of nutrition in inflammatory pilosebaceous disorders: Implication of the skin-gut axis. Australas. J. Dermatol. 2019, 60, e90–e98. [Google Scholar] [CrossRef]
- Pink, A.E.; Simpson, M.A.; Desai, N.; Trembath, R.C.; Barker, J.N.W. gamma-Secretase mutations in hidradenitis suppurativa: New insights into disease pathogenesis. J. Investig. Dermatol. 2013, 133, 601–607. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Bacchetti, T.; Campanati, A.; Ferretti, G.; Simonetti, O.; Liberati, G.; Offidani, A.M. Oxidative stress and psoriasis: The effect of antitumour necrosis factor-alpha inhibitor treatment. Br. J. Dermatol. 2013, 168, 984–989. [Google Scholar] [CrossRef]
- Bacchetti, T.; Simonetti, O.; Ricotti, F.; Offidani, A.; Ferretti, G. Plasma oxidation status and antioxidant capacity in psoriatic children. Arch. Dermatol. Res. 2020, 312, 33–39. [Google Scholar] [CrossRef]
- Khan, A.Q.; Agha, M.V.; Sheikhan, K.; Younis, S.M.; Tamimi, M.A.; Alam, M.; Ahmad, A.; Uddin, S.; Buddenkotte, J.; Steinhoff, M. Targeting deregulated oxidative stress in skin inflammatory diseases: An update on clinical importance. Biomed. Pharmacother. 2022, 154, 113601. [Google Scholar] [CrossRef]
- Ni, Q.; Zhang, P.; Li, Q.; Han, Z. Oxidative Stress and Gut Microbiome in Inflammatory Skin Diseases. Front. Cell Dev. Biol. 2022, 10, 849985. [Google Scholar] [CrossRef]
- Simonetti, O.; Bacchetti, T.; Ferretti, G.; Molinelli, E.; Rizzetto, G.; Bellachioma, L.; Offidani, A. Oxidative Stress and Alterations of Paraoxonases in Atopic Dermatitis. Antioxidants 2021, 10, 697. [Google Scholar] [CrossRef]
- Su, L.; Wang, F.; Wang, Y.; Qin, C.; Yang, X.; Ye, J. Circulating biomarkers of oxidative stress in people with acne vulgaris: A systematic review and meta-analysis. Arch. Dermatol. Res. 2024, 316, 105. [Google Scholar] [CrossRef]
- Barter, P.J.; Nicholls, S.; Rye, K.A.; Anantharamaiah, G.M.; Navab, M.; Fogelman, A.M. Antiinflammatory properties of HDL. Circ. Res. 2004, 95, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Bonacina, F.; Pirillo, A.; Catapano, A.L.; Norata, G.D. HDL in Immune-Inflammatory Responses: Implications beyond Cardiovascular Diseases. Cells 2021, 10, 1061. [Google Scholar] [CrossRef] [PubMed]
- Paiva-Lopes, M.J.; Delgado Alves, J. Psoriasis-associated vascular disease: The role of HDL. J. Biomed. Sci. 2017, 24, 73. [Google Scholar] [CrossRef] [PubMed]
- Trakaki, A.; Marsche, G. High-Density Lipoprotein (HDL) in Allergy and Skin Diseases: Focus on Immunomodulating Functions. Biomedicines 2020, 8, 558. [Google Scholar] [CrossRef]
- He, L.; Qin, S.; Dang, L.; Song, G.; Yao, S.; Yang, N.; Li, Y. Psoriasis decreases the anti-oxidation and anti-inflammation properties of high-density lipoprotein. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2014, 1841, 1709–1715. [Google Scholar] [CrossRef]
- Durrington, P.; Soran, H. Paraoxonase 1: Evolution of the enzyme and of its role in protecting against atherosclerosis. Curr. Opin. Infect. Dis. 2024, 35, 171–178. [Google Scholar] [CrossRef]
- Jakubowski, H. The Molecular Bases of Anti-Oxidative and Anti-Inflammatory Properties of Paraoxonase 1. Antioxidants 2024, 13, 1292. [Google Scholar] [CrossRef]
- Khandave, P.Y.; Goyal, K.; Dobariya, P.; Pande, A.H. Human Paraoxonase 1: From Bloodstream Enzyme to Disease Fighter & Therapeutic Intervention. Curr. Protein Pept. Sci. 2025, 26, 282–295. [Google Scholar] [CrossRef]
- Mackness, B.; Mackness, M. Anti-inflammatory properties of paraoxonase-1 in atherosclerosis. Adv. Exp. Med. Biol. 2010, 660, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Mahrooz, A. Pleiotropic functions and clinical importance of circulating HDL-PON1 complex. Adv. Clin. Chem. 2024, 121, 132–171. [Google Scholar] [CrossRef] [PubMed]
- Gschwandtner, M.; Derler, R.; Midwood, K.S. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front. Immunol. 2019, 10, 2759. [Google Scholar] [CrossRef]
- Mackness, B.; Hine, D.; Liu, Y.; Mastorikou, M.; Mackness, M. Paraoxonase-1 inhibits oxidised LDL-induced MCP-1 production by endothelial cells. Biochem. Biophys. Res. Commun. 2004, 318, 680–683. [Google Scholar] [CrossRef]
- Camps, J.; Castane, H.; Rodriguez-Tomas, E.; Baiges-Gaya, G.; Hernandez-Aguilera, A.; Arenas, M.; Iftimie, S.; Joven, J. On the Role of Paraoxonase-1 and Chemokine Ligand 2 (C-C motif) in Metabolic Alterations Linked to Inflammation and Disease. A 2021 Update. Biomolecules 2021, 11, 971. [Google Scholar] [CrossRef]
- Camps, J.; Rodriguez-Gallego, E.; Garcia-Heredia, A.; Triguero, I.; Riera-Borrull, M.; Hernandez-Aguilera, A.; Luciano-Mateo, F.; Fernandez-Arroyo, S.; Joven, J. Paraoxonases and chemokine (C-C motif) ligand-2 in noncommunicable diseases. Adv. Clin. Chem. 2014, 63, 247–308. [Google Scholar] [CrossRef]
- Cho, K.H. The Current Status of Research on High-Density Lipoproteins (HDL): A Paradigm Shift from HDL Quantity to HDL Quality and HDL Functionality. Int. J. Mol. Sci. 2022, 23, 3967. [Google Scholar] [CrossRef]
- Namiri-Kalantari, R.; Gao, F.; Chattopadhyay, A.; Wheeler, A.A.; Navab, K.D.; Farias-Eisner, R.; Reddy, S.T. The dual nature of HDL: Anti-Inflammatory and pro-Inflammatory. Biofactors 2015, 41, 153–159. [Google Scholar] [CrossRef]
- Pirillo, A.; Catapano, A.L.; Norata, G.D. Biological Consequences of Dysfunctional HDL. Curr. Med. Chem. 2019, 26, 1644–1664. [Google Scholar] [CrossRef]
- Han, C.Y.; Tang, C.; Guevara, M.E.; Wei, H.; Wietecha, T.; Shao, B.; Subramanian, S.; Omer, M.; Wang, S.; O’Brien, K.D.; et al. Serum amyloid A impairs the antiinflammatory properties of HDL. J. Clin. Invest. 2016, 126, 266–281. [Google Scholar] [CrossRef]
- Ferretti, G.; Bacchetti, T.; Masciangelo, S.; Grugni, G.; Bicchiega, V. Altered inflammation, paraoxonase-1 activity and HDL physicochemical properties in obese humans with and without Prader-Willi syndrome. Dis. Model. Mech. 2012, 5, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Zouboulis, C.C.; Tzellos, T.; Kyrgidis, A.; Jemec, G.B.E.; Bechara, F.G.; Giamarellos-Bourboulis, E.J.; Ingram, J.R.; Kanni, T.; Karagiannidis, I.; Martorell, A.; et al. Development and validation of the International Hidradenitis Suppurativa Severity Score System (IHS4), a novel dynamic scoring system to assess HS severity. Br. J. Dermatol. 2017, 177, 1401–1409. [Google Scholar] [CrossRef] [PubMed]
- Bacchetti, T.; Morresi, C.; Ferretti, G.; Larsson, A.; Akerfeldt, T.; Svensson, M. Effects of Seven Weeks of Combined Physical Training on High-Density Lipoprotein Functionality in Overweight/Obese Subjects. Metabolites 2023, 13, 1068. [Google Scholar] [CrossRef] [PubMed]
- Kelesidis, T.; Currier, J.S.; Huynh, D.; Meriwether, D.; Charles-Schoeman, C.; Reddy, S.T.; Fogelman, A.M.; Navab, M.; Yang, O.O. A biochemical fluorometric method for assessing the oxidative properties of HDL. J. Lipid Res. 2011, 52, 2341–2351. [Google Scholar] [CrossRef]
- Frew, J.W. Unravelling the complex pathogenesis of hidradenitis suppurativa. Br. J. Dermatol. 2025, 192, i3–i14. [Google Scholar] [CrossRef]
- Li, Y.H.; Chuang, S.H.; Huang, Y.C.; Yang, H.J. A comprehensive systemic review and meta-analysis of the association between lipid profile and hidradenitis suppurativa. Arch. Dermatol. Res. 2025, 317, 225. [Google Scholar] [CrossRef]
- Sabat, R.; Chanwangpong, A.; Schneider-Burrus, S.; Metternich, D.; Kokolakis, G.; Kurek, A.; Philipp, S.; Uribe, D.; Wolk, K.; Sterry, W. Increased prevalence of metabolic syndrome in patients with acne inversa. PLoS ONE 2012, 7, e31810. [Google Scholar] [CrossRef]
- Tzellos, T.; Zouboulis, C.C. Which hidradenitis suppurativa comorbidities should I take into account? Exp. Dermatol. 2022, 31 (Suppl. S1), 29–32. [Google Scholar] [CrossRef]
- Tzellos, T.; Zouboulis, C.C.; Gulliver, W.; Cohen, A.D.; Wolkenstein, P.; Jemec, G.B. Cardiovascular disease risk factors in patients with hidradenitis suppurativa: A systematic review and meta-analysis of observational studies. Br. J. Dermatol. 2015, 173, 1142–1155. [Google Scholar] [CrossRef]
- D’Onghia, M.; Malvaso, D.; Galluccio, G.; Antonelli, F.; Coscarella, G.; Rubegni, P.; Peris, K.; Calabrese, L. Evidence on Hidradenitis Suppurativa as an Autoinflammatory Skin Disease. J. Clin. Med. 2024, 13, 5211. [Google Scholar] [CrossRef]
- Kelly, G.; Hughes, R.; McGarry, T.; van den Born, M.; Adamzik, K.; Fitzgerald, R.; Lawlor, C.; Tobin, A.M.; Sweeney, C.M.; Kirby, B. Dysregulated cytokine expression in lesional and nonlesional skin in hidradenitis suppurativa. Br. J. Dermatol. 2015, 173, 1431–1439. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.L.; Karl, I.; Giner, T.; Poppe, H.; Schmidt, M.; Presser, D.; Goebeler, M.; Bauer, B. Keratinocytes and neutrophils are important sources of proinflammatory molecules in hidradenitis suppurativa. Br. J. Dermatol. 2016, 174, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Ozkur, E.; Erdem, Y.; Altunay, I.K.; Demir, D.; Dolu, N.C.; Serin, E.; Cerman, A.A. Serum irisin level, insulin resistance, and lipid profiles in patients with hidradenitis suppurativa: A case-control study. An. Bras. Dermatol 2020, 95, 708–713. [Google Scholar] [CrossRef] [PubMed]
- Witte-Handel, E.; Wolk, K.; Tsaousi, A.; Irmer, M.L.; Mossner, R.; Shomroni, O.; Lingner, T.; Witte, K.; Kunkel, D.; Salinas, G.; et al. The IL-1 Pathway Is Hyperactive in Hidradenitis Suppurativa and Contributes to Skin Infiltration and Destruction. J. Investig. Dermatol. 2019, 139, 1294–1305. [Google Scholar] [CrossRef]
- Frings, V.G.; Roth, N.; Glasel, M.; Bauer, B.; Goebeler, M.; Presser, D.; Kerstan, A. Hidradenitis Suppurativa: Absence of Hyperhidrosis but Presence of a Proinflammatory Signature in Patients’ Sweat. Acta Derm. Venereol. 2022, 102, adv00793. [Google Scholar] [CrossRef]
- Leung, T.F.; Ma, K.C.; Hon, K.L.; Lam, C.W.; Wan, H.; Li, C.Y.; Chan, I.H. Serum concentration of macrophage-derived chemokine may be a useful inflammatory marker for assessing severity of atopic dermatitis in infants and young children. Pediatr. Allergy Immunol. 2003, 14, 296–301. [Google Scholar] [CrossRef]
- Vestergaard, C.; Just, H.; Baumgartner Nielsen, J.; Thestrup-Pedersen, K.; Deleuran, M. Expression of CCR2 on monocytes and macrophages in chronically inflamed skin in atopic dermatitis and psoriasis. Acta Derm. Venereol. 2004, 84, 353–358. [Google Scholar] [CrossRef]
- Kolattukudy, P.E.; Niu, J. Inflammation, endoplasmic reticulum stress, autophagy, and the monocyte chemoattractant protein-1/CCR2 pathway. Circ. Res. 2012, 110, 174–189. [Google Scholar] [CrossRef]
- Karabacak, M.; Kahraman, F.; Sert, M.; Celik, E.; Adali, M.K.; Varol, E. Increased plasma monocyte chemoattractant protein-1 levels in patients with isolated low high-density lipoprotein cholesterol. Scand. J. Clin. Lab. Invest. 2015, 75, 327–332. [Google Scholar] [CrossRef]
- Sans, T.; Rull, A.; Luna, J.; Mackness, B.; Mackness, M.; Joven, J.; Ibanez, M.; Pariente, R.; Rodriguez, M.; Ortin, X.; et al. Monocyte chemoattractant protein-1 and paraoxonase-1 and 3 levels in patients with sepsis treated in an intensive care unit: A preliminary report. Clin. Chem. Lab. Med. 2012, 50, 1409–1415. [Google Scholar] [CrossRef]
- Navrazhina, K.; Garcet, S.; Frew, J.W.; Zheng, X.; Coats, I.; Guttman-Yassky, E.; Krueger, J.G. The inflammatory proteome of hidradenitis suppurativa skin is more expansive than that of psoriasis vulgaris. J. Am. Acad. Dermatol. 2022, 86, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Iannone, M.; Salvia, G.; Fidanzi, C.; Bevilacqua, M.; Janowska, A.; Morganti, R.; Romanelli, M.; Dini, V. Serum Amyloid A: A Potential New Marker of Severity in Hidradenitis Suppurativa. Ski. Appendage Disord. 2023, 9, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Srour, J.; Marsela, E.; Fiocco, Z.; Kendziora, B.; Gurtler, A.; French, L.E.; Reinholz, M. Serum levels of serum amyloid A, interleukin-6 and C-reactive protein correlate with severity of hidradenitis suppurativa. Ital. J. Dermatol. Venereol. 2023, 158, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Hua, S.; Song, C.; Geczy, C.L.; Freedman, S.B.; Witting, P.K. A role for acute-phase serum amyloid A and high-density lipoprotein in oxidative stress, endothelial dysfunction and atherosclerosis. Redox Rep. 2009, 14, 187–196. [Google Scholar] [CrossRef]
- Husebekk, A.; Skogen, B.; Husby, G. Characterization of amyloid proteins AA and SAA as apolipoproteins of high density lipoprotein (HDL). Displacement of SAA from the HDL-SAA complex by apo AI and apo AII. Scand. J. Immunol. 1987, 25, 375–381. [Google Scholar] [CrossRef]
- Chami, B.; Barrie, N.; Cai, X.; Wang, X.; Paul, M.; Morton-Chandra, R.; Sharland, A.; Dennis, J.M.; Freedman, S.B.; Witting, P.K. Serum amyloid A receptor blockade and incorporation into high-density lipoprotein modulates its pro-inflammatory and pro-thrombotic activities on vascular endothelial cells. Int. J. Mol. Sci. 2015, 16, 11101–11124. [Google Scholar] [CrossRef]
- Tolle, M.; Huang, T.; Schuchardt, M.; Jankowski, V.; Prufer, N.; Jankowski, J.; Tietge, U.J.; Zidek, W.; van der Giet, M. High-density lipoprotein loses its anti-inflammatory capacity by accumulation of pro-inflammatory-serum amyloid A. Cardiovasc. Res. 2012, 94, 154–162. [Google Scholar] [CrossRef]
Controls (n = 16) | HS Patients (n = 44) | |
---|---|---|
Age (years) | 34.1 ± 3.8 | 32.9 ± 2.0 |
BMI (kg/m2) | 26.3 ± 0.8 | 27.1 ± 0.8 |
IHS4 | - | 14.4 ± 1.2 |
Age of onset (years) | - | 16.8 ± 0.8 |
TG (mg/dL) | 107.1 ± 11.2 | 104.7 ± 9.2 |
TC (mg/dL) | 184.7 ± 6.4 | 171.4 ± 4.9 |
LDL-C (mg/dL) | 105.9 ± 6.1 | 102.3 ± 4.1 |
HDL-C (mg/dL) | 52.7 ± 3.4 | 49.5 ± 1.6 |
Controls (n = 16) | HS Patients (n = 44) | |
---|---|---|
SAA (mg/L) | 0.76 ± 0.12 | 1.52 ± 0.10 *** |
MCP-1 (ng/L) | 108.6 ± 4.8 | 186.6 ± 7.5 *** |
PON1-paraoxonase (U/mL) | 396.3 ± 30.3 | 213.8 ± 19.0 *** |
PON1-arylesterase (U/mL) | 107.5 ± 4.2 | 79.1 ± 2.9 *** |
PON1-lactonase (U/mL) | 73.7 ± 8.8 | 40.1 ± 3.1 *** |
DOR (FU/min) | 1.3 ± 0.1 | 2.1 ± 0.1 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molinelli, E.; Morresi, C.; Dragonetti, M.L.; De Simoni, E.; Candelora, M.; Marasca, S.; Gambini, D.; Belleggia, S.; Dragonetti, P.; Di Benedetto, G.; et al. Oxidative Stress, High Density Lipoproteins and Hidradenitis Suppurativa: A Prospective Study. Antioxidants 2025, 14, 1014. https://doi.org/10.3390/antiox14081014
Molinelli E, Morresi C, Dragonetti ML, De Simoni E, Candelora M, Marasca S, Gambini D, Belleggia S, Dragonetti P, Di Benedetto G, et al. Oxidative Stress, High Density Lipoproteins and Hidradenitis Suppurativa: A Prospective Study. Antioxidants. 2025; 14(8):1014. https://doi.org/10.3390/antiox14081014
Chicago/Turabian StyleMolinelli, Elisa, Camilla Morresi, Maria Luisa Dragonetti, Edoardo De Simoni, Matteo Candelora, Samuele Marasca, Daisy Gambini, Sara Belleggia, Pietro Dragonetti, Giovanni Di Benedetto, and et al. 2025. "Oxidative Stress, High Density Lipoproteins and Hidradenitis Suppurativa: A Prospective Study" Antioxidants 14, no. 8: 1014. https://doi.org/10.3390/antiox14081014
APA StyleMolinelli, E., Morresi, C., Dragonetti, M. L., De Simoni, E., Candelora, M., Marasca, S., Gambini, D., Belleggia, S., Dragonetti, P., Di Benedetto, G., Ferretti, G., Bacchetti, T., & Simonetti, O. (2025). Oxidative Stress, High Density Lipoproteins and Hidradenitis Suppurativa: A Prospective Study. Antioxidants, 14(8), 1014. https://doi.org/10.3390/antiox14081014