Genomic Analysis of Carotenoid and Vitamin E Biosynthetic Pathways in the Extremophilic Red Alga Cyanidioschyzon merolae
Abstract
1. Introduction
2. Materials and Methods
2.1. Material and Growth Conditions
2.2. Bioinformatics Analysis
| Gene 1 | C. merolae Gene ID | A. thaliana | S. cerevisiae | ||
|---|---|---|---|---|---|
| Homolog ID | Similarity | Homolog ID | Similarity | ||
| DXS | CMF089C | At4g15560 | 67.17% | - | - |
| DXR | CMG148C | At5g62790 | 64.77% | - | - |
| MCT | CMH115C | At2g02500 | 54.30% | - | - |
| CMK | CMS444C | At2g26930 | 50.84% | - | - |
| MDS | CMT435C | At1g63970 | 29.21% | - | - |
| HDS | CML284C | At5g60600 | 38.39% | - | - |
| HDR | CMJ152C | At4g34350 | 68.67% | - | - |
| IDI | CMB062C | At3g02780 | 55.31% | BK006949.2 | 48.45% |
| HMGS | CMM189C | At4g11820 | 50.64% | NM_001182489.1 | 51.73% |
| AACT1 | CMA042C | At5g47720 | 51.26% | BK006942.2 | 60.22% |
| AACT2 | CME087C | At5g48230 | 62.39% | BK006949.2 | 48.33% |
| AACT3 | CMR380C | At5g47720 | 21.54% | BK006942.2 | 23.77% |
| FPPS | CMM269C | At4g17190 | 63.21% | BK006943.2 | 61.22% |
| GGPPS | CMK058C | At4g36810 | 61.27% | BK006936.2 | 21.32% |
| PSY | CMM166C | At5g17230 | 46.95% | - | - |
| PDS | CMK151C | At4g14210 | 68.72% | - | - |
| ZDS | CMT061C | At3g04870 | 63.71% | - | - |
| ZISO | CMQ364C | At1g10830 | 47.80% | - | - |
| CRTISO | CMN268C | At1g06820 | 52.75% | - | - |
| LCYB | CMK050C | At3g10230 | 53.44% | - | - |
| CrtR | CMV041C | - | - | - | - |
| HPPD | CMI063C | At1g06570 | 50.31% | - | - |
| GGR | CMJ154C | At1g74470 | 71.46% | - | - |
| VTE1 | CML326C | At4g32770 | 41.07% | - | - |
| VTE2.1 | CMN202C | At2g18950 | 55.88% | - | - |
| VTE2.2 | CMS413C | At2g18950 | 47.86% | - | - |
| VTE3 | CMD011C | At3g63410 | 62.83% | - | - |
| VTE4 | CMT560C | At1g64970 | 43.03% | - | - |
| VTE5 | CMR252C | At5g04490 | 39.42% | - | - |
| VTE6 | CMS030C | At1g78620 | 52.28% | - | - |

2.3. Metabolite Analysis
3. Results
3.1. Terpenoid Metabolism
3.2. Carotenoid Biosynthesis
3.3. Vitamin E Biosynthesis
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AACT | acetyl-CoA acetyltransferases |
| BHT | butylated hydroxytoluene |
| CDP-ME | 4-diphosphocytidyl-2-C-methyl-D-erythritol |
| CDP-ME2P | 4-cytidinediphospho-2-C-methylerythritol 2-phosphate |
| CMK | CDP-ME kinase |
| CRTISO | carotene isomerase |
| DMAPP | dimethylallyl diphosphate |
| DMPBQ | 2,3-dimethyl-6-phytyl-1,4-benzoquinone |
| DXP | 1-deoxy-D-xylulose 5-phosphate |
| DXR | DXP reductoisomerase |
| DXS | DXP synthase |
| FPP | farnesyl diphosphate |
| FPPS | FPP synthase |
| GC-MS | gas chromatography–mass spectrometry |
| GGPP | geranylgeranyl diphosphate |
| GGPPS | GGPP synthase |
| GGR | geranylgeranyl reductase |
| GPP | geranyl diphosphate |
| GPPS | GPP synthase |
| HDR | HMBPP reductase |
| HDS | HMBPP synthase |
| HGA | homogentisic acid |
| HGGT | HGA geranylgeranyltransferase |
| HMBPP | 4-hydroxy-3-methylbut-2-enyl diphosphate |
| HMG-CoA | 3-hydroxy-3-methylglutaryl-CoA |
| HMGS | HMG-CoA synthase |
| HPLC | high-performance liquid chromatography |
| HPPD | 4-hydroxyphenylpyruvate dioxygenase |
| HPT | HGA phytyltransferase |
| IPI | IPP/DMAPP isomerase |
| IPP | isopentenyl diphosphate |
| LCYB | lycopene β-cyclase |
| LCYE | lycopene ε-cyclase |
| MCT | MEP cytidyltransferase |
| MDS | MEcPP synthase |
| MEcPP | 2-C-methyl-D-erythritol 2,4-cyclo-diphosphate |
| MEP | 2-C-methyl-D-erythritol 4-phosphate |
| MGGBQ | 2-methyl-6-geranylgeranyl-1,4-benzoquinol |
| MPBQ | 2-methyl-6-phytyl-1,4-benzoquinol |
| MTBE | methyl tert-butyl ether |
| MVA | mevalonate |
| PDA | photodiode array detector |
| PDS | phytoene desaturase |
| PSY | phytoene synthase |
| TPS | terpene synthase |
| ZDS | ζ-carotene desaturase |
| ZISO | ζ-carotene isomerase |
References
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef]
- Abu-Ghosh, S.; Dubinsky, Z.; Verdelho, V.; Iluz, D. Unconventional high-value products from microalgae: A review. Bioresour. Technol. 2021, 329, 124895. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.W.; Yap, J.Y.; Show, P.L.; Suan, N.H.; Juan, J.C.; Ling, T.C.; Lee, D.-J.; Chang, J.-S. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 2017, 229, 53–62. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Ben-Amotz, A.; Avron, M. The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol. 1990, 8, 121–126. [Google Scholar] [CrossRef]
- Dillon, J.C.; Phuc, A.P.; Dubacq, J.P. Nutritional value of the alga Spirulina. World Rev. Nutr. Diet. 1995, 77, 32–46. [Google Scholar] [PubMed]
- Lorenz, R.T.; Cysewski, G.R. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol. 2000, 18, 160–167. [Google Scholar] [CrossRef]
- Costa, J.A.V.; de Morais, M.G. The role of biochemical engineering in the production of biofuels from microalgae. Bioresour. Technol. 2011, 102, 2–9. [Google Scholar] [CrossRef]
- Rawat, I.; Kumar, R.R.; Mutanda, T.; Bux, F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy 2011, 88, 3411–3424. [Google Scholar] [CrossRef]
- Matsuzaki, M.; Misumi, O.; Shin, I.T.; Maruyama, S.; Takahara, M.; Miyagishima, S.Y.; Mori, T.; Nishida, K.; Yagisawa, F.; Nishida, K.; et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 2004, 428, 653–657. [Google Scholar] [CrossRef]
- Seckbach, J. Algae and Cyanobacteria in Extreme Environments; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Krinsky, N.I.; Mayne, S.T.; Sies, H. Carotenoids in Health and Disease; Dekker: New York, NY, USA, 2004. [Google Scholar]
- Packer, L.; Fuchs, J. Vitamin E in Health and Disease; Dekker: New York, NY, USA, 2002. [Google Scholar]
- Vranová, E.; Coman, D.; Gruissem, W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 2013, 64, 665–700. [Google Scholar] [CrossRef]
- Szymańska, R.; Nowicka, B.; Kruk, J. Vitamin E—Occurrence, biosynthesis by plants and functions in human nutrition. Mini Rev. Med. Chem. 2017, 17, 1039–1052. [Google Scholar] [CrossRef]
- Cunningham, F.X., Jr.; Gantt, E. Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 557–583. [Google Scholar] [CrossRef]
- DellaPenna, D.; Pogson, B.J. Vitamin synthesis in plants: Tocopherols and carotenoids. Annu. Rev. Plant Biol. 2006, 57, 711–738. [Google Scholar] [CrossRef] [PubMed]
- Takaichi, S. Distribution, biosynthesis, and function of carotenoids in oxygenic phototrophic algae. Mar. Drugs 2025, 23, 62. [Google Scholar] [CrossRef] [PubMed]
- Wakahama, T.; Laza-Martínez, A.; Bin Haji Mohd Taha, A.I.; Okuyama, H.; Yoshida, K.; Kogame, K.; Awai, K.; Kawachi, M.; Maoka, T.; Takaichi, S. Structural confirmation of a unique carotenoid lactoside, P457, in Symbiodinium sp. strain NBRC 104787 isolated from a sea anemone and its distribution in dinoflagellates and various marine organisms. J. Phycol. 2012, 48, 1392–1402. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, F.X., Jr.; Lee, H.; Gantt, E. Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae. Eukaryot. Cell 2007, 6, 533–545. [Google Scholar] [CrossRef]
- Parys, E.; Krupnik, T.; Kułak, I.; Kania, K.; Romanowska, E. Photosynthesis of the Cyanidioschyzon merolae cells in blue, red, and white light. Photosynth. Res. 2021, 147, 61–73. [Google Scholar] [CrossRef]
- Lyu, D.; Wang, Z.; Yang, L.-E.; Hu, C.; Lu, S.; Deng, Y. Diurnal rhythm of carotenoid metabolism in the intertidal red algal seaweed Neoporphyra haitanensis. Algal Res. 2025, 85, 103846. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, Y.; Wang, Z.; Sun, X.; Tang, K. Engineering tocopherol biosynthetic pathway in Arabidopsis leaves and its effect on antioxidant metabolism. Plant Sci. 2010, 178, 312–320. [Google Scholar] [CrossRef]
- Sattler, S.E.; Cahoon, E.B.; Coughlan, S.J.; DellaPenna, D. Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol. 2003, 132, 2184–2195. [Google Scholar] [CrossRef]
- Christianson, D.W. Structural and chemical biology of terpenoid cyclases. Chem Rev. 2017, 117, 11570–11648. [Google Scholar] [CrossRef]
- Lange, B.M.; Rujan, T.; Martin, W.; Croteau, R. Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. USA 2000, 97, 13172–13177. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. The non-mevalonate DOXP/MEP (deoxyxylulose 5-phosphate/methylerythritol 4-phosphate) pathway of chloroplast isoprenoid and pigment biosynthesis. In The Chloroplast: Basics Applications; Rebeiz, C.A., Benning, C., Bohnert, H.J., Daniell, H., Hoober, J.K., Lichtenthaler, H.K., Portis, A.R., Tripathy, B.C., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 95–118. [Google Scholar]
- Grauvogel, C.; Petersen, J. Isoprenoid biosynthesis authenticates the classification of the green alga Mesostigma viride as an ancient streptophyte. Gene 2007, 396, 125–133. [Google Scholar] [CrossRef]
- Qiu, H.; Yoon, H.S.; Bhattacharya, D. Red algal phylogenomics provides a robust framework for inferring evolution of key metabolic pathways. PLoS Curr. 2016, 8, e4567. [Google Scholar]
- Blanc, G.; Duncan, G.; Agarkova, I.; Borodovsky, M.; Gumon, J.; Kuo, A.; Lindquist, E.; Lucas, S.; Pangilinan, J.; Polle, J.; et al. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 2010, 22, 2943–2955. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.; Dong, X.; Li, Q.; Chen, Z.; Liu, L. An update on the function and regulation of methylerythritol phosphate and mevalonate pathways and their evolutionary dynamics. J. Integr. Plant Biol. 2021, 63, 1211–1226. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Dehesh, K. The eukaryotic MEP-pathway genes are evolutionarily conserved and originated from Chlaymidia and cyanobacteria. BMC Genom. 2021, 22, 137. [Google Scholar] [CrossRef] [PubMed]
- Schönknecht, G.; Chen, W.-H.; Ternes, C.M.; Barbier, G.G.; Shrestha, R.P.; Stanke, M.; Bräutigam, A.; Baker, B.J.; Banfield, J.F.; Garavito, R.M.; et al. Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 2013, 339, 1207–1210. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 47–65. [Google Scholar] [CrossRef]
- Lopez-Bautista, J.M. Red algal genomics: A synopsis. In Red Algae in the Genomic Age; Seckbach, J., Chapman, D.J., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 229–240. [Google Scholar]
- Vandermoten, S.; Haubruge, É.; Cusson, M. New insights into short-chain prenyltransferases: Structural features, evolutionary history and potential for selective inhibition. Cell. Mol. Life Sci. 2009, 66, 3685–3695. [Google Scholar] [CrossRef]
- Song, S.; Jin, R.; Chen, Y.; He, S.; Li, K.; Tang, Q.; Wang, Q.; Wang, L.; Kong, M.; Dudareva, N.; et al. The functional evolution of architecturally different plant geranyl diphosphate synthases from geranylgeranyl diphosphate synthase. Plant Cell 2023, 35, 2293–2315. [Google Scholar] [CrossRef]
- Steele, T.S.; Burkhardt, I.; Moore, M.L.; de Rond, T.; Bone, H.K.; Barry, K.; Bunting, V.M.; Grimwood, J.; Handley, L.H.; Rajasekar, S.; et al. Biosynthesis of haloterpenoids in red algae via microbial-like type I terpene synthases. ACS Chem. Biol. 2024, 19, 185–192. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, L.-Y.; Ding, L.-P.; Liang, H.; Tu, P.-F.; Zhang, Q.-Y. Antioxidant terpenoids from the red alga Laurencia tristicha. Nat. Prod. Res. 2021, 35, 5048–5054. [Google Scholar] [CrossRef] [PubMed]
- Tholl, D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr. Opin. Plant Biol. 2006, 9, 297–304. [Google Scholar] [CrossRef]
- Jia, Q.; Brown, R.; Köllner, T.G.; Fu, J.; Chen, X.; Wong, G.K.-S.; Gershenzon, J.; Peters, R.J.; Chen, F. Origin and early evolution of the plant terpene synthase family. Proc. Natl. Acad. Sci. USA 2022, 119, e2100361119. [Google Scholar] [CrossRef] [PubMed]
- Li, G.L.; Köllner, T.G.; Yin, Y.; Jiang, Y.; Chen, H.; Xu, Y.; Gershenzon, J.; Pichersky, E.; Chen, F. Nonseed plant Selaginella moellendorfii has both seed plant and microbial types of terpene synthases. Proc. Natl. Acad. Sci. USA 2012, 109, 14711–14715. [Google Scholar] [CrossRef]
- Wei, G.; Jia, Q.; Chen, X.; Köllner, T.G.; Bhattacharya, D.; Wong, G.K.-S.; Gershenzon, J.; Chen, F. Terpene biosynthesis in red algae is catalyzed by microbial type but not typical plant terpene synthases. Plant Physiol. 2019, 179, 382–390. [Google Scholar] [CrossRef]
- Deng, Y.-Y.; Wang, Q.; Cao, T.-J.; Zheng, H.; Ge, Z.-H.; Yang, L.-E.; Lu, S. Cloning and functional characterization of the bona fide geranylgeranyl diphosphate synthase from the red algal seaweed Bangia fuscopurpurea. Algal Res. 2020, 48, 101935. [Google Scholar] [CrossRef]
- Yang, L.-E.; Huang, X.-Q.; Lu, Q.-Q.; Zhu, J.-Y.; Lu, S. Cloning and characterization of the geranylgeranyl diphosphate synthase (GGPS) responsible for carotenoid biosynthesis in Pyropia umbilicalis. J. Appl. Phycol. 2015, 28, 671–678. [Google Scholar] [CrossRef]
- Yang, L.-E.; Huang, X.-Q.; Hang, Y.; Deng, Y.-Y.; Lu, Q.-Q.; Lu, S. The P450-type carotene hydroxylase PuCHY1 from Porphyra suggests the evolution of carotenoid metabolism in red algae. J. Integr. Plant Biol. 2014, 56, 902–915. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.-Y.; Cheng, L.; Wang, Q.; Ge, Z.-H.; Zheng, H.; Cao, T.-J.; Lu, Q.-Q.; Yang, L.-E.; Lu, S. Functional characterization of lycopene cyclases illustrates the metabolic pathway toward lutein in red algal seaweeds. J. Agric. Food Chem. 2020, 68, 1354–1363. [Google Scholar] [CrossRef]
- vom Dorp, K.; Hölzl, G.; Plohmann, C.; Eisenhut, M.; Abraham, M.; Weber, A.P.M.; Hanson, A.D.; Dörmann, P. Remobilization of phytol from chlorophyll degradation is essential for tocopherol synthesis and growth of Arabidopsis. Plant Cell 2015, 27, 2846–2859. [Google Scholar] [CrossRef]
- Fritze, I.M.; Linden, L.; Freigang, J.; Auerbach, G.; Huber, R.; Steinbacher, S. The crystal structures of Zea mays and Arabidopsis 4-hydroxyphenylpyruvate dioxygenase. Plant Physiol. 2004, 134, 1388–1400. [Google Scholar] [CrossRef]
- Schledz, M.; Seidler, A.; Beyer, P.; Neuhaus, G. A novel phytyltransferase from Synechocystis sp. PCC 6803 involved in tocopherol biosynthesis. FEBS Lett. 2001, 499, 15–20. [Google Scholar] [CrossRef]
- Motohashi, R.; Ito, T.; Kobayashi, M.; Taji, T.; Nagata, N.; Asami, T.; Yoshida, S.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale-green mutant. Plant J. 2003, 34, 719–731. [Google Scholar] [CrossRef]
- Porfirova, S.; Bergmüller, E.; Tropf, S.; Lemke, R.; Dörmann, P. Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc. Natl. Acad. Sci. USA 2002, 99, 12495–12500. [Google Scholar] [CrossRef]
- Shintani, D.; DellaPenna, D. Elevating the vitamin E content of plants through metabolic engineering. Science 1998, 282, 2098–2100. [Google Scholar] [CrossRef] [PubMed]
- Horvath, G.; Wessjohann, L.; Bigirimana, J.; Jansen, M.; Guisez, Y.; Caubergs, R.; Horemans, N. Differential distribution of tocopherols and tocotrienols in photosynthetic and non-photosynthetic tissues. Phytochemistry 2006, 67, 1185–1195. [Google Scholar] [CrossRef] [PubMed]
- Collakova, E.; DellaPenna, D. Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol. 2001, 127, 1113–1124. [Google Scholar] [CrossRef]
- Bach, T.J. Some new aspects of isoprenoid biosynthesis in plants—A review. Lipids 1995, 30, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Bach, T.J.; Boronat, A.; Campos, N.; Ferrer, A.; Vollack, K.-U. Mevalonate biosynthesis in plants. Crit. Rev. Biochem. Mol. Biol. 1999, 34, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Concepción, M.; Boronat, A. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 2002, 130, 1079–1089. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, Y.; Lyu, D.; Huang, N.; Luo, S.; Zheng, L.; Zheng, L.; Hu, C.; Yang, L.-E.; Li, P.; Lu, S.; et al. Genomic Analysis of Carotenoid and Vitamin E Biosynthetic Pathways in the Extremophilic Red Alga Cyanidioschyzon merolae. Antioxidants 2025, 14, 1303. https://doi.org/10.3390/antiox14111303
Hui Y, Lyu D, Huang N, Luo S, Zheng L, Zheng L, Hu C, Yang L-E, Li P, Lu S, et al. Genomic Analysis of Carotenoid and Vitamin E Biosynthetic Pathways in the Extremophilic Red Alga Cyanidioschyzon merolae. Antioxidants. 2025; 14(11):1303. https://doi.org/10.3390/antiox14111303
Chicago/Turabian StyleHui, Yuanyuan, Dexin Lyu, Na Huang, Shan Luo, Libao Zheng, Linyuan Zheng, Chuanming Hu, Li-En Yang, Pengfu Li, Shan Lu, and et al. 2025. "Genomic Analysis of Carotenoid and Vitamin E Biosynthetic Pathways in the Extremophilic Red Alga Cyanidioschyzon merolae" Antioxidants 14, no. 11: 1303. https://doi.org/10.3390/antiox14111303
APA StyleHui, Y., Lyu, D., Huang, N., Luo, S., Zheng, L., Zheng, L., Hu, C., Yang, L.-E., Li, P., Lu, S., & Deng, Y. (2025). Genomic Analysis of Carotenoid and Vitamin E Biosynthetic Pathways in the Extremophilic Red Alga Cyanidioschyzon merolae. Antioxidants, 14(11), 1303. https://doi.org/10.3390/antiox14111303

