Phlorotannin Alleviates Liver Injury by Regulating Redox Balance, Apoptosis, and Ferroptosis of Broilers under Heat Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Birds, Experimental Design, Management and Diet
2.2. Sample Collection
2.3. Examination of Liver Histopathology and Liver Index
2.4. Assessment of Liver Function
2.5. Detection of Antioxidant Capability
2.6. Apoptosis Assay by TUNEL
2.7. Determination of mRNA Expression
2.8. Statistical Analysis
3. Results
3.1. Liver Histopathology
3.2. Liver Function
3.3. Antioxidant Capacity
3.4. Hepatocyte Apoptosis
3.5. Determination of Antioxidant-Related Gene Expression
3.6. Determination of Inflammation-Related Gene Expression
3.7. Determination of Ferroptosis and Apoptosis-Related Gene Expression
3.8. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Uyanga, V.A.; Musa, T.H.; Oke, O.E.; Zhao, J.; Wang, X.; Jiao, H.; Onagbesan, O.M.; Lin, H. Global trends and research frontiers on heat stress in poultry from 2000 to 2021: A bibliometric analysis. Front. Physiol. 2023, 14, 1123582. [Google Scholar] [CrossRef]
- Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef]
- Liu, W.-C.; Pan, Z.-Y.; Zhao, Y.; Guo, Y.; Qiu, S.-J.; Balasubramanian, B.; Jha, R. Effects of heat stress on production performance, redox status, intestinal morphology and barrier-related gene expression, cecal microbiome, and metabolome in indigenous broiler chickens. Front. Physiol. 2022, 13, 890520. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, H.; Wang, Y.; Zhao, Z.; Balasubramanian, B.; Jha, R. Effects of Enteromorpha prolifera polysaccharides on growth performance, intestinal barrier function and cecal microbiota in yellow-feathered broilers under heat stress. J. Anim. Sci. Biotechnol. 2023, 14, 132. [Google Scholar] [CrossRef]
- Khan, R.U.; Naz, S.; Ullah, H.; Ullah, Q.; Laudadio, V.; Qudratullah; Bozzo, G.; Tufarelli, V. Physiological dynamics in broiler chickens under heat stress and possible mitigation strategies. Anim. Biotechnol. 2023, 34, 438–447. [Google Scholar] [CrossRef]
- Lin, H.; Decuypere, E.; Buyse, J. Acute heat stress induces oxidative stress in broiler chickens. Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol. 2006, 144, 11–17. [Google Scholar] [CrossRef]
- Chen, H.; Wang, F.; Wu, X.; Yuan, S.; Dong, H.; Zhou, C.; Feng, S.; Zhao, Z.; Si, L. Chronic heat stress induces oxidative stress and induces inflammatory injury in broiler spleen via TLRs/MyD88/NF-κB signaling pathway in broilers. Vet. Sci. 2024, 11, 293. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Yuan, Y.; Sun, C.; Balasubramanian, B.; Zhao, Z.; An, L. Effects of dietary betaine on growth performance, digestive function, carcass traits, and meat quality in indigenous yellow-feathered broilers under long-term heat stress. Animals 2019, 9, 506. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-Y.; Wang, F.-Y.; Chen, H.-X.; Dong, H.-L.; Zhao, Z.-Q.; Si, L.-F. Chronic heat stress induces lung injury in broiler chickens by disrupting the pulmonary blood-air barrier and activating TLRs/NF-κB signaling pathway. Poult. Sci. 2023, 102, 103066. [Google Scholar] [CrossRef]
- Liu, W.-C.; Zhuang, D.-P.; Zhao, Y.; Balasubramanian, B.; Zhao, Z.-H. Seaweed-derived polysaccharides attenuate heat stress-induced splenic oxidative stress and inflammatory response via regulating Nrf2 and NF-κB signaling pathways. Mar. Drugs 2022, 20, 358. [Google Scholar] [CrossRef]
- Del Vesco, A.; Khatlab, A.; Goes, E.; Utsunomiya, K.; Vieira, J.; Neto, A.O.; Gasparino, E. Age-related oxidative stress and antioxidant capacity in heat-stressed broilers. Animal 2017, 11, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, Y.; Huang, B.; Cui, Z.; Li, L. Protective effects of dietary dimethyl itaconate supplementation on oxidative stress, inflammation, and apoptosis in broilers under chronic heat stress. J. Anim. Sci. 2023, 101, skad356. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-Y.; An, Y.-C.; Zhang, S.-Y.; Qiu, S.-J.; Yang, Y.-Y.; Liu, W.-C. Metabolomic analysis reveals biogenic selenium nanoparticles improve the meat quality of thigh muscle in heat-stressed broilers is related to the regulation of ferroptosis pathway. Poult. Sci. 2024, 103, 103554. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; An, Y.-C.; Zhang, S.-Y.; Huang, M.-Y.; Ye, X.-Q.; Zhao, Z.-H.; Liu, W.-C. Biogenic selenium nanoparticles synthesized using alginate oligosaccharides attenuate heat stress-induced impairment of breast meat quality via regulating oxidative stress, metabolome and ferroptosis in broilers. Antioxidants 2023, 12, 2032. [Google Scholar] [CrossRef]
- Zaefarian, F.; Abdollahi, M.R.; Cowieson, A.; Ravindran, V. Avian liver: The forgotten organ. Animals 2019, 9, 63. [Google Scholar] [CrossRef]
- Ma, B.; Xing, T.; Li, J.; Zhang, L.; Jiang, Y.; Gao, F. Chronic heat stress causes liver damage via endoplasmic reticulum stress-induced apoptosis in broilers. Poult. Sci. 2022, 101, 102063. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.-Q.; Zhu, Y.-R.; Yang, Y.-Y.; Qiu, S.-J.; Liu, W.-C. Biogenic selenium nanoparticles synthesized with alginate oligosaccharides alleviate heat stress-induced oxidative damage to organs in broilers through activating Nrf2-mediated anti-oxidation and anti-ferroptosis pathways. Antioxidants 2023, 12, 1973. [Google Scholar] [CrossRef]
- Liu, W.-C.; Zhu, Y.-R.; Zhao, Z.-H.; Jiang, P.; Yin, F.-Q. Effects of dietary supplementation of algae-derived polysaccharides on morphology, tight junctions, antioxidant capacity and immune response of duodenum in broilers under heat stress. Animals 2021, 11, 2279. [Google Scholar] [CrossRef]
- Oni, A.I.; Adeleye, O.O.; Adebowale, T.O.; Oke, O.E. The role of phytogenic feed additives in stress mitigation in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2024, 108, 81–98. [Google Scholar] [CrossRef]
- Hu, R.; He, Y.; Arowolo, M.A.; Wu, S.; He, J. Polyphenols as potential attenuators of heat stress in poultry production. Antioxidants 2019, 8, 67. [Google Scholar] [CrossRef]
- Ding, K.-N.; Lu, M.-H.; Guo, Y.-N.; Liang, S.-S.; Mou, R.-W.; He, Y.-M.; Tang, L.-P. Resveratrol relieves chronic heat stress-induced liver oxidative damage in broilers by activating the Nrf2-Keap1 signaling pathway. Ecotox. Environ. Safe. 2023, 249, 114411. [Google Scholar] [CrossRef] [PubMed]
- Geevarghese, A.V.; Kasmani, F.B.; Dolatyabi, S. Curcumin and curcumin nanoparticles counteract the biological and managemental stressors in poultry production: An updated review. Res. Vet. Sci. 2023, 162, 104958. [Google Scholar] [CrossRef]
- Cebrián-Lloret, V.; Martínez-Abad, A.; López-Rubio, A.; Martínez-Sanz, M. Exploring alternative red seaweed species for the production of agar-based hydrogels for food applications. Food Hydrocoll. 2024, 146, 109177. [Google Scholar] [CrossRef]
- Phang, S.J.; Teh, H.X.; Looi, M.L.; Arumugam, B.; Fauzi, M.B.; Kuppusamy, U.R. Phlorotannins from brown algae: A review on their antioxidant mechanisms and applications in oxidative stress-mediated diseases. J. Appl. Phycol. 2023, 35, 867–892. [Google Scholar] [CrossRef]
- Shen, P.; Qi, H. Cell models to evaluate antioxidant properties of the phlorotannins in brown seaweed: A review. Food Rev. Int. 2023, 39, 2708–2722. [Google Scholar] [CrossRef]
- Park, C.; Cha, H.-J.; Hong, S.H.; Kim, G.-Y.; Kim, S.; Kim, H.-S.; Kim, B.W.; Jeon, Y.-J.; Choi, Y.H. Protective effect of phloroglucinol on oxidative stress-induced DNA damage and apoptosis through activation of the Nrf2/HO-1 signaling pathway in HaCaT human keratinocytes. Mar. Drugs 2019, 17, 225. [Google Scholar] [CrossRef]
- Yang, Y.-I.; Woo, J.-H.; Seo, Y.-J.; Lee, K.-T.; Lim, Y.; Choi, J.-H. Protective effect of brown alga phlorotannins against hyper-inflammatory responses in lipopolysaccharide-induced sepsis models. J. Agric. Food Chem. 2016, 64, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.L.; He, J.H.; Xie, H.B.; Yang, Y.S.; Li, J.C.; Zou, Y. Resveratrol induces antioxidant and heat shock protein mRNA expression in response to heat stress in black-boned chickens. Poult. Sci. 2014, 93, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Karimirad, R.; Khosravinia, H.; Parizadian Kavan, B. Effect of different feed physical forms (pellet, crumble, mash) on the performance and liver health in broiler chicken with and without carbon tetrachloride challenge. J. Anim. Feed Sci. 2020, 29, 59–66. [Google Scholar] [CrossRef]
- Tang, L.-P.; Liu, Y.-L.; Zhang, J.-X.; Ding, K.-N.; Lu, M.-H.; He, Y.-M. Heat stress in broilers of liver injury effects of heat stress on oxidative stress and autophagy in liver of broilers. Poult. Sci. 2022, 101, 102085. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Ding, K.-N.; Shen, X.-L.; Liu, H.-X.; Zhang, Y.-A.; Liu, Y.-Q.; He, Y.-M.; Tang, L.-P. Chronic heat stress promotes liver inflammation in broilers via enhancing NF-κB and NLRP3 signaling pathway. BMC Vet. Res. 2022, 18, 289. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-S.; Shin, T.; Utsuki, T.; Choi, J.-S.; Byun, D.-S.; Kim, H.-R. Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and hepatoprotective properties in tacrine-treated HepG2 cells. J. Agric. Food Chem. 2012, 60, 5340–5349. [Google Scholar] [CrossRef]
- Quéguineur, B.; Goya, L.; Ramos, S.; Martín, M.A.; Mateos, R.; Guiry, M.D.; Bravo, L. Effect of phlorotannin-rich extracts of Ascophyllum nodosum and Himanthalia elongata (Phaeophyceae) on cellular oxidative markers in human HepG2 cells. J. Appl. Phycol. 2013, 25, 1–11. [Google Scholar] [CrossRef]
- Luo, F.; Zhu, B.; Wu, D.; Xu, Y.; Chen, T.; Li, Y.; Hu, J. Construction of phlorotannin-based nanoparticles for alleviating acute liver injury. ACS Appl. Mater. Interfaces 2023, 15, 47338–47349. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-C.; Ahn, G.; Yang, X.; Kim, K.-N.; Kang, S.-M.; Lee, S.-H.; Ko, S.-C.; Ko, J.-Y.; Kim, D.; Kim, Y.-T. Hepatoprotective effects of dieckol-rich phlorotannins from Ecklonia cava, a brown seaweed, against ethanol induced liver damage in BALB/c mice. Food Chem. Toxicol. 2012, 50, 1986–1991. [Google Scholar] [CrossRef]
- Salah, A.S.; Mahmoud, M.A.; Ahmed-Farid, O.A.; El-Tarabany, M.S. Effects of dietary curcumin and acetylsalicylic acid supplements on performance, muscle amino acid and fatty acid profiles, antioxidant biomarkers and blood chemistry of heat-stressed broiler chickens. J. Therm. Biol. 2019, 84, 259–265. [Google Scholar] [CrossRef]
- Zhang, J.; Bai, K.; Su, W.; Wang, A.; Zhang, L.; Huang, K.; Wang, T. Curcumin attenuates heat-stress-induced oxidant damage by simultaneous activation of GSH-related antioxidant enzymes and Nrf2-mediated phase II detoxifying enzyme systems in broiler chickens. Poult. Sci. 2018, 97, 1209–1219. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Nioi, P.; Pickett, C.B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 2009, 284, 13291–13295. [Google Scholar] [CrossRef]
- Sun, L.; Xu, G.; Dong, Y.; Li, M.; Yang, L.; Lu, W. Quercetin protects against lipopolysaccharide-induced intestinal oxidative stress in broiler chickens through activation of Nrf2 pathway. Molecules 2020, 25, 1053. [Google Scholar] [CrossRef]
- He, S.; Yu, Q.; He, Y.; Hu, R.; Xia, S.; He, J. Dietary resveratrol supplementation inhibits heat stress-induced high-activated innate immunity and inflammatory response in spleen of yellow-feather broilers. Poult. Sci. 2019, 98, 6378–6387. [Google Scholar] [CrossRef]
- He, S.; Chen, L.; He, Y.; Chen, F.; Ma, Y.; Xiao, D.; He, J. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, barrier integrity and inflammation in yellow-feather broilers. Anim. Prod. Sci. 2020, 60, 1547–1556. [Google Scholar] [CrossRef]
- Lang, Y.; Gao, N.; Zang, Z.; Meng, X.; Lin, Y.; Yang, S.; Yang, Y.; Jin, Z.; Li, B. Classification and antioxidant assays of polyphenols: A review. J. Future Foods 2024, 4, 193–204. [Google Scholar] [CrossRef]
- Wang, B.; Wang, Y.; Zhang, J.; Hu, C.; Jiang, J.; Li, Y.; Peng, Z. ROS-induced lipid peroxidation modulates cell death outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis. Arch. Toxicol. 2023, 97, 1439–1451. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, K.; Zhao, X.; Geng, Z. Protective effects of resveratrol against high ambient temperature-induced spleen dysplasia in broilers through modulating splenic redox status and apoptosis. J. Sci. Food Agric. 2018, 98, 5409–5417. [Google Scholar] [CrossRef]
- Sharma, P.; Kaushal, N.; Saleth, L.R.; Ghavami, S.; Dhingra, S.; Kaur, P. Oxidative stress-induced apoptosis and autophagy: Balancing the contrary forces in spermatogenesis. Biochim. Biophys. Acta Mol. Basis Dis. 2023, 1869, 166742. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, X.; Yan, H.; Wu, H.; Cao, S.; Zhao, W.; Dong, T.; Zhou, A. Protective effect of curcumin on hepatolenticular degeneration through copper excretion and inhibition of ferroptosis. Phytomedicine 2023, 113, 154539. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, H.; Huang, W.; Liu, Z.; Chen, Z.; Zhao, X.; Ding, T.; Qin, W.; Shen, Y. Curcumin attenuates periodontal injury via inhibiting Ferroptosis of ligature-induced periodontitis in mice. Int. J. Mol. Sci. 2023, 24, 9835. [Google Scholar] [CrossRef]
- Ni, C.; Ye, Q.; Mi, X.; Jiao, D.; Zhang, S.; Cheng, R.; Fang, Z.; Fang, M.; Ye, X. Resveratrol inhibits ferroptosis via activating NRF2/GPX4 pathway in mice with spinal cord injury. Microsc. Res. Tech. 2023, 86, 1378–1390. [Google Scholar] [CrossRef]
- Chen, L.; Sun, X.; Wang, Z.; Chen, M.; He, Y.; Zhang, H.; Han, D.; Zheng, L. Resveratrol protects against doxorubicin-induced cardiotoxicity by attenuating ferroptosis through modulating the MAPK signaling pathway. Toxicol. Appl. Pharmacol. 2024, 482, 116794. [Google Scholar] [CrossRef]
- Kato, K.; Takahashi, M.; Oh-Hashi, K.; Ando, K.; Hirata, Y. Quercetin and resveratrol inhibit ferroptosis independently of Nrf2–ARE activation in mouse hippocampal HT22 cells. Food Chem. Toxicol. 2023, 172, 113586. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, J.; Li, H.; Zhao, D.; Liu, Z.; Zhu, L.; Zhang, Z.; Peng, W. Quercetin: A promising therapy for diabetic encephalopathy through inhibition of hippocampal ferroptosis. Phytomedicine 2024, 126, 154887. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yan, Y.; Niu, F.; Wang, Y.; Chen, X.; Su, G.; Liu, Y.; Zhao, X.; Qian, L.; Liu, P. Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 2021, 7, 193. [Google Scholar] [CrossRef]
- Dixon, S.J.; Olzmann, J.A. The cell biology of ferroptosis. Nat. Rev. Mol. Cell Biol. 2024, 25, 424–442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-D.; Liu, Z.-Y.; Wang, M.-S.; Guo, Y.-X.; Wang, X.-K.; Luo, K.; Huang, S.; Li, R.-F. Mechanisms and regulations of ferroptosis. Front. Immunol. 2023, 14, 1269451. [Google Scholar] [CrossRef] [PubMed]
Item | Contents (%) |
---|---|
Ingredients | |
Corn | 55.00 |
Soybean meal | 34.82 |
Wheat bran | 2.00 |
Soybean oil | 5.00 |
Limestone | 0.50 |
CaHPO4 | 1.60 |
Salt | 0.30 |
DL-Met | 0.18 |
L-Lysine | 0.10 |
Choline chloride | 0.10 |
Vitamin premix 1 | 0.20 |
Mineral premix 2 | 0.20 |
Total | 100.00 |
Nutrient levels | |
Metabolizable energy 3 | 12.82 |
Crude protein | 19.92 |
Ca | 0.93 |
Available phosphorus | 0.44 |
Methionine | 0.45 |
Lysine | 1.30 |
Methionine + cystine | 0.72 |
Genes | Accession No. | Sequence |
---|---|---|
β-actin | NM_205518.1 | F: GTGATGGACTCTGGTGATGGTGTT R: TCTCGGCTGTGGTGGTGAAG |
Nrf2 | NM_205117.1 | F: TGTGTGTGATTCAACCCGACT R: TTAATGGAAGCCGCACCACT |
Keap1 | NM_012289.4 | F: ACTTCGCTGAGGTCTCCAAG R: CAGTCGTACTGCACCCAGTT |
CAT1 | NM_001031215.2 | F: CTATCCTTCCTGGTCTTTCTACAT R: TCATACGCCATCTGTTCTACCT |
Maf F | NM_204757.2 | F: CGACGACGGACGCTGAAGAA R: GTACTTGCCACGGAGAGTGTCAA |
Maf K | NM_204756.2 | F: GCAGCAAGAGGTGGAGAAGC R: ACGGCACGGAACTGGATGA |
Maf G | NM_001079489.1 | F: ACGCTGAAGAACCGAGGCTAC R: GTTCTGGCGAAGTTCTGGAGTG |
GSTT1 | NM_205365.1 | F: CATGCTAACATCCGGGCTAA R: AAATTGCTTCAGGGAAGTGG |
GSTA3 | NM_001001777.1 | F: GCGGCTGCTGGAGTTGAGTT R: GTAGTTGAGGATGGCTCTGGTCTG |
GSTO1 | NM_001277375.1 | F: GGGCTGGTTCCTGTTCTG R: TCTTCTGTAAGGCTCGCTCAT |
SOD1 | NM_205064.1 | F: AGGGAGGAGTGGCAGAAGT R: GCTAAACGAGGTCCAGCAT |
SOD2 | NM_204211.1 | F: TCCTGACCTGCCTTACGACTATGG R: GCGACACCTGAGCTGTAACATCAC |
NQO1 | NM_001277619.1 | F: ACCATCTCTGACCTCTACGCCATA R: GCCGCTTCAATCTTCTTCTGCTC |
HO-1 | NM_205344.2 | F: AGTGAGAGGACAAGCAGGATG R: CGACTGTGGTGGCGATGAA |
GCLC | XM_046915268.1 | F: AGGCTATGTGTCCGATATTGATTG R: TGGTTGTTCTTCAGTGGCTCTA |
GCLM | NM_001007953.2 | F: GCTCAGTTAGATTCGGTCATTATTG R: AAGGTCAGAGGTGCCTATGG |
GPX1 | NM_001277853.2 | F: CAAAGTGCTGCTGGTGGTCAAC R: TTGGTGGCGTTCTCCTGGTG |
GPX3 | NM_001163232.2 | F: TGGCAGAGGAGTTCGGCAAC R: CGTTCTTGACAGTGGCGATGTT |
IκBα | GR480730.1 | F: GTGAGCTTGGTCTGTCGTGT R: TTCATAACTCAGGCCCGCTG |
NF-κB p65 | NM_001396038.1 | F: TGAAGAAACGGGAACTGGAAG R: GGCACGGTTGTCATAGATGG |
TNF-α | NM_204267.2 | F: GGACAGCCTATGCCAACAAG R: ACCACACGACAGCCAAGT |
IFN-γ | NM_205427.1 | F: GCAACCTTCACCTCACCATC R: CGCTGTAATCGTTGTCTTGGA |
IL-1β | NM_204524.2 | F: GAAGAAGCCTCGCCTGGAT R: TCCGCAGCAGTTTGGTCAT |
IL-2 | AJ224516.1 | F: GCTAACTAACCTGCTGTCCATT R: CCGTAGGGCTTACAGAAAGGA |
IL-4 | NM_001007079.2 | F: TGACATCCAGGGAGAGGTTTC R: GCAGGTTCTTGTGGCAGTG |
IL-6 | NM_204628.2 | F: CCTCCTCGCCAATCTGAAGT R: GCACTGAAACTCCTGGTCTTT |
IL-10 | NM_001004414.4 | F: TGTCACCGCTTCTTCACCT R: TCACTTCCTCCTCCTCATCAG |
TFR1 | NM_205256.2 | F: AGTTATCGTGGACGAATCGAGC R: ATGACAGGCGGTCCTTGAAT |
Fpn1 | NM_001012913.2 | F: CCACAGCGATCACAATTCAGAGG R: CGACATCAGGTTCCAGCCAGAA |
ACSL4 | XM_046917349.1 | F: CCGGCAACGTTATCTCCTCC R: GCCTTCTCGCTGTCCTGTAG |
SLC7A11 | XM_426289.7 | F: CTGTCGTGACGGTGCCTAA R: CCAATGATAGTGCCAATGATGATG |
GPX4 | NM_204220.3 | F: GAATGTGCGCTCAGGCG R: R: ACCGCGGTCTTTCCTCATTT |
PTGS2 | NM_001167718.2 | F: TGGTGAGACTCTGGAGAGGCAACT R: GCCAAACACCTCCTGCCCAACA |
Bcl-2 | NM 205339.3 | F: GATGACCGAGTACCTGAACC R: CAGGAGAAATCGAACAAAGGC |
Bax | XM 040693909.1 | F: ACTCTGCTGCTGCTCTCCTCTC R: ATCCACGCAGTGCCAGATGTAATC |
Caspase-3 | NM 204725.2 | F: CCACCGAGATACCGGACTGT R: AACTGCTTCGCTTGCTGTGA |
Caspase-9 | XM 040689238.1 | F: GTGTACCAGCTGCGAGCAGACC R: GCTTTGAGGTTCCGCAGGGTC |
Items 1 | Group 2 | SEM 3 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
TN | HS | HS + PT | ANOVA | TN vs. HS | HS vs. HS + PT | TN vs. HS + PT | ||
TP, g/L | 22.11 | 21.31 | 23.34 | 0.79 | 0.23 | 0.490 | 0.098 | 0.294 |
ALB, g/L | 13.19 a | 10.40 b | 11.55 ab | 0.79 | 0.087 | 0.031 | 0.325 | 0.173 |
AST, U/L | 28.27 | 30.30 | 29.12 | 1.71 | 0.71 | 0.423 | 0.640 | 0.732 |
ALT, U/L | 2.26 | 2.41 | 2.27 | 0.18 | 0.82 | 0.580 | 0.600 | 0.976 |
Items 1 | Group 2 | SEM 3 | p-Value | |||||
---|---|---|---|---|---|---|---|---|
TN | HS | HS+PT | ANOVA | TN vs. HS | HS vs. HS + PT | TN vs. HS + PT | ||
T-AOC, mmol/mg protein | 0.76 | 0.70 | 0.69 | 0.03 | 0.196 | 0.147 | 0.821 | 0.101 |
CAT, U/mg protein | 284.25 a | 237.84 b | 246.45 b | 4.55 | <0.001 | <0.001 | 0.210 | <0.001 |
T-SOD, U/mg protein | 80.71 a | 72.87 b | 75.54 ab | 3.30 | 0.096 | 0.037 | 0.432 | 0.144 |
MDA, mmol/mg protein | 2.95 b | 5.81 a | 6.66 a | 0.79 | 0.194 | 0.029 | 0.467 | 0.008 |
GST, U/mg protein | 173.78 a | 119.03 c | 144.13 b | 6.54 | 0.001 | <0.001 | 0.022 | 0.009 |
GSH-Px, U/mg protein | 114.04 a | 70.36 c | 92.31 b | 6.15 | 0.002 | 0.001 | 0.030 | 0.032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.-X.; Yuan, Y.-M.; Zhao, Z.-H.; Yao, Q.-H.; Ye, X.-Q.; Wang, Y.-Y.; Liu, H.-M.; Jha, R.; Balasubramanian, B.; Liu, W.-C. Phlorotannin Alleviates Liver Injury by Regulating Redox Balance, Apoptosis, and Ferroptosis of Broilers under Heat Stress. Antioxidants 2024, 13, 1048. https://doi.org/10.3390/antiox13091048
Zhao Z-X, Yuan Y-M, Zhao Z-H, Yao Q-H, Ye X-Q, Wang Y-Y, Liu H-M, Jha R, Balasubramanian B, Liu W-C. Phlorotannin Alleviates Liver Injury by Regulating Redox Balance, Apoptosis, and Ferroptosis of Broilers under Heat Stress. Antioxidants. 2024; 13(9):1048. https://doi.org/10.3390/antiox13091048
Chicago/Turabian StyleZhao, Zhong-Xiang, Yue-Ming Yuan, Zhi-Hui Zhao, Qing-Hua Yao, Xue-Qing Ye, Yao-Yao Wang, Hui-Mei Liu, Rajesh Jha, Balamuralikrishnan Balasubramanian, and Wen-Chao Liu. 2024. "Phlorotannin Alleviates Liver Injury by Regulating Redox Balance, Apoptosis, and Ferroptosis of Broilers under Heat Stress" Antioxidants 13, no. 9: 1048. https://doi.org/10.3390/antiox13091048
APA StyleZhao, Z. -X., Yuan, Y. -M., Zhao, Z. -H., Yao, Q. -H., Ye, X. -Q., Wang, Y. -Y., Liu, H. -M., Jha, R., Balasubramanian, B., & Liu, W. -C. (2024). Phlorotannin Alleviates Liver Injury by Regulating Redox Balance, Apoptosis, and Ferroptosis of Broilers under Heat Stress. Antioxidants, 13(9), 1048. https://doi.org/10.3390/antiox13091048