Fetal Growth Is Associated with Amniotic Fluid Antioxidant Capacity, Oxidative Stress, Minerals and Prenatal Supplementation: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design, Subject Recruitment and Ethics
2.2. Biochemical Measures
2.2.1. ICP-MS Analyses of AF Minerals and Trace Elements
2.2.2. Analysis of AF OS Biomarkers
2.2.3. Statistical Analyses
3. Results
3.1. Maternal and Fetal Characteristics
3.2. Associations of OS, Antioxidant Capacity, and AF Minerals with Ultrasound Measurements at Early and Late Gestation
3.2.1. Early (16–20 Weeks)
3.2.2. Late (32–36 Weeks)
3.2.3. Association of Supplements, Elements with OS, and Antioxidant Biomarkers in AF
4. Discussion
4.1. Associations of AF Mineral/Trace Elements with OS and Antioxidants
4.2. Associations of Ultrasound Measurement with AF OS/Antioxidant Biomarkers
4.3. Associations of AF Minerals and Trace Elements with Fetal Growth During Early Gestation (≤20 Weeks of Gestation)
4.4. Late Gestation (>20 Weeks of Gestation)
4.5. Consequences of OTC MVM Supplementation on In-Utero Fetal Growth
4.6. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, L.P.; Al-Hasan, Y. Impact of oxidative stress in fetal programming. J. Pregnancy 2012, 2012, 582748. [Google Scholar] [CrossRef]
- Chiarello, D.I.; Abad, C.; Rojas, D.; Toledo, F.; Vázquez, C.M.; Mate, A.; Sobrevia, L.; Marín, R. Oxidative stress: Normal pregnancy versus preeclampsia. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165354. [Google Scholar] [CrossRef] [PubMed]
- Blok, E.L.; Burger, R.J.; Bergeijk, J.E.V.; Bourgonje, A.R.; Goor, H.V.; Ganzevoort, W.; Gordijn, S.J. Oxidative stress biomarkers for fetal growth restriction in umbilical cord blood: A scoping review. Placenta 2024, 154, 88–109. [Google Scholar] [CrossRef]
- Draganovic, D.; Lucic, N.; Jojic, D.; Milicevic, S. Correlation of Oxidative Stress Markers with Ultrasound and Cardiotocography Parameters with Hypertension Induced Pregnancy. Acta Inform. Med. 2017, 25, 19–23. [Google Scholar] [CrossRef]
- Hussain, T.; Murtaza, G.; Metwally, E.; Kalhoro, D.H.; Kalhoro, M.S.; Rahu, B.A.; Sahito, R.G.A.; Yin, Y.; Yang, H.; Chughtai, M.I.; et al. The Role of Oxidative Stress and Antioxidant Balance in Pregnancy. Mediat. Inflamm. 2021, 2021, 9962860. [Google Scholar] [CrossRef] [PubMed]
- Kapustin, R.; Chepanov, S.; Kopteeva, E.; Arzhanova, O. Maternal serum nitrotyrosine, 8-isoprostane and total antioxidant capacity levels in pre-gestational or gestational diabetes mellitus. Gynecol. Endocrinol. 2020, 36, 36–42. [Google Scholar] [CrossRef]
- Gupta, A.; Kant, S.; Gupta, S.K.; Prakash, S.; Kalaivani, M.; Pandav, C.S.; Rai, S.K.; Misra, P. Serum FRAP Levels and Pre-eclampsia among Pregnant Women in a Rural Community of Northern India. J. Clin. Diagn. Res. 2016, 10, 12–15. [Google Scholar] [CrossRef]
- Ferguson, K.K.; Kamai, E.M.; Cantonwine, D.E.; Mukherjee, B.; Meeker, J.D.; McElrath, T.F. Associations between repeated ultrasound measures of fetal growth and biomarkers of maternal oxidative stress and inflammation in pregnancy. Am. J. Reprod. Immunol. 2018, 80, e13017. [Google Scholar] [CrossRef] [PubMed]
- Lindström, E.; Persson, L.Å.; Raqib, R.; El Arifeen, S.; Basu, S.; Ekström, E.C. Associations between oxidative parameters in pregnancy and birth anthropometry in a cohort of women and children in rural Bangladesh: The MINIMat-cohort. Free Radic. Res. 2012, 46, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Kacerovsky, M.; Tothova, L.; Menon, R.; Vlkova, B.; Musilova, I.; Hornychova, H.; Prochazka, M.; Celec, P. Amniotic fluid markers of oxidative stress in pregnancies complicated by preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med. 2015, 28, 1250–1259. [Google Scholar] [CrossRef]
- Bogavac, M.; Lakic, N.; Simin, N.; Nikolic, A.; Sudji, J.; Bozin, B. Biomarkers of oxidative stress in amniotic fluid and complications in pregnancy. J. Matern. Fetal Neonatal Med. 2012, 25, 104–108. [Google Scholar] [CrossRef]
- Longini, M.; Perrone, S.; Kenanidis, A.; Vezzosi, P.; Marzocchi, B.; Petraglia, F.; Centini, G.; Buonocore, G. Isoprostanes in amniotic fluid: A predictive marker for fetal growth restriction in pregnancy. Free Radic. Biol. Med. 2005, 38, 1537–1541. [Google Scholar] [CrossRef] [PubMed]
- Burlingame, J.M.; Esfandiari, N.; Sharma, R.K.; Mascha, E.; Falcone, T. Total antioxidant capacity and reactive oxygen species in amniotic fluid. Obstet. Gynecol. 2003, 101, 756–761. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K.O.; Ru, Y. Iron status of North American pregnant women: An update on longitudinal data and gaps in knowledge from the United States and Canada. Am. J. Clin. Nutr. 2017, 106, 1647S–1654S. [Google Scholar] [CrossRef] [PubMed]
- Brannon, P.M.; Taylor, C.L. Iron Supplementation during Pregnancy and Infancy: Uncertainties and Implications for Research and Policy. Nutrients 2017, 9, 1327. [Google Scholar] [CrossRef]
- Saros, L.; Hart, K.; Koivuniemi, E.; Egan, B.; Raats, M.; Laitinen, K. Micronutrient supplement recommendations in pregnancy vary across a geographically diverse range of countries: A narrative review. Nutr. Res. 2024, 123, 18–37. [Google Scholar] [CrossRef] [PubMed]
- Keats, E.C.; Haider, B.A.; Tam, E.; Bhutta, Z.A. Multiple-micronutrient supplementation for women during pregnancy. Cochrane Database Syst. Rev. 2019, 3, CD004905. [Google Scholar] [CrossRef]
- Rajendran, S.; Bobby, Z.; Habeebullah, S.; Elizabeth Jacob, S. Differences in the response to iron supplementation on oxidative stress, inflammation, and hematological parameters in nonanemic and anemic pregnant women. J. Matern. Fetal Neonatal Med. 2022, 35, 465–471. [Google Scholar] [CrossRef]
- Anetor, J.I.; Ajose, O.A.; Adeleke, F.N.; Olaniyan-Taylor, G.O.; Fasola, F.A. Depressed antioxidant status in pregnant women on iron supplements: Pathologic and clinical correlates. Biol. Trace Elem. Res. 2010, 136, 157–170. [Google Scholar] [CrossRef]
- Hariharan, S.; Dharmaraj, S. Selenium and selenoproteins: It’s role in regulation of inflammation. Inflammopharmacology 2020, 28, 667–695. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Xu, W.; Chen, Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants 2023, 12, 1675. [Google Scholar] [CrossRef]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef]
- Jalali, L.M.; Koski, K.G. Amniotic fluid minerals, trace elements, and prenatal supplement use in humans emerge as determinants of fetal growth. J. Trace Elem. Med. Biol. 2018, 50, 139–145. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Wong, S.H.; Knight, J.A.; Hopfer, S.M.; Zaharia, O.; Leach, C.N., Jr.; Sunderman, F.W., Jr. Lipoperoxides in plasma as measured by liquid-chromatographic separation of malondialdehyde-thiobarbituric acid adduct. Clin. Chem. 1987, 33, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.N.; Chan, H.M.; Kubow, S. Oxidative stress status and development of late organogenesis stage rat whole embryos cultured from gestational days 13.5 to 14.5. Toxicol. In Vitro 2007, 21, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. [2] Ferric reducinglantioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous 85 measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Chouhan, R.; Sidhu, K. Maternal Factors for Low-Birth-Weight Babies. Med. J. Armed Forces India 2009, 65, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Perrone, S.; Tataranno, M.L.; Beretta, V.; Buonocore, G.; Gitto, E. Oxidative Stress in Fetuses and Newborns. Antioxidants 2024, 13, 1157. [Google Scholar] [CrossRef]
- Health Canada. Dietary Reference Intakes Tables: Reference Values for Elements. 2023. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/healthy-eating/dietary-reference-intakes/tables/reference-values-elements.html (accessed on 1 January 2024).
- Krejpcio, Z. Essentiality of chromium for human nutrition and health. Pol. J. Environ. Stud. 2001, 10, 399–404. [Google Scholar]
- Deng, G.; Dyroff, S.L.; Lockart, M.; Bowman, M.K.; Vincent, J.B. The effects of the glycation of transferrin on chromium binding and the transport and distribution of chromium in vivo. J. Inorg. Biochem. 2016, 164, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.H.; Liu, P.J.; Hsia, S.; Chuang, C.J.; Chen, P.C. Role of certain trace minerals in oxidative stress, inflammation, CD4/CD8 lymphocyte ratios and lung function in asthmatic patients. Ann. Clin. Biochem. 2011, 48, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Aguilar Diaz De Leon, J.; Borges, C.R. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. J. Vis. Exp. 2020, 159. [Google Scholar] [CrossRef]
- Filice, M.; Reinero, F.R.; Cerra, M.C.; Faggio, C.; Leonetti, F.L.; Micarelli, P.; Giglio, G.; Sperone, E.; Barca, D.; Imbrogno, S. Contamination by Trace Elements and Oxidative Stress in the Skeletal Muscle of Scyliorhinus canicula from the Central Tyr-rhenian Sea. Antioxidants 2023, 12, 524. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Li, Y.; Shi, L.; Hussain, R.; Mehmood, K.; Tang, Z.; Zhang, H. Heavy metals induced mitochondrial dysfunction in animals: Molecular mechanism of toxicity. Toxicology 2022, 469, 153136. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Tian, G.; Li, B.; Chen, D.; He, J.; Zheng, P.; Mao, X.; Yu, J.; Huang, Z.; Yu, B. Trace Mineral Overload Induced Hepatic Oxidative Damage and Apoptosis in Pigs with Long-Term High-Level Dietary Mineral Exposure. J. Agric. Food Chem. 2016, 64, 1841–1849. [Google Scholar] [CrossRef]
- Jomova, K.; Baros, S.; Valko, M. Redox active metal-induced oxidative stress in biological systems. Transit. Met. Chem. 2012, 37, 127–134. [Google Scholar] [CrossRef]
- Sharma, M.; Khan, F.H.; Mahmood, R. Nickel chloride generates cytotoxic ROS that cause oxidative damage in human erythrocytes. J. Trace Elem. Med. Biol. 2023, 80, 127272. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Alomar, S.Y.; Nepovimova, E.; Kuca, K.; Valko, M. Heavy metals: Toxicity and human health effects. Arch. Toxicol. 2025, 99, 153–209. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, J.; Lou, B.; Wu, R.; Wang, G.; Lu, C.; Wang, H.; Pi, J.; Xu, Y. The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules 2020, 10, 240. [Google Scholar] [CrossRef] [PubMed]
- Gamble, M.V.; Liu, X.; Slavkovich, V.; Pilsner, J.R.; Ilievski, V.; Factor-Litvak, P.; Levy, D.; Alam, S.; Islam, M.; Parvez, F.; et al. Folic acid supplementation lowers blood arsenic. Am. J. Clin. Nutr. 2007, 86, 1202–1209. [Google Scholar] [CrossRef]
- Joo, E.H.; Kim, Y.R.; Kim, N.; Jung, J.E.; Han, S.H.; Cho, H.Y. Effect of Endogenic and Exogenic Oxidative Stress Triggers on Adverse Pregnancy Outcomes: Preeclampsia, Fetal Growth Restriction, Gestational Diabetes Mellitus and Preterm Birth. Int. J. Mol. Sci. 2021, 22, 10122. [Google Scholar] [CrossRef] [PubMed]
- Morales, E.; Garcia-Serna, A.M.; Serrano-Munuera, A.; Sanchez-Campillo, M.; Soler, J.; Elena, M.C.; Aviles, F.V.; Larqué, E.; Garcia-Marcos, L. Effects of prenatal oxidative stress levels on fetal programming: Results from the NELA birth cohort. Rev. D’épidémiologie Santé Publique 2018, 66, 244–245. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, P.; Ramiro-Cortijo, D.; Reyes-Hernández, C.G.; López de Pablo, A.L.; González, M.C.; Arribas, S.M. Implication of Oxidative Stress in Fetal Programming of Cardiovascular Disease. Front. Physiol. 2018, 9, 602. [Google Scholar] [CrossRef] [PubMed]
- Grzeszczak, K.; Kwiatkowski, S.; Kosik-Bogacka, D. The Role of Fe, Zn, and Cu in Pregnancy. Biomolecules 2020, 10, 1176. [Google Scholar] [CrossRef] [PubMed]
- Zadrozna, M.; Gawlik, M.; Nowak, B.; Marcinek, A.; Mrowiec, H.; Walas, S.; Wietecha-Posłuszny, R.; Zagrodzki, P. Antiox-idants activities and concentration of selenium, zinc and copper in preterm and IUGR human placentas. J. Trace Elem. Med. Biol. 2009, 23, 144–148. [Google Scholar] [CrossRef]
- Howe, C.G.; Claus Henn, B.; Eckel, S.P.; Farzan, S.F.; Grubbs, B.H.; Chavez, T.A.; Hodes, T.L.; Faham, D.; Al-Marayati, L.; Lerner, D.; et al. Prenatal Metal Mixtures and Birth Weight for Gestational Age in a Predominately Lower-Income Hispanic Pregnancy Cohort in Los Angeles. Environ. Health Perspect. 2020, 128, 117001. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, F.; Li, J.; Jiang, Y.; Zhao, S.; Knibbs, L.D.; Zhang, X.; Wang, Y.; Zhang, Q.; Wang, Q.; et al. Sex-specific relationships between prenatal exposure to metal mixtures and birth weight in a Chinese birth cohort. Ecotoxicol. Environ. Saf. 2023, 262, 115158. [Google Scholar] [CrossRef]
- Gull, A.; Dar, A.A.; Sharma, M. Effects of heavy metals on the health of pregnant women and fetus: A review. Int. J. Theor. Appl. Sci. 2018, 10, 1–9. [Google Scholar]
- Issah, I.; Duah, M.S.; Arko-Mensah, J.; Bawua, S.A.; Agyekum, T.P.; Fobil, J.N. Exposure to metal mixtures and adverse pregnancy and birth outcomes: A systematic review. Sci. Total Environ. 2024, 908, 168380. [Google Scholar] [CrossRef] [PubMed]
- Martiniaková, M.; Boboňová, I.; Omelka, R.; Grosskopf, B.; Chovancová, H.; Spanková, J.; Toman, R. Simultaneous subchronic exposure to selenium and diazinon as possible risk factor for osteoporosis in adult male rats. Acta Vet. Scand. 2013, 55, 81. [Google Scholar] [CrossRef]
- Wibowo, N.; Irwinda, R.; Rivai, A.T. Serum zinc, selenium, iron, and copper levels in pregnant women with fetal growth restriction. Clin. Exp. Obstet. Gynecol. 2019, 46, 892–896. [Google Scholar] [CrossRef]
- Gang, H.; Zuo, J.; Jia, Z.; Liu, H.; Xia, W.; Xu, S.; Shen, Y.; Li, Y. Trimester-Specific Urinary Strontium Concentrations during Pregnancy and Longitudinally Assessed Fetal Growth: Findings from a Prospective Cohort. J. Nutr. 2024, 154, 224–232. [Google Scholar] [CrossRef]
- Pors Nielsen, S. The biological role of strontium. Bone 2004, 35, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Barneo-Caragol, C.; Martínez-Morillo, E.; Rodríguez-González, S.; Lequerica-Fernández, P.; Vega-Naredo, I.; Álvarez, F.V. Increased serum strontium levels and altered oxidative stress status in early-onset preeclampsia. Free Radic. Biol. Med. 2019, 138, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yalin, S.; Sagír, O.; Comelekoglu, U.; Berköz, M.; Eroglu, P. Strontium ranelate treatment improves oxidative damage in os-teoporotic rat model. Pharmacol. Rep. 2012, 64, 396–402. [Google Scholar] [CrossRef]
- Zhou, W.; Duan, T. Effects of maternal calcium and protein intake on the development and bone metabolism of offspring mice. Open Life Sci. 2023, 18, 20220631. [Google Scholar] [CrossRef] [PubMed]
- Koo, W.W.; Walters, J.C.; Esterlitz, J.; Levine, R.J.; Bush, A.J.; Sibai, B. Maternal calcium supplementation and fetal bone mineralization. Obstet. Gynecol. 1999, 94, 577–582. [Google Scholar] [CrossRef]
- Chang, S.C.; O’Brien, K.O.; Nathanson, M.S.; Caulfield, L.E.; Mancini, J.; Witter, F.R. Fetal femur length is influenced by ma-ternal dairy intake in pregnant African American adolescents. Am. J. Clin. Nutr. 2003, 77, 1248–1254. [Google Scholar] [CrossRef]
- Thomas, M.; Weisman, S.M. Calcium supplementation during pregnancy and lactation: Effects on the mother and the fetus. Am. J. Obstet. Gynecol. 2006, 194, 937–945. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aleem, H.; Merialdi, M.; Elsnosy, E.D.; Elsedfy, G.O.; Abdel-Aleem, M.A.; Villar, J. The effect of calcium supplementation during pregnancy on fetal and infant growth: A nested randomized controlled trial within WHO calcium supplementation trial. J. Matern. Fetal Neonatal Med. 2009, 22, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Thureen, P.J.; Hay, W.W. Neonatal Nutrition and Metabolism; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Gale, T.F.; Bunch, J.D. The effect of the time of administration of chromium trioxide on the embryotoxic response in hamsters. Teratology 1979, 19, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Junaid, M.; Murthy, R.C.; Saxena, D.K. Chromium fetotoxicity in mice during late pregnancy. Vet. Hum. Toxicol. 1995, 37, 320–323. [Google Scholar] [PubMed]
- Bailey, M.M.; Boohaker, J.G.; Sawyer, R.D.; Behling, J.E.; Rasco, J.F.; Jernigan, J.J.; Hood, R.D.; Vincent, J.B. Exposure of pregnant mice to chromium picolinate results in skeletal defects in their offspring. Birth Defects Res. B Dev. Reprod. Toxicol. 2006, 77, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Hu, J.; Zhang, B.; Li, Y.; Wise, J.P., Sr.; Bassig, B.A.; Zhou, A.; Savitz, D.A.; Xiong, C.; Zhao, J.; et al. A case-control study of maternal exposure to chromium and infant low birth weight in China. Chemosphere 2016, 144, 1484–1489. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.B.; Sorenson, J.C.; Pollard, E.L.; Kirby, J.K.; Audhya, T. Evidence-Based Recommendations for an Optimal Prenatal Supplement for Women in the U.S., Part Two: Minerals. Nutrients 2021, 13, 1849. [Google Scholar] [CrossRef]
- Parisi, F.; di Bartolo, I.; Savasi, V.M.; Cetin, I. Micronutrient supplementation in pregnancy: Who, what and how much? Obstet. Med. 2019, 12, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.F.; Field, C.J.; Olstad, D.L.; Loehr, S.; Ramage, S.; McCargar, L.J. APrON Study Team. Use of micronutrient sup-plements among pregnant women in Alberta: Results from the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort. Matern. Child. Nutr. 2015, 11, 497–510. [Google Scholar] [CrossRef]
- Dubois, L.; Diasparra, M.; Bédard, B.; Colapinto, C.K.; Fontaine-Bisson, B.; Morisset, A.S.; Tremblay, R.E.; Fraser, W.D. Adequacy of nutritional intake from food and supplements in a cohort of pregnant women in Québec, Canada: The 3D Cohort Study (Design, Develop, Discover). Am. J. Clin. Nutr. 2017, 106, 541–548. [Google Scholar] [CrossRef]
- Bailey, R.L.; Pac, S.G.; Fulgoni, V.L.; Reidy, K.C.; Catalano, P.M. Estimation of Total Usual Dietary Intakes of Pregnant Women in the United States. JAMA Netw. Open 2019, 2, e195967. [Google Scholar] [CrossRef] [PubMed]
- Health Canada. Prenatal Nutrition Guidelines for Health Professionals. 2009. Available online: https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/fn-an/alt_formats/hpfb-dgpsa/pdf/pubs/guide-prenatal-eng.pdf (accessed on 1 January 2024).
- Health Canada. Dietary Reference Intakes: Reference Values for Elements. 2005. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/healthy-eating/dietary-reference-intakes/tables/reference-values-macronutrients.html (accessed on 1 January 2024).
Characteristics | Mean ± SD or % |
---|---|
Maternal | |
Age, years | 37.1 ± 3.01 |
Pre-Pregnancy weight, kg | 64.6 ± 14.1 |
BMI, kg/m2 | 24.5 ± 5.3 |
Parity | |
0 | 25% |
1 | 40% |
2 | 25% |
≥3 | 10% |
Ethnicity | |
Caucasian | 60% |
Asian | 14% |
Black | 14% |
Others 1 | 12% |
Amniocentesis, week | 15.7 ± 1.1 |
Infant | |
Male | 45.7% |
Female | 54.3% |
Gestational age, weeks | 39.5 ± 1.4 |
Birth Weight, g | 3480.6 ± 499.2 |
Supplementation (≤20 weeks) | |
OTC MVM 2,3 | |
Yes (n = 143) | 81% |
No (n = 33) | 19% |
Measurements | OTC MVM 1 | |||
---|---|---|---|---|
Mean | Yes | No | p-Value | |
Fetal Ultrasound | ||||
Bi-parietal diameter (BPD%) | 0.53 ± 0.09 | 0.53 ± 0.13 | 0.50 ± 0.12 | 0.044 * |
Head circumference (HC%) | 0.46 ± 0.10 | 0.47 ± 0.10 | 0.44 ± 0.10 | 0.049 * |
Abdominal circumference (AC%) | 0.48 ± 0.12 | 0.47 ± 0.12 | 0.49 ± 0.13 | ns |
Femur length (FL%) | 0.55 ± 0.10 | 0.55 ± 0.10 | 0.56 ± 0.11 | ns |
Estimated weight (g) | 326 ± 59 | 330 ± 57 | 309 ± 65 | 0.030 * |
Amniotic Fluid Minerals (μg/L) | ||||
Aluminum (Al) | 18.0 ± 15.4 | 17.8 ± 16.1 | 18.9 ± 12.9 | ns |
Arsenic (As) | 4.0 ± 1.6 | 3.9 ± 1.5 | 4.2 ± 1.8 | ns |
Calcium (Ca) | 52,293 ± 15,101 | 52,533 ± 16,095 | 51,255 ± 9806 | ns |
Chromium (Cr) | 3.2 ± 1.4 | 3.1 ± 0.9 | 3.7 ± 2.5 | 0.006 * |
Copper (Cu) | 102 ± 39 | 100 ± 37 | 108 ± 45 | ns |
Iron (Fe) | 536 ± 302 | 515 ± 197 | 625 ± 562 | 0.030 * |
Lead (Pb) | 1.6 ± 0.9 | 1.7 ± 1.1 | 1.5 ± 0.7 | ns |
Magnesium (Mg) | 13,336 ± 2642 | 13,457 ± 2756 | 12,811 ± 2027 | ns |
Nickle (Ni) | 0.7 ± 2.1 | 0.7 ± 2.2 | 0.8 ± 1.5 | ns |
Potassium (K) | 142,191 ± 23,079 | 142,888 ± 24,962 | 139,168 ± 11,673 | ns |
Rubidium (Rb) | 140 ± 30 | 141 ± 31 | 133 ± 22 | ns |
Selenium (Se) | 14.0 ± 5.2 | 13.9 ± 5.4 | 14.4 ± 4.1 | ns |
Silver (Ag) | 0.2 ± 0.5 | 0.2 ± 0.5 | 0.1 ± 0.4 | ns |
Strontium (Sr) | 17.4 ± 6.9 | 17.5 ± 7.1 | 17.1 ± 6.6 | ns |
Zinc (Zn) | 88.9 ± 38.8 | 86.7 ± 34.6 | 98.7 ± 53.1 | 0.050 * |
AF OS (μM) | ||||
NO 2 | 31.7 ± 14.7 | 32.7 ± 15.1 | 27.1 ± 12.2 | 0.050 * |
TBARS 3 | 3.8 ± 1.5 | 3.8 ± 1.5 | 3.7 ± 1.2 | ns |
FRAP 4 | 860 ± 148 | 857 ± 141 | 871 ± 178 | ns |
(A) Ultrasound at 16–20 Weeks 1 | |||
Elements | β | p-Value | Adj R2 |
BPD, mm | |||
Cu | −0.10 | 0.036 * | 0.66 |
MVM (yes/no) | 0.02 | ns | |
HC, mm | |||
Ni | −0.06 | 0.050 * | 0.84 |
MVM (yes/no) | 0.03 | ns | |
AC, mm | |||
Sr | 0.08 | 0.040 * | 0.77 |
Infant Sex | 0.11 | 0.008 * | |
MVM (yes/no) | −0.01 | ns | |
FL, mm | |||
Se | −0.24 | 0.001 * | 0.20 |
Ethnicity | 0.16 | 0.040 * | |
MVM (yes/no) | 0.02 | ns | |
FL, mm | |||
NO | 0.27 | 0.002 * | 0.19 |
Ethnicity | 0.19 | 0.030 * | |
MVM (yes/no) | −0.03 | ns | |
Estimated Weight, g | |||
FRAP | −0.13 | 0.035 * | 0.76 |
Infant sex | 0.13 | 0.031 * | |
MVM (yes/no) | 0.09 | ns | |
(B) Ultrasound at 32–36 Weeks | |||
Elements | β | p-Value | Adj R2 |
BPD, mm | |||
Ca | 0.13 | 0.045 * | 0.36 |
BMI, kg/m2 | 0.19 | 0.004 * | |
Infant Sex | 0.16 | 0.018 * | |
MVM (yes/no) | −0.03 | ns | |
HC, mm | |||
As | −0.14 | 0.040 * | 0.35 |
MVM (yes/no) | 0.03 | ns | |
HC, mm | |||
Cr | −0.14 | 0.036 * | 0.35 |
BMI, kg/m2 | 0.18 | 0.010 * | |
MVM (yes/no) | 0.02 | ns | |
FL, mm | |||
FRAP | −0.24 | 0.009 * | 0.55 |
MVM (yes/no) | −0.04 | ns | |
EstWt, g | |||
FRAP | −0.19 | 0.027 * | 0.62 |
BMI, kg/m2 | 0.26 | 0.001 * | |
MVM (yes/no) | 0.03 | ns |
OS/Antioxidant 1 | β | p-Value | Adj R2 |
---|---|---|---|
Elements | |||
TBARS 2 | |||
Ca | 0.46 | 0.000 * | 0.20 |
Cu | 0.49 | 0.000 * | 0.23 |
Fe | 0.44 | 0.000 * | 0.21 |
Mg | 0.33 | 0.002 * | 0.10 |
Ni | 0.36 | 0.001 * | 0.12 |
Sr | 0.35 | 0.001 * | 0.11 |
Zn | 0.44 | 0.000 * | 0.19 |
FRAP 3 | |||
As | −0.24 | 0.042 * | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kohzadi, M.; Kubow, S.; Koski, K.G. Fetal Growth Is Associated with Amniotic Fluid Antioxidant Capacity, Oxidative Stress, Minerals and Prenatal Supplementation: A Retrospective Study. Antioxidants 2025, 14, 184. https://doi.org/10.3390/antiox14020184
Kohzadi M, Kubow S, Koski KG. Fetal Growth Is Associated with Amniotic Fluid Antioxidant Capacity, Oxidative Stress, Minerals and Prenatal Supplementation: A Retrospective Study. Antioxidants. 2025; 14(2):184. https://doi.org/10.3390/antiox14020184
Chicago/Turabian StyleKohzadi, Mozhgan, Stan Kubow, and Kristine G. Koski. 2025. "Fetal Growth Is Associated with Amniotic Fluid Antioxidant Capacity, Oxidative Stress, Minerals and Prenatal Supplementation: A Retrospective Study" Antioxidants 14, no. 2: 184. https://doi.org/10.3390/antiox14020184
APA StyleKohzadi, M., Kubow, S., & Koski, K. G. (2025). Fetal Growth Is Associated with Amniotic Fluid Antioxidant Capacity, Oxidative Stress, Minerals and Prenatal Supplementation: A Retrospective Study. Antioxidants, 14(2), 184. https://doi.org/10.3390/antiox14020184