Extraction, Characterization, and In Vitro Biological Activity of Polyphenols from Discarded Young Fig Fruits Based on Deep Eutectic Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Extraction Methods
2.3. The Composition of DESs
2.4. Determination of Total Phenols and Total Flavonoids
2.5. Identification of Polyphenols from DYFFs by UPLC/ESI-TRAP-MS/MS
2.5.1. Sample Preparation and Extraction
2.5.2. Detection Conditions
2.6. Quantification of DYFFs by HPLC-DAD
2.7. Assessment of the Antioxidant Capacity
2.8. Pancreatic Lipase and α-Amylase Activity Inhibition Assay
2.9. Statistical Analysis
3. Results and Discussion
3.1. Quantification of Polyphenols from DYFFs by UPLC/ESI-Q TRAP-MS/MS
3.2. Effects of Different DESs on Polyphenols in DYFFs
3.3. Effects of Different DESs on Total Phenols and Total Flavonoids in DYFFs
3.4. Effects of Different Deep Eutectic Solvents on Biological Activities In Vitro from DYFFs
3.5. Difference Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Ayuso, M.; Carpena, M.; Taofiq, O.; Albuquerque, T.G.; Simal-Gandara, J.; Oliveira, M.B.P.P.; Prieto, M.A.; Ferreira, I.C.F.R.; Barros, L. Fig “Ficus carica L.” and its by-products: A decade evidence of their health-promoting benefits towards the development of novel food formulations. Trends Food Sci. Technol. 2022, 127, 1–13. [Google Scholar] [CrossRef]
- Kiralan, M.; Ketenoglu, O.; Kiralan, S.S.; Yilmaz, F.M. Composition and Functional Properties of Fig (Ficus carica) Phenolics. In Fig (Ficus carica): Production, Processing, and Properties; Ramadan, M.F., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 369–394. [Google Scholar] [CrossRef]
- Debib, A.; Menadi, S. Phenolic Compounds of Fresh and Dried Figs: Characterization and Health Benefits. In Fig (Ficus carica): Production, Processing, and Properties; Ramadan, M.F., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 395–416. Available online: https://link.springer.com/chapter/10.1007/978-3-031-16493-4_18 (accessed on 30 August 2024).
- Hssaini, L.; Razouk, R.; Bouslihim, Y. Rapid Prediction of Fig Phenolic Acids and Flavonoids Using Mid-Infrared Spectroscopy Combined with Partial Least Square Regression. Front. Plant Sci. 2022, 13, 782159. [Google Scholar] [CrossRef]
- Prgomet, I.; Prgomet, Ž.; Ban, D.; Perković, J.; Palčić, I.; Donno, D.; Goreta Ban, S.; Major, N. Antioxidant activity, sugar and phenolic content of fresh fig (Ficus carica L.) fruits grown in Croatia. ActaHortic 2021, 1310, 129–134. [Google Scholar] [CrossRef]
- Karantzi, A.D.; Kafkaletou, M.; Christopoulos, M.V.; Tsantili, E. Peel colour and flesh phenolic compounds at ripening stages in pollinated commercial varieties of fig (Ficus carica L.) fruit grown in Southern Europe. J. Food Meas. Charact. 2021, 15, 2049–2063. [Google Scholar] [CrossRef]
- Pereira, C.; López-Corrales, M.; Serradilla, M.J.; Villalobos, M.d.C.; Ruiz-Moyano, S.; Martín, A. Influence of ripening stage on bioactive compounds and antioxidant activity in nine fig (Ficus carica L.) varieties grown in Extremadura, Spain. J. Food Compos. Anal. 2017, 64, 203–212. [Google Scholar] [CrossRef]
- Wu, D.-T.; Deng, W.; Li, J.; Geng, J.-L.; Hu, Y.-C.; Zou, L.; Liu, Y.; Liu, H.-Y.; Gan, R.-Y. Ultrasound-Assisted Deep Eutectic Solvent Extraction of Phenolic Compounds from Thinned Young Kiwifruits and Their Beneficial Effects. Antioxidants 2023, 12, 1475. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, L.; Zhang, L.; Wan, S.; Li, C.; Liu, S. Solvents effect on phenolics, iridoids, antioxidant activity, antibacterial activity, and pancreatic lipase inhibition activity of noni (Morinda citrifolia L.) fruit extract. Food Chem. 2022, 377, 131989. [Google Scholar] [CrossRef]
- Yu, D.; Xue, Z.; Mu, T. Deep eutectic solvents as a green toolbox for synthesis. Cell Rep. Phys. Sci. 2022, 3, 100809. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, J.; Luo, X.; Xu, Z.; Liu, K.; Chen, T.; Zhou, L.; Ding, C. Green extraction of polysaccharides from Camellia oleifera fruit shell using tailor-made deep eutectic solvents. Int. J. Biol. Macromol. 2023, 253, 127286. [Google Scholar] [CrossRef]
- Wang, W.; Pan, Y.; Zhao, J.; Wang, Y.; Yao, Q.; Li, S. Development and optimization of green extraction of polyphenols in Michelia alba using natural deep eutectic solvents (NADES) and evaluation of bioactivity. Sustain. Chem. Pharm. 2024, 37, 101425. [Google Scholar] [CrossRef]
- Wang, T.; Jiao, J.; Gai, Q.-Y.; Wang, P.; Guo, N.; Niu, L.-L.; Fu, Y.-J. Enhanced and green extraction polyphenols and furanocoumarins from Fig (Ficus carica L.) leaves using deep eutectic solvents. J. Pharm. Biomed. Anal. 2017, 145, 339–345. [Google Scholar] [CrossRef]
- Sari, K.R.P.; Ikawati, Z.; Danarti, R.; Hertiani, T. Micro-titer plate assay for measurement of total phenolic and total flavonoid contents in medicinal plant extracts. Arab. J. Chem. 2023, 16, 105003. [Google Scholar] [CrossRef]
- Neupane, P.; Lamichhane, J. Estimation of total phenolic content, total flavonoid content and antioxidant capacities of five medicinal plants from Nepal. Vegetos 2020, 33, 360–366. [Google Scholar] [CrossRef]
- Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Clowers, B.H.; Moore, R.J.; Zink, E.M. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics. Anal. Chem. 2010, 82, 4165–4173. [Google Scholar] [CrossRef]
- Dobrowolska-Iwanek, J.; Lauterbach, R.; Huras, H.; Paśko, P.; Prochownik, E.; Woźniakiewicz, M.; Chrząszcz, S.; Zagrodzki, P. HPLC-DAD method for the quantitative determination of short-chain fatty acids in meconium samples. Microchem. J. 2020, 155, 104671. [Google Scholar] [CrossRef]
- Nie, X.-R.; Li, H.-Y.; Du, G.; Lin, S.; Hu, R.; Li, H.-Y.; Zhao, L.; Zhang, Q.; Chen, H.; Wu, D.-T.; et al. Structural characteristics, rheological properties, and biological activities of polysaccharides from different cultivars of okra (Abelmoschus esculentus) collected in China. Int. J. Biol. Macromol. 2019, 139, 459–467. [Google Scholar] [CrossRef]
- Guo, H.; Feng, K.L.; Zhou, J.; Liu, L.; Wei, S.Y.; Zhao, L.; Qin, W.; Gan, R.Y.; Wu, D.T. Carboxymethylation of Qingke β-glucans and their physicochemical properties and biological activities. Int. J. Biol. Macromol. 2020, 147, 200–208. [Google Scholar] [CrossRef]
- Yuan, Q.; Fu, Y.; Xiang, P.-Y.; Zhao, L.; Wang, S.-P.; Zhang, Q.; Liu, Y.-T.; Qin, W.; Li, D.-Q.; Wu, D.-T. Structural characterization, antioxidant activity, and antiglycation activity of polysaccharides from different chrysanthemum teas. RSC Adv. 2019, 9, 35443–35451. [Google Scholar] [CrossRef]
- Zhou, H.; Safdar, B.; Li, H.; Yang, L.; Ying, Z.; Liu, X. Identification of a novel α-amylase inhibitory activity peptide from quinoa protein hydrolysate. Food Chem. 2023, 403, 134434. [Google Scholar] [CrossRef]
- Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; Ewald, J.C.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.; et al. Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat. Methods 2021, 18, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; He, R.; Li, Z.; Li, S.; Li, C.; Wang, L. Tailor-made deep eutectic solvents-based green extraction of natural antioxidants from partridge leaf-tea (Mallotus furetianus L.). Sep. Purif. Technol. 2021, 275, 119159. [Google Scholar] [CrossRef]
- Fu, X.; Belwal, T.; He, Y.; Xu, Y.; Li, L.; Luo, Z. UPLC-Triple-TOF/MS characterization of phenolic constituents and the influence of natural deep eutectic solvents on extraction of Carya cathayensis Sarg. peels: Composition, extraction mechanism and in vitro biological activities. Food Chem. 2022, 370, 131042. [Google Scholar] [CrossRef] [PubMed]
- Aleixandre, A.; Gil, J.V.; Sineiro, J.; Rosell, C.M. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem. 2022, 372, 131231. [Google Scholar] [CrossRef]
- Herrera, T.; Navarro del Hierro, J.; Fornari, T.; Reglero, G.; Martin, D. Inhibitory effect of quinoa and fenugreek extracts on pancreatic lipase and α-amylase under in vitro traditional conditions or intestinal simulated conditions. Food Chem. 2019, 270, 509–517. [Google Scholar] [CrossRef]
- He, X.; Chen, L.; Pu, Y.; Wang, H.; Cao, J.; Jiang, W. Fruit and vegetable polyphenols as natural bioactive inhibitors of pancreatic lipase and cholesterol esterase: Inhibition mechanisms, polyphenol influences, application challenges. Food Biosci. 2023, 55, 103054. [Google Scholar] [CrossRef]
- Lever, J.; Krzywinski, M.; Altman, N. Principal component analysis. Nat. Methods 2017, 14, 641–642. [Google Scholar] [CrossRef]
- Neugebauer, A.; Granvogl, M.; Schieberle, P. Characterization of the Key Odorants in High-Quality Extra Virgin Olive Oils and Certified Off-Flavor Oils to Elucidate Aroma Compounds Causing a Rancid Off-Flavor. J. Agric. Food Chem. 2020, 68, 5927–5937. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Primers 2022, 2, 100. [Google Scholar] [CrossRef]
- Ismail, B.B.; Pu, Y.; Fan, L.; Dandago, M.A.; Guo, M.; Liu, D. Characterizing the phenolic constituents of baobab (Adansonia digitata) fruit shell by LC-MS/QTOF and their in vitro biological activities. Sci. Total Environ. 2019, 694, 133387. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, X.; Liu, P.; Huang, J.; Wang, C.; Pan, M.; Kuang, Z. Enhanced phenolic compounds extraction from Morus alba L. leaves by deep eutectic solvents combined with ultrasonic-assisted extraction. Ind. Crops Prod. 2018, 120, 147–154. [Google Scholar] [CrossRef]
- Yuan, W.; Zhao, Y.; Zhang, Y.; Ma, S.; Sun, Y. High-efficiency separation of oil sands using ChCl-based deep eutectic solvents. Can. J. Chem. Eng. 2023, 101, 2835–2841. [Google Scholar] [CrossRef]
- Picchio, M.L.; Minudri, D.; Mantione, D.; Criado-Gonzalez, M.; Guzmán-González, G.; Schmarsow, R.; Müller, A.J.; Tomé, L.C.; Minari, R.J.; Mecerreyes, D. Natural Deep Eutectic Solvents Based on Choline Chloride and Phenolic Compounds as Efficient Bioadhesives and Corrosion Protectors. ACS Sustain. Chem. Eng. 2022, 10, 8135–8142. [Google Scholar] [CrossRef] [PubMed]
- Jin, N.; Jin, L.; Luo, S.; Tang, Z.; Liu, Z.; Wei, S.; Liu, F.; Zhao, X.; Yu, J.; Zhong, Y. Comprehensive Evaluation of Amino Acids and Polyphenols in 69 Varieties of Green Cabbage (Brassica oleracea L. var. capitata L.) Based on Multivariate Statistical Analysis. Molecules 2021, 26, 5355. [Google Scholar] [CrossRef]
DES Compositions | Abbreviation | Molar Ratio |
---|---|---|
Choline chloride: malic acid | ChCl-MaA | 1.5:1 |
Choline chloride: tartaric acid | ChCl-TA | 1.5:1 |
Choline chloride: xylitol | ChCl-Xyl | 1:1 |
Choline chloride: ethylene glycol | ChCl-EtG | 1:2 |
Choline chloride: urea | ChCl-Urea | 1:2 |
Choline chloride: lactic acid | ChCl-LaA | 1:2 |
Choline chloride: glucose | ChCl-Glu | 2:1 |
Betaine: malic acid: glucose | Bet-MaA-Glu | 1:1:1 |
Betaine: ethylene glycol | Bet-Gly | 1:2 |
Betaine: lactic acid | Bet-LaA | 1:2 |
Malic acid: ethylene glycol | MA-EG | 1:2 |
L-proline: lactic acid | Pro-LaA | 1:2 |
L-proline: ethylene glycol | Pro-EtG | 1:2 |
L-proline: malic acid | Pro-MaA | 1:1 |
Compounds | Molecular Weight (Da) | Formula | Ionization Model | Class I | Ion Current Intensity |
---|---|---|---|---|---|
Cryptochlorogenic acid | 354.10 | C16H18O9 | [M-H]− | Phenolic acids | 70,985,822.20 |
Chlorogenic acid | 354.10 | C16H18O9 | [M-H]− | Phenolic acids | 65,833,453.80 |
Neochlorogenic acid | 354.10 | C16H18O9 | [M+H]+ | Phenolic acids | 46,456,076.33 |
Coniferyl ferulate | 356.13 | C20H20O6 | [M-H]− | Phenolic acids | 28,323,336.86 |
Isoferulic Acid | 194.06 | C10H10O4 | [M-H]− | Phenolic acids | 15,431,160.68 |
Gallic acid-1-O-xyloside | 302.06 | C12H14O9 | [M-H]− | Phenolic acids | 11,456,334.24 |
Grevilloside F | 342.10 | C15H18O9 | [M-H]− | Phenolic acids | 10,661,505.14 |
Ferulic acid-4-O-glucoside | 356.11 | C16H20O9 | [M-H]− | Phenolic acids | 10,078,917.79 |
Ferulic acid | 194.06 | C10H10O4 | [M-H]− | Phenolic acids | 8,443,288.36 |
Salicylic acid-2-O-glucoside | 300.08 | C13H16O8 | [M-H]− | Phenolic acids | 7,957,267.37 |
Caffeic acid | 180.04 | C9H8O4 | [M-H]− | Phenolic acids | 4,424,501.55 |
Quercetin-3-O-robinobioside | 610.15 | C27H30O16 | [M-H]− | Flavonoids | 56,406,063.27 |
Rutin | 610.15 | C27H30O16 | [M+H]+ | Flavonoids | 45,322,065.47 |
Rutin Trihydrate | 664.19 | C27H36O19 | [M-3H2O+H]+ | Flavonoids | 43,811,430.23 |
Quercetin-7-O-(6″-malonyl) glucoside | 550.10 | C24H22O15 | [M+H]+ | Flavonoids | 42,809,212.80 |
Quercetin-7-O-rutinoside | 610.15 | C27H30O16 | [M+H]+ | Flavonoids | 42,608,141.44 |
Quercetin-3-O-neohesperidoside | 610.15 | C27H30O16 | [M+H]+ | Flavonoids | 42,337,008.56 |
Quercetin-3-O-glucoside-7-O-rhamnoside | 610.15 | C27H30O16 | [M+H]+ | Flavonoids | 41,808,386.35 |
Quercetin-3-O-(4″-O-glucosyl) rhamnoside | 610.15 | C27H30O16 | [M+H]+ | Flavonoids | 41,352,467.53 |
Licoagrochalcone D | 354.15 | C21H22O5 | [M+H]+ | Flavonoids | 38,377,224.37 |
Licoflavonol | 354.11 | C20H18O6 | [M+H]+ | Flavonoids | 29,038,302.51 |
Isoquercitrin | 464.10 | C21H20O12 | [M+H]+ | Flavonoids | 28,073,065.84 |
Quercetin-3-O-alloside; Isohyperoside | 464.10 | C21H20O12 | [M+H]+ | Flavonoids | 28,014,100.57 |
Hesperetin-3’-O-glucoside | 464.13 | C22H24O11 | [M+H]+ | Flavonoids | 25,911,462.31 |
Quercetin-3-O-galactoside | 464.10 | C21H20O12 | [M-H]- | Flavonoids | 24,277,337.93 |
Quercetin-5-O-β-D-glucoside | 464.10 | C21H20O12 | [M+H]+ | Flavonoids | 19,112,040.60 |
Quercetin-3-O-(6″-O-acetyl) galactoside | 506.11 | C23H22O13 | [M-H]− | Flavonoids | 17,249,778.81 |
Catechin | 290.08 | C15H14O6 | [M+H]+ | Flavonoids | 16,382,442.33 |
6-Hydroxykaempferol-7-O-glucoside | 464.10 | C21H20O12 | [M+H]+ | Flavonoids | 13,311,760.78 |
Quercetin-4’-O-glucoside | 464.10 | C21H20O12 | [M-H]− | Flavonoids | 12,717,017.62 |
Apigenin-8-C-Glucoside | 432.11 | C21H20O10 | [M-H]− | Flavonoids | 12,644,006.08 |
Quercetin-7-O-glucoside | 464.10 | C21H20O12 | [M-H]− | Flavonoids | 10,904,124.49 |
Hesperetin-5-O-glucoside | 464.13 | C22H24O11 | [M-H]− | Flavonoids | 10,868,954.34 |
Epicatechin | 290.08 | C15H14O6 | [M+H]+ | Flavonoids | 10,284,549.50 |
Apigenin-6-C-(2″-glucosyl) arabinoside | 564.15 | C26H28O14 | [M+H]+ | Flavonoids | 9,599,036.91 |
Kaempferol-3-O-neohesperidoside | 594.16 | C27H30O15 | [M+H]+ | Flavonoids | 8,546,569.95 |
Luteolin-8-C-glucoside | 448.10 | C21H20O11 | [M+H]+ | Flavonoids | 8,392,862.50 |
Kaempferol-3-O-glucoside-7-O-rhamnoside | 594.16 | C27H30O15 | [M+H]+ | Flavonoids | 7,126,110.29 |
Apigenin-6-C-glucoside | 432.11 | C21H20O10 | [M+H]+ | Flavonoids | 6,679,619.10 |
Luteolin-6-C-glucoside | 448.10 | C21H20O11 | [M+H]+ | Flavonoids | 6,384,049.48 |
Kaempferol-3-O-robinobioside | 594.16 | C27H30O15 | [M+H]+ | Flavonoids | 6,261,724.21 |
Kaempferol-3-O-galactoside | 448.10 | C21H20O11 | [M-H]− | Flavonoids | 4,834,661.33 |
Apigenin-8-C-(2″-glucosyl) arabinoside | 564.15 | C26H28O14 | [M+H]+ | Flavonoids | 4,606,711.30 |
Kaempferol-3-O-mannoside | 448.10 | C21H20O11 | [M+H]+ | Flavonoids | 2,381,539.37 |
Kaempferol-3-O-glucoside | 448.10 | C21H20O11 | [M+H]+ | Flavonoids | 603,975.00 |
syringaresinol-4-O-β-D-glucopyranoside | 580.22 | C28H36O13 | [M-H]− | Lignans and Coumarins | 253,124.00 |
Sphondin | 216.04 | C12H8O4 | [M+H]+ | Lignans and Coumarins | 4,143,763.49 |
Saikolignanoside D | 520.19 | C26H32O11 | [M+H]+ | Lignans and Coumarins | 1,012,993.75 |
Indigoticoside A | 684.26 | C32H44O16 | [M-H]− | Lignans and Coumarins | 210,510.75 |
Dihydrosesamin | 356.13 | C20H20O6 | [M+H]+ | Lignans and Coumarins | 107,039.90 |
Dihydrodehydrodiconiferyl alcohol-9-O-β-D-xylopyranoside | 492.20 | C25H32O10 | [M+H]+ | Lignans and Coumarins | 120,019.25 |
Dihydrodehydrodiconiferyl alcohol-9-O-β-D-glucopyranoside | 522.21 | C26H34O11 | [M-H]− | Lignans and Coumarins | 256,625.75 |
coumarin | 146.04 | C9H6O2 | [M+H]+ | Lignans and Coumarins | 830,636.75 |
Scopoletin (7-Hydroxy-6-methoxycoumarin) | 192.04 | C10H8O4 | [M+H]+ | Lignans and Coumarins | 416,175.00 |
Psoralen | 186.03 | C11H6O3 | [M+H]+ | Lignans and Coumarins | 34,230,637.64 |
Pinoresinol | 358.14 | C20H22O6 | [M-H]− | Lignans and Coumarins | 11,1167.86 |
Phenolic Compounds | Regression Equations | R2 | Linear Ranges (ng/mL) | Limit of Detection (mg/L) |
---|---|---|---|---|
Epicatechin | Y = 3215.72X + 104.38 | 0.9998 | 1.06–106 | 0.000529 |
(+)-Catechin | Y = 1921.19X | 0.9997 | 2.16–216 | 0.000511 |
Luteolin 8-C-glucoside | Y = 28.48X + 18.88 | 0.9985 | 49.1–4905 | 0.000108 |
Rutin | Y = 65.94X + 992.05 | 0.9976 | 64.2–6415 | 0.00321 |
Hesperetin | Y = 38636.59X − 728.84 | 0.9981 | 0.078–7.8 | 0.00039 |
Caffeic acid | Y = 205.39X − 115.63 | 0.9996 | 4.5–450 | 0.000225 |
Ferulic acid | Y = 21.78X − 5.54 | 0.9984 | 5.82–582 | 0.000291 |
Chlorogenic acid | Y = 825.1X + 2121.19 | 0.9992 | 1.04–520 | 0.0000521 |
Gallic acid | Y = 26.16X − 105.28 | 0.9981 | 5.96–596 | 0.000298 |
Kaempferol | Y = 1.53X + 71.94 | 0.9998 | 53.7–5365 | 0.0268 |
Quercetin | Y = 157.65X − 67.62 | 0.9956 | 0.833–83.3 | 0.000416 |
Salicylic acid | Y = 143.1X + 96.53 | 0.9978 | 0.654–65.4 | 0.00245 |
Apigenin | Y = 28638.1X + 887.87 | 0.9988 | 0.071–7.13 | 0.00000356 |
Individual Polyphenols (mg/kg DW) | ||||||||
---|---|---|---|---|---|---|---|---|
Epicatechin | (+)-Catechin | Luteolin 8-C-Glucoside | Rutin | Hesperetin | Caffeic Acid | Ferulic Acid | Chlorogenic Acid | |
ChCl-MaA | 13.9 ± 0.4 e | 1.5 ± 0.1 e | 32.7 ± 1.1 e | 556 ± 14 g | 0.35 ± 0.017 d | 3.1 ± 0.05 e | 6.8 ± 0.4 f | 7007 ± 245 b |
ChCl-TA | 15.0 ± 0.4 e | 1.3 ± 0.03 f | 34.1 ± 1.5 e | 567 ± 11 g | 0.39 ± 0.010 c | 3.3 ± 0.08 d | 8.9 ± 0.3 d | 7980 ± 290 a |
ChCl-Xyl | 20.4 ± 0.8 d | 1.9 ± 0.07 c | 29.1 ± 1.6 f | 533 ± 7 h | 0.32 ± 0.012 e | 3.1 ± 0.04 e | 8.8 ± 0.4 d | 5489 ± 84 d |
80%ethanol | 39.9 ± 0.5 a | 3.9 ± 0.05 a | 53.7 ± 2.2 a | 943 ± 7 a | 0.55 ± 0.013 a | 6.5 ± 0.1 a | 21.3 ± 0.8 a | 7511 ± 455 a |
ChCl-EtG | 25.9 ± 0.6 b | 2.1 ± 0.03 b | 34.2 ± 0.9 e | 626 ± 15e | 0.39 ± 0.005 c | 2.8 ± 0.1 f | 12.9 ± 0.7 b | 6179 ± 57 c |
ChCl-Urea | 12.6 ± 0.4 f | 0.8 ± 0.05 h | 35.0 ± 2.8 d | 542 ± 24 g | 0.29 ± 0.010 f | 1.9 ± 0.1 h | 9.0 ± 0.5 d | 4751 ± 229 e |
ChCl-LaA | 11.7 ± 0.1 g | 1.3 ± 0.05 f | 48.2 ± 0.7 b | 797 ± 9 b | 0.46 ± 0.006 b | 4.1 ± 0.08 b | 7.2 ± 0.2 e | 7824 ± 197 a |
ChCl-Glu | 13.4 ± 0.3 f | 1.6 ± 0.07 d | 26.9 ± 1.02 g | 456 ± 4 i | 0.27 ± 0.004 g | 1.8 ± 0.04 i | 8.4 ± 0.2 d | 3734 ± 54 f |
Bet-MaA-Glu | 10.7 ± 0.2 h | 1.0 ± 0.02 g | 38.5 ± 1.6 d | 606 ± 10 f | 0.32 ± 0.015 e | 4.0 ± 0.01 c | 7.5 ± 0.3 e | 6828 ± 203 b |
Bet-Gly | 23.3 ± 0.1 c | 1.7 ± 0.07 d | 36.6 ± 0.7 d | 635 ± 2 e | 0.30 ± 0.009 f | 2.4 ± 0.07 g | 11.1 ± 0.4 c | 3923 ± 155 f |
Bet-LaA | 11.4 ± 0.5 g | 1.4 ± 0.007 f | 50.3 ± 1.8 a | 739 ± 5 c | 0.35 ± 0.003 d | 4.0 ± 0.09 c | 6.3 ± 0.2 f | 5867 ± 276 c |
MA-EG | 9.2 ± 0.3 i | 0.1 ± 0.009 g | 37.1 ± 1.6 d | 624 ± 15 e | 0.34 ± 0.017 d | 3.9 ± 0.1 c | 7.4 ± 0.3 e | 6187 ± 326 c |
Pro-LaA | 3.5 ± 0.2 k | 0.2 ± 0.006 j | 47.8 ± 1.7 b | 743 ± 10 c | 0.33 ± 0.003 e | 4.3 ± 0.1 b | 6.2 ± 0.2 f | 5588 ± 205 c |
Pro-EtG | 6.6 ± 0.3 j | 0.4 ± 0.009 i | 41.4 ± 2.4 c | 641 ± 28 d | 0.27 ± 0.008 g | 2.0 ± 0.03 h | 14.1 ± 0.69 b | 2720 ± 150 g |
Pro-MaA | 3.7 ± 0.2 k | 0.2 ± 0.004 j | 43.8 ± 1.1 c | 637 ± 13 e | 0.27 ± 0.006 g | 3.5 ± 0.14 d | 7.7 ± 0.28 e | 5136 ± 218 d |
Solvents | Inhibition of Pancreatic Lipase Activity (µg OTT/mL) | Inhibition of α-Amylase Activity (mg Acar/mL) |
---|---|---|
Bet-MaA-Glu | 6009.75 ± 167.52 a | 0.024 ± 0.0042 j |
ChCl-LaA | 5810.34 ± 483.24 a | 3.54 ± 0.23 b |
MA-EG | 5171.41 ± 44.62 b | 1.09 ± 0.049 e |
Pro-LaA | 3208.24 ± 117.44 c | 0.51 ± 0.045 f |
Pro-MaA | 3144.42 ± 143.54 c | 0.015 ± 0.0029 k |
ChCl-TA | 2873.93 ± 66.98 d | 0.094 ± 0.019 i |
ChCl-MaA | 2668.59 ± 19.63 e | 2.93 ± 0.31 c |
Bet-LaA | 1922.24 ± 126 f | 0.51 ± 0.20 f |
ChCl-EtG | 1093.51 ± 148.23 g | 0.23 ± 0.027 g |
ChCl-Xyl | 846.33 ± 105.93 h | 0.21 ± 0.0079 g |
ChCl-Glu | 646.94 ± 85.00 i | 0.029 ± 0.0059 j |
Pro-EtG | 604.65 ± 63.56 i | 0.13 ± 0.025 h |
ChCl-Urea | 585.42 ± 30.4 i | 5.87 ± 0.80 a |
Bet-Gly | 526.19 ± 13.88 j | 2.40 ± 0.25 d |
80% ethanol | 413.89 ± 22.25 k | 0.23 ± 0.026 g |
Observations | PC1 | PC2 | PC3 |
---|---|---|---|
ChCl-MaA | −0.29546 | −0.93459 | −0.44063 |
ChCl-TA | 0.01902 | −0.99979 | −0.45188 |
ChCl-Xyl | −0.21062 | −0.32219 | −1.63772 |
ChCl-EtG | 0.42418 | 0.44115 | −1.4058 |
ChCl-Urea | −0.69838 | 0.19857 | −0.47194 |
ChCl-LaA | 0.85558 | −0.53284 | 0.40535 |
ChCl-Glu | −1.17432 | 1.05179 | −1.04557 |
Bet-MaA-Glu | 0.17668 | −1.63425 | −0.23221 |
Bet-Gly | −0.46866 | 1.73949 | −0.00851 |
Bet-LaA | 0.36246 | 0.03379 | 1.57327 |
Pro-LaA | −0.25843 | 0.0351 | 1.84561 |
Pro-EtG | −1.12726 | 1.41045 | 0.91118 |
Pro-MaA | −0.3579 | −0.70581 | 0.39098 |
80% ethanol | 3.02756 | 1.15562 | −0.15378 |
MA-EG | −0.27445 | −0.93647 | 0.72165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Peng, Y.; Xu, Y.; Li, F.; Liu, S.; Bukvicki, D.; Zhang, Q.; Lin, S.; Wang, M.; Zhang, T.; et al. Extraction, Characterization, and In Vitro Biological Activity of Polyphenols from Discarded Young Fig Fruits Based on Deep Eutectic Solvents. Antioxidants 2024, 13, 1084. https://doi.org/10.3390/antiox13091084
Zhang Q, Peng Y, Xu Y, Li F, Liu S, Bukvicki D, Zhang Q, Lin S, Wang M, Zhang T, et al. Extraction, Characterization, and In Vitro Biological Activity of Polyphenols from Discarded Young Fig Fruits Based on Deep Eutectic Solvents. Antioxidants. 2024; 13(9):1084. https://doi.org/10.3390/antiox13091084
Chicago/Turabian StyleZhang, Qinqiu, Yue Peng, Yi Xu, Fan Li, Shuxiang Liu, Danka Bukvicki, Qing Zhang, Shang Lin, Miaomiao Wang, Tianyi Zhang, and et al. 2024. "Extraction, Characterization, and In Vitro Biological Activity of Polyphenols from Discarded Young Fig Fruits Based on Deep Eutectic Solvents" Antioxidants 13, no. 9: 1084. https://doi.org/10.3390/antiox13091084
APA StyleZhang, Q., Peng, Y., Xu, Y., Li, F., Liu, S., Bukvicki, D., Zhang, Q., Lin, S., Wang, M., Zhang, T., Wu, D., & Qin, W. (2024). Extraction, Characterization, and In Vitro Biological Activity of Polyphenols from Discarded Young Fig Fruits Based on Deep Eutectic Solvents. Antioxidants, 13(9), 1084. https://doi.org/10.3390/antiox13091084