Effects of Essential Oils as Antioxidant and Cryoprotective Agents in Improving Frozen and Thawed Human Sperm Criteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Essential Oil Extraction
2.3. Study Design
2.4. Participants
2.5. Sperm Collection Procedures
2.6. Essential Oils Treatment
2.7. Pre-Processing of Semen Samples
2.8. Assessment of TSEO, ROEO, and AVEO Effects on Spermatozoa Motility, Viability, Lipid Peroxidation Levels, and Plasma Membrane Functionality
2.8.1. Human Cryopreserved Sperm Motility Evaluation
2.8.2. Human Cryopreserved Sperm Viability Assessment
2.8.3. Plasma Membrane Functionality
2.8.4. Lipid Peroxidation Assessment
2.9. Statistical Analysis
3. Results
3.1. The Effect of Sperm Incubation with Different Essential Oil Concentrations
3.2. The Essential Oils Effects on the Progressive Motility
3.3. The Essential Oils Effects on the Viability
3.4. Essential Oils Effects on Spermatozoa Plasma Membrane Functionality
3.5. Lipid Peroxidation Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tschudin, S.; Bitzer, J. Psychological Aspects of Fertility Preservation in Men and Women Affected by Cancer and Other Life-Threatening Diseases. Hum. Reprod. Update 2009, 15, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Kenney, L.B.; Antal, Z.; Ginsberg, J.P.; Hoppe, B.S.; Bober, S.L.; Yu, R.N.; Constine, L.S.; Van Santen, H.M.; Skinner, R.; Green, D.M. Improving Male Reproductive Health After Childhood, Adolescent, and Young Adult Cancer: Progress and Future Directions for Survivorship Research. J. Clin. Oncol. 2018, 36, 2160–2168. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, A.N.; Vagga, A. Cryopreservation: A Review Article. Cureus 2022, 14, e31564. [Google Scholar] [CrossRef]
- Sieme, H.; Oldenhof, H.; Wolkers, W.F. Mode of Action of Cryoprotectants for Sperm Preservation. Anim. Reprod. Sci. 2016, 169, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Di Santo, M.; Tarozzi, N.; Nadalini, M.; Borini, A. Human Sperm Cryopreservation: Update on Techniques, Effect on DNA Integrity, and Implications for ART. Adv. Urol. 2012, 2012, 854837. [Google Scholar] [CrossRef]
- Peris-Frau, P.; Soler, A.J.; Iniesta-Cuerda, M.; Martín-Maestro, A.; Sánchez-Ajofrín, I.; Medina-Chávez, D.A.; Fernández-Santos, M.R.; García-Álvarez, O.; Maroto-Morales, A.; Montoro, V.; et al. Sperm Cryodamage in Ruminants: Understanding the Molecular Changes Induced by the Cryopreservation Process to Optimize Sperm Quality. Int. J. Mol. Sci. 2020, 21, 2781. [Google Scholar] [CrossRef]
- Zhang, W.; Li, F.; Cao, H.; Li, C.; Du, C.; Yao, L.; Mao, H.; Lin, W. Protective Effects of L -Carnitine on Astheno- and Normozoospermic Human Semen Samples during Cryopreservation. Zygote 2016, 24, 293–300. [Google Scholar] [CrossRef]
- Tamburrino, L.; Traini, G.; Marcellini, A.; Vignozzi, L.; Baldi, E.; Marchiani, S. Cryopreservation of Human Spermatozoa: Functional, Molecular and Clinical Aspects. Int. J. Mol. Sci. 2023, 24, 4656. [Google Scholar] [CrossRef]
- Degl’Innocenti, S.; Filimberti, E.; Magini, A.; Krausz, C.; Lombardi, G.; Fino, M.G.; Rastrelli, G.; Maggi, M.; Baldi, E. Semen Cryopreservation for Men Banking for Oligospermia, Cancers, and Other Pathologies: Prediction of Post-Thaw Outcome Using Basal Semen Quality. Fertil. Steril. 2013, 100, 1555–1563.e3. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, E.T.; McClure, N.; Lewis, S.E.M. Cryopreservation of Human Semen and Prepared Sperm: Effects on Motility Parameters and DNA Integrity. Fertil. Steril. 2001, 76, 892–900. [Google Scholar] [CrossRef]
- Watson, P.F. The Causes of Reduced Fertility with Cryopreserved Semen. Anim. Reprod. Sci. 2000, 60–61, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.J.; Ryan, A.L.; Baker, M.A.; McLaughlin, E.A. Redox Activity Associated with the Maturation and Capacitation of Mammalian Spermatozoa. Free Radic. Biol. Med. 2004, 36, 994–1010. [Google Scholar] [CrossRef]
- Aitken, R.J. Reactive Oxygen Species as Mediators of Sperm Capacitation and Pathological Damage. Mol. Reprod. Dev. 2017, 84, 1039–1052. [Google Scholar] [CrossRef]
- Sharma, R.; Kattoor, A.J.; Ghulmiyyah, J.; Agarwal, A. Effect of Sperm Storage and Selection Techniques on Sperm Parameters. Syst. Biol. Reprod. Med. 2015, 61, 976720. [Google Scholar] [CrossRef] [PubMed]
- Thomson, L.K.; Fleming, S.D.; Aitken, R.J.; De Iuliis, G.N.; Zieschang, J.-A.; Clark, A.M. Cryopreservation-Induced Human Sperm DNA Damage Is Predominantly Mediated by Oxidative Stress Rather than Apoptosis. Hum. Reprod. 2009, 24, 2061–2070. [Google Scholar] [CrossRef]
- Gualtieri, R.; Kalthur, G.; Barbato, V.; Longobardi, S.; Di Rella, F.; Adiga, S.K.; Talevi, R. Sperm Oxidative Stress during In Vitro Manipulation and Its Effects on Sperm Function and Embryo Development. Antioxidants 2021, 10, 1025. [Google Scholar] [CrossRef]
- Oldenhof, H.; Gojowsky, M.; Wang, S.; Henke, S.; Yu, C.; Rohn, K.; Wolkers, W.F.; Sieme, H. Osmotic Stress and Membrane Phase Changes During Freezing of Stallion Sperm: Mode of Action of Cryoprotective Agents. Biol. Reprod. 2013, 88, 104661. [Google Scholar] [CrossRef]
- Si, W.; Benson, J.D.; Men, H.; Critser, J.K. Osmotic Tolerance Limits and Effects of Cryoprotectants on the Motility, Plasma Membrane Integrity and Acrosomal Integrity of Rat Sperm. Cryobiology 2006, 53, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yang, Z.; Bao, L.; Lu, B.; Li, X.; Zhan, X.; Huang, X.; Liu, Y. Coenzyme Q10 Improves the Post-Thaw Sperm Quality in Dwarf Surfclam Mulinia lateralis. Antioxidants 2024, 13, 1085. [Google Scholar] [CrossRef] [PubMed]
- Berean, D.I.; Bogdan, L.M.; Cimpean, R. Advancements in Understanding and Enhancing Antioxidant-Mediated Sperm Cryopreservation in Small Ruminants: Challenges and Perspectives. Antioxidants 2024, 13, 624. [Google Scholar] [CrossRef]
- Qamar, A.Y.; Naveed, M.I.; Raza, S.; Fang, X.; Roy, P.K.; Bang, S.; Tanga, B.M.; Saadeldin, I.M.; Lee, S.; Cho, J. Role of Antioxidants in Fertility Preservation of Sperm—A Narrative Review. Anim. Biosci. 2023, 36, 385–403. [Google Scholar] [CrossRef]
- Dabrowski, F.; Grzechocinska, B.; Wielgos, M. The Role of Vitamin D in Reproductive Health—A Trojan Horse or the Golden Fleece? Nutrients 2015, 7, 4139–4153. [Google Scholar] [CrossRef] [PubMed]
- Erraud, A.; Cornet, V.; D’Halluin, F.; Lambert, J.; Neus, Y.; Kestemont, P. Sperm Cryotolerance in Mature Male Parr of Atlantic Salmon (Salmo salar L. 1758): Effects of Dietary Lipid Content and n-3 Essential Fatty Acids Composition. Aquaculture 2024, 593, 741326. [Google Scholar] [CrossRef]
- Valcarce, D.G.; Riesco, M.F.; Martínez-Vázquez, J.M.; Robles, V. Diet Supplemented with Antioxidant and Anti-Inflammatory Probiotics Improves Sperm Quality after Only One Spermatogenic Cycle in Zebrafish Model. Nutrients 2019, 11, 843. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils--a Review. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Spisni, E.; Petrocelli, G.; Imbesi, V.; Spigarelli, R.; Azzinnari, D.; Donati Sarti, M.; Campieri, M.; Valerii, M.C. Antioxidant, Anti-Inflammatory, and Microbial-Modulating Activities of Essential Oils: Implications in Colonic Pathophysiology. Int. J. Mol. Sci. 2020, 21, 4152. [Google Scholar] [CrossRef]
- Nieto, G. A Review on Applications and Uses of Thymus in the Food Industry. Plants 2020, 9, 961. [Google Scholar] [CrossRef]
- Drioiche, A.; Zahra Radi, F.; Ailli, A.; Bouzoubaa, A.; Boutakiout, A.; Mekdad, S.; Al Kamaly, O.; Saleh, A.; Maouloua, M.; Bousta, D.; et al. Correlation between the Chemical Composition and the Antimicrobial Properties of Seven Samples of Essential Oils of Endemic Thymes in Morocco against Multi-Resistant Bacteria and Pathogenic Fungi. Saudi Pharm. J. 2022, 30, 1200–1214. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.M.; Faustino, C.; Garcia, C.; Ladeiras, D.; Reis, C.P.; Rijo, P. Rosmarinus officinalis L.: An Update Review of Its Phytochemistry and Biological Activity. Future Sci. OA 2018, 4, FSO283. [Google Scholar] [CrossRef]
- Ekiert, H.; Pajor, J.; Klin, P.; Rzepiela, A.; Ślesak, H.; Szopa, A. Significance of Artemisia vulgaris L. (Common Mugwort) in the History of Medicine and Its Possible Contemporary Applications Substantiated by Phytochemical and Pharmacological Studies. Molecules 2020, 25, 4415. [Google Scholar] [CrossRef] [PubMed]
- Salahshoor, M.; Abdolmaleki, A.; Faramarzi, A.; Ziapour, A.; Roshankhah, S. Thymus Vulgaris Attenuates Myleran-Induced Reproductive Damage by Decreasing Oxidative Stress and Lipid Peroxidation in Male Rats. J. Hum. Reprod. Sci. 2020, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Vahedi, V.; Hedayat-Evrigh, N.; Behroozlak, M.; Dirandeh, E. Antioxidant Effects of Thyme (Thymus vulgaris) Extract on Ram Sperm Quality during Cryopreservation. Iran. J. Appl. Anim. Sci. 2018, 8, 263–269. [Google Scholar]
- Ahmed, H.; Jahan, S.; Alam, I.; Ullah, F.; Ijaz, M.U. The Evaluation of Rosemary (Rosmarinus officinalis) Leaf Extract Inclusion in Freezing Medium on Quality Parameters of Buffalo Bull Spermatozoa. Cryo Lett. 2022, 43, 91–98. [Google Scholar] [CrossRef]
- Modaresi, M.; Emadi, M. The Effects of Rosemary Extract on Spermatogenesis and Sexual Hormones of Mice under Heat Stress. Trends J. Sci. Res. 2018, 3, 69–74. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yusoff, K.; Lim, S.-H.E.; Chong, C.-M.; Lai, K.-S. Membrane Disruption Properties of Essential Oils—A Double-Edged Sword? Processes 2021, 9, 595. [Google Scholar] [CrossRef]
- Rahman, I.; Sher, H.; Bussmann, R. Reference Guide on High Value Medicinal and Aromatic Plants Sustainable Management and Cultivation Practices; Navsari Agricultural University: Navsari, India, 2019; ISBN 978-969-23419-0-5. [Google Scholar]
- Rezouki, S.; Allali, A.; Louasté, B.; Eloutassi, N.; Fadli, M. The Impact of the Harvesting Period and Drying Conditions on the Essentialoil Yield of Rosmarinus officinalis, Thymus satureioides and Origanum compactum from the Taza-Taounate Region. Asian J. Agric. Biol. 2021, 7. [Google Scholar] [CrossRef]
- Thamkaew, G.; Sjöholm, I.; Galindo, F.G. A Review of Drying Methods for Improving the Quality of Dried Herbs. Crit. Rev. Food Sci. Nutr. 2021, 61, 1763–1786. [Google Scholar] [CrossRef] [PubMed]
- Fagbemi, K.O.; Aina, D.A.; Olajuyigbe, O.O. Soxhlet Extraction versus Hydrodistillation Using the Clevenger Apparatus: A Comparative Study on the Extraction of a Volatile Compound from Tamarindus indica Seeds. Sci. World J. 2021, 5961586. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed.; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-003078-7. [Google Scholar]
- Guzmán, E.; Lucia, A. Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics 2021, 8, 114. [Google Scholar] [CrossRef]
- Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Cell Viability Assays. In Assay Guidance Manual; Markossian, S., Grossman, A., Arkin, M., Auld, D., Austin, C., Baell, J., Brimacombe, K., Chung, T.D.Y., Coussens, N.P., Dahlin, J.L., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2004. [Google Scholar]
- Agarwal, A.; Gupta, S.; Sharma, R. Eosin-Nigrosin Staining Procedure. In Andrological Evaluation of Male Infertility; Agarwal, A., Gupta, S., Sharma, R., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 73–77. ISBN 978-3-319-26795-1. [Google Scholar]
- Björndahl, L.; Söderlund, I.; Kvist, U. Evaluation of the One-Step Eosin-Nigrosin Staining Technique for Human Sperm Vitality Assessment. Hum. Reprod. Oxf. Engl. 2003, 18, 813–816. [Google Scholar] [CrossRef]
- Aizpurua, J.; Medrano, L.; Enciso, M.; Sarasa, J.; Romero, A.; Fernández, M.A.; Gómez-Torres, M.J. New Permeable Cryoprotectant-Free Vitrification Method for Native Human Sperm. Hum. Reprod. 2017, 32, 2007–2015. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh-Jahromi, M.; Jafari, F.; Parsanezhad, M.E.; Alaee, S. Evaluation of Supplementation of Cryopreservation Medium with Gallic Acid as an Antioxidant in Quality of Post-thaw Human Spermatozoa. Andrologia 2022, 54, e14571. [Google Scholar] [CrossRef] [PubMed]
- Raad, G.; Lteif, L.; Lahoud, R.; Azoury, J.; Azoury, J.; Tanios, J.; Hazzouri, M.; Azoury, J. Cryopreservation Media Differentially Affect Sperm Motility, Morphology and DNA Integrity. Andrology 2018, 6, 836–845. [Google Scholar] [CrossRef] [PubMed]
- Valipour, J.; Mojaverrostami, S.; Abouhamzeh, B.; Abdollahi, M. Protective Effects of Hesperetin on the Quality of Sperm, Apoptosis, Lipid Peroxidation, and Oxidative Stress during the Process of Cryopreservation: An Experimental Study. Int. J. Reprod. Biomed. IJRM 2021, 19, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Zhang, Y.; Tian, S.; Hu, R.; Wu, B. Effect of Autologous Platelet-Rich Plasma on Human Sperm Quality during Cryopreservation. Cryobiology 2021, 98, 12–16. [Google Scholar] [CrossRef]
- Walczak–Jedrzejowska, R.; Wolski, J.K.; Slowikowska–Hilczer, J. The Role of Oxidative Stress and Antioxidants in Male Fertility. Cent. Eur. J. Urol. 2013, 65, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Virk, G.; Ong, C.; Du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Mens Health 2014, 32, 1. [Google Scholar] [CrossRef]
- Durairajanayagam, D.; Singh, D.; Agarwal, A.; Henkel, R. Causes and Consequences of Sperm Mitochondrial Dysfunction. Andrologia 2021, 53, e13666. [Google Scholar] [CrossRef]
- Nowicka-Bauer, K.; Lepczynski, A.; Ozgo, M.; Kamieniczna, M.; Fraczek, M.; Stanski, L.; Olszewska, M.; Malcher, A.; Skrzypczak, W.; Kurpisz, M.K. Sperm mitochondrial dysfunction and oxidative stress as possible reasons for isolated asthenozoospermia. J. Physiol. Pharmacol. 2018, 69, 403–417. [Google Scholar]
- Nur Karakus, F.; Bulgurcuoglu Kuran, S.; Solakoglu, S. Effect of Curcumin on Sperm Parameters after the Cryopreservation. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 267, 161–166. [Google Scholar] [CrossRef]
- Oualdi, I.; Brahmi, F.; Mokhtari, O.; Abdellaoui, S.; Tahani, A.; Oussaid, A. Rosmarinus Officinalis from Morocco, Italy and France: Insight into Chemical Compositions and Biological Properties. Mater. Today Proc. 2021, 45, 7706–7710. [Google Scholar] [CrossRef]
- Touazi, L.; Aberkane, B.; Bellik, Y.; Moula, N.; Iguer-Ouada, M. Effect of the Essential Oil of Rosmarinus officinalis (L.) on Rooster Sperm Motility during 4 °C Short-Term Storage. Vet. World 2018, 11, 590–597. [Google Scholar] [CrossRef]
- Malo, C.; Gil, L.; Cano, R.; Martínez, F.; Galé, I. Antioxidant Effect of Rosemary (Rosmarinus officinalis) on Boar Epididymal Spermatozoa during Cryopreservation. Theriogenology 2011, 75, 1735–1741. [Google Scholar] [CrossRef]
- Motlagh, M.K.; Sharafi, M.; Zhandi, M.; Mohammadi-Sangcheshmeh, A.; Shakeri, M.; Soleimani, M.; Zeinoaldini, S. Antioxidant Effect of Rosemary (Rosmarinus officinalis L.) Extract in Soybean Lecithin-Based Semen Extender Following Freeze–Thawing Process of Ram Sperm. Cryobiology 2014, 69, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Pichardo, S.; Moreno, F.J.; Bermúdez, J.M.; Aucejo, S.; Cameán, A.M. Cytotoxicity and Morphological Effects Induced by Carvacrol and Thymol on the Human Cell Line Caco-2. Food Chem. Toxicol. 2014, 64, 281–290. [Google Scholar] [CrossRef]
- Arunasree, K.M. Anti-Proliferative Effects of Carvacrol on a Human Metastatic Breast Cancer Cell Line, MDA-MB 231. Phytomedicine 2010, 17, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Vassiliou, E.; Awoleye, O.; Davis, A.; Mishra, S. Anti-Inflammatory and Antimicrobial Properties of Thyme Oil and Its Main Constituents. Int. J. Mol. Sci. 2023, 24, 6936. [Google Scholar] [CrossRef]
- Kchikich, A.; Kirschvink, N.; El Kadili, S.; Raes, M.; El Otmani, S.; Bister, J.L.; El Amiri, B.; Barrijal, S.; Chentouf, M. Thymus satureioides and Origanum majorana Essential Oils Improve the Quality of Beni Arouss Buck Semen during Storage at 4 °C. Reprod. Domest. Anim. 2021, 56, 1572–1581. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.A.; Abdel-Khalek, A.-K.E.; Khalil, W.A.; Yousif, A.I.; Saadeldin, I.M.; Abomughaid, M.M.; El-Harairy, M.A. Effects of Mint, Thyme, and Curcumin Extract Nanoformulations on the Sperm Quality, Apoptosis, Chromatin Decondensation, Enzyme Activity, and Oxidative Status of Cryopreserved Goat Semen. Cryobiology 2020, 97, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, S.; Sharma, J.; Rizal, S.; Yi, Y.-J.; Manandhar, G. Artemisia Vulgaris Extract Causes Precocious Acrosome Reaction and Viability Loss but Low Rate of Membrane Damage in Mouse Spermatozoa. J. Anim. Sci. Technol. 2021, 63, 58–68. [Google Scholar] [CrossRef]
Plants Scientific Names | Plant Family | Plant Parts | Harvesting and Drying | Location | Weight (g) | Quantity of Distilled Water [mL] | Yield (%) |
---|---|---|---|---|---|---|---|
Thymus satureoides | Lamiaceae | Leaves | July (4 days of drying at 20 °C) | Agadir (Anti-atlas) | 100 | 1000 | 2.4% |
Rosmarinus officinalis | Lamiaceae | Leaves | May (3 days of drying at 27 °C) | Taourirt (Eastern rif) | 100 | 1000 | 2.5% |
Artemisia vulgaris | Asteraceae | Leaves | April (5 days of drying at 27 °C) | Taza (Middle-atlas) | 250 | 1200 | 1% |
Sperm Parameters | ROEO | TSEO | AVEO |
---|---|---|---|
Motility (For G0 = 75%) 1 | [0] = 0% 2 | [0] = 0% 2 | [0] = 0% 2 |
[1/5] = 11% | [1/5] = 5% | [1/5] = 9% | |
[1/25] = 28% [1/125] = 77% [1/625] = 66% | [1/25] = 8% [1/125] = 52% [1/625] = 76% | [1/25] = 35% [1/125] = 58% [1/625] = 58% [1/3125] = 74% | |
Viability (For G0 = 85%) 1 | [0] = 0% 2 | [0] = 0% 2 | [0] = 0% 2 |
[1/5] = 14% [1/25] = 27% [1/125] = 83% [1/625] = 75% | [1/5] = 8% [1/25] = 61% [1/125] = 89% [1/625] = 86% | [1/5] = 25% [1/25] = 66% [1/125] = 78% [1/625] = 82% |
Sperm Categories | Groups | Progressive Motility (%) | Viability (%) | HOST (%) | MDA (nmol/L) |
---|---|---|---|---|---|
Normozoospermia | A | 43.80 ± 1.153 | 57.08 ± 0.238 | 39.71 ± 1.382 | 0.972 ± 0.04129 |
G0 | 23.79 ± 1.828 | 29.39 ± 2.070 | 34.16 ± 1.486 | 1.130 ± 0.068 | |
G1 | 30.98 ± 1.985 1 | 37.49 ± 2.133 2 | 40.88 ± 1.570 1 | 0.870 ± 0.068 1 | |
G2 | 15.71 ± 1.272 2 | 21.24 ± 1.380 2 | 26.43 ± 1.898 2 | 1.087 ± 0.0769 | |
G3 | 23.55 ± 1.648 | 23.80 ± 2.097 | 35.27 ± 1.403 | 1.068 ± 0.074 | |
Asthenozoospermia | A | 22.11 ± 0.739 | 28.88 ± 0.727 | 32.44 ± 1.750 | 1.186 ± 0.0758 |
G0 | 18.65 ± 0.875 | 22.94 ± 1.497 | 29.40 ± 1.943 | 1.573 ± 0.109 | |
G1 | 22.18 ± 0.859 1 | 32.43 ± 1.631 2 | 38.92 ± 1.931 2 | 1.013 ± 0.088 2 | |
G2 | 14.43 ± 1.091 2 | 18.53 ± 1.221 1 | 25.47 ± 1.747 | 1.201 ± 0.092 | |
G3 | 21.22 ± 0.798 | 20.57 ± 1.471 | 30.21 ± 2.168 | 1.541 ± 0.097 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goujet, H.; Kaarouch, I.; Malki, A.; Mbaye, M.M.; Cabry, R.; Louanjli, N.; Rhouda, T.; Benkhalifa, M. Effects of Essential Oils as Antioxidant and Cryoprotective Agents in Improving Frozen and Thawed Human Sperm Criteria. Antioxidants 2025, 14, 75. https://doi.org/10.3390/antiox14010075
Goujet H, Kaarouch I, Malki A, Mbaye MM, Cabry R, Louanjli N, Rhouda T, Benkhalifa M. Effects of Essential Oils as Antioxidant and Cryoprotective Agents in Improving Frozen and Thawed Human Sperm Criteria. Antioxidants. 2025; 14(1):75. https://doi.org/10.3390/antiox14010075
Chicago/Turabian StyleGoujet, Hamza, Ismail Kaarouch, Abderrahim Malki, Modou Mamoune Mbaye, Rosalie Cabry, Noureddine Louanjli, Taha Rhouda, and Moncef Benkhalifa. 2025. "Effects of Essential Oils as Antioxidant and Cryoprotective Agents in Improving Frozen and Thawed Human Sperm Criteria" Antioxidants 14, no. 1: 75. https://doi.org/10.3390/antiox14010075
APA StyleGoujet, H., Kaarouch, I., Malki, A., Mbaye, M. M., Cabry, R., Louanjli, N., Rhouda, T., & Benkhalifa, M. (2025). Effects of Essential Oils as Antioxidant and Cryoprotective Agents in Improving Frozen and Thawed Human Sperm Criteria. Antioxidants, 14(1), 75. https://doi.org/10.3390/antiox14010075