Bioactivity Profiling and Phytochemical Analysis of Carissa carandas Extracts: Antioxidant, Anti-Inflammatory, and Anti-Urinary Tract Infection Properties
Abstract
1. Introduction
2. Material and Methods
2.1. Collection of Berries
2.2. Solvents and Reagents
2.3. Animals
2.4. Phytochemicals Characterization
2.5. Antioxidant Activity
2.6. Antimicrobial Activity
2.7. Anti-Inflammatory Activity
2.7.1. In Vitro Assessment
2.7.2. In Vivo Assessment
2.8. Bioassay-Guided Fractionation
2.8.1. Liquid-Liquid Partitioning
2.8.2. Method Optimization for Fractionation
2.8.3. RP-HPLC Sub-Fractionation
2.9. LC-ESI-MS/MS Analysis
2.10. Quantification of Tentatively Identified Compounds Using External Standards
2.11. Statistical Analysis
3. Results
3.1. Phytochemical Characterization and Antioxidant Activity
3.2. Anti-UTI Potential of Sequential Crude Extracts
3.3. Anti-Inflammatory Potential of Sequential Crude Extracts
3.4. Bioassay-Guided Fractionation
3.5. LC-ESI-MS/MS Analysis and HPLC Quantification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shayganni, E.; Bahmani, M.; Asgary, S.; Rafieian-Kopaei, M. Inflammaging and cardiovascular disease: Management by medicinal plants. Phytomedicine 2016, 23, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Zhu, J.; Wang, H.; Zhang, X.; Zhang, Y.; He, C.; Li, H. Antioxidant activity of ethanolic extract of Cortex fraxini and use in peanut oil. Food Chem. 2007, 103, 913–918. [Google Scholar] [CrossRef]
- Rodriguez, V.L.; Davoudian, T. Clinical Measurement of Pain, Opioid Addiction, and Functional Status. In Treating Comorbid Opioid Use Disorder in Chronic Pain; Springer: Cham, Switzerland, 2016; pp. 47–56. [Google Scholar]
- Kazemi, S.; Shirzad, H.; Rafieian-Kopaei, M. Recent findings in molecular basis of inflammation and anti-inflammatory plants. Curr. Pharm. Des. 2018, 24, 1551–1562. [Google Scholar] [CrossRef]
- Stamm, W.E.; Norrby, S.R. Urinary tract infections: Disease panorama and challenges. J. Infect. Dis. 2001, 183, S1–S4. [Google Scholar] [CrossRef]
- Allegranzi, B.; Nejad, S.B.; Combescure, C.; Graafmans, W.; Attar, H.; Donaldson, L.; Pittet, D. Burden of endemic health-care-associated infection in developing countries: Systematic review and meta-analysis. Lancet 2011, 377, 228–241. [Google Scholar] [CrossRef]
- Magill, S.S.; Edwards, J.R.; Bamberg, W.; Beldavs, Z.G.; Dumyati, G.; Kainer, M.A.; Fridkin, S.K. Multistate point-prevalence survey of health care–associated infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef]
- Tandogdu, Z.; Wagenlehner, F.M. Global epidemiology of urinary tract infections. Curr. Opin. Infect. Dis. 2016, 29, 73–79. [Google Scholar] [CrossRef]
- Bader, M.S.; Loeb, M.; Brooks, A.A. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad. Med. 2017, 129, 242–258. [Google Scholar] [CrossRef]
- Olin, S.J.; Bartges, J.W. Urinary tract infections: Treatment/comparative therapeutics. Vet. Clin. N. Am. Small Anim. Pract. 2015, 45, 721–746. [Google Scholar] [CrossRef]
- Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 2010, 7, 653–660. [Google Scholar] [CrossRef]
- McCann, E.; Sung, A.H.; Ye, G.; Vankeepuram, L.; Tabak, Y.P. contributing factors to the clinical and economic burden of patients with laboratory-confirmed carbapenem-nonsusceptible Gram-negative urinary tract infections. Clin. Outcomes Res. CEOR 2020, 12, 191–200. [Google Scholar] [CrossRef]
- Alaoui Mdarhri, H.; Benmessaoud, R.; Yacoubi, H.; Seffar, L.; Guennouni Assimi, H.; Hamam, M.; Kettani-Halabi, M. Alternatives therapeutic approaches to conventional antibiotics: Advantages, limitations and potential application in medicine. Antibiotics 2022, 11, 1826. [Google Scholar] [CrossRef] [PubMed]
- Begum, S.; Syed, S.A.; Siddiqui, B.S.; Sattar, S.A.; Choudhary, M.I. Carandinol: First isohopane triterpene from the leaves of Carissa carandas L. and its cytotoxicity against cancer cell lines. Phytochem. Lett. 2013, 6, 91–95. [Google Scholar] [CrossRef]
- Jayakumar, K.; Muthuraman, B. Traditional uses and nutrient status of Indian native plant fruit (Carissa carandas Linn.). World Sci. News 2018, 96, 217–224. [Google Scholar]
- Madhuri, S.; Neelagund, S.E. Antioxidant, anti-diabetic activity and DNA damage inhibition activity of Carissa carandas fruit. Int. J. Adv. Res. Dev. 2019, 4, 75–82. [Google Scholar]
- Vysakh, A.; Ratheesh, M.; Rajmohanan, T.P.; Pramod, C.; Premlal, S.; Sibi, P.I. Polyphenolics isolated from virgin coconut oil inhibits adjuvant induced arthritis in rats through antioxidant and anti-inflammatory action. Int. Immunopharmacol. 2014, 20, 124–130. [Google Scholar] [CrossRef]
- David, M.; Karekalammanavar, G. Spectrographic analysis and in vitro study of antibacterial, anticancer activity of aqueous ethanolic fruit extract of Carissa carandas L. J. Adv. Sci. Res. 2015, 6, 10–13. [Google Scholar]
- Itankar, P.R.; Lokhande, S.J.; Verma, P.R.; Arora, S.K.; Sahu, R.A.; Patil, A.T. Antidiabetic potential of unripe Carissa carandas Linn. fruit extract. J. Ethnopharmacol. 2011, 135, 430–433. [Google Scholar] [CrossRef]
- Siddiqi, R.; Naz, S.; Ahmad, S.; Sayeed, S.A. Antimicrobial activity of the polyphenolic fractions derived from Grewia asiatica, Eugenia jambolana and Carissa carandas. Int. J. Food Sci. Technol. 2011, 46, 250–256. [Google Scholar] [CrossRef]
- Le, X.T.; Huynh, M.T.; Pham, T.N.; Than, V.T.; Toan, T.Q.; Bach, L.G.; Trung, N.Q. Optimization of total anthocyanin content, stability and antioxidant evaluation of the anthocyanin extract from Vietnamese Carissa carandas L. fruits. Processes 2019, 7, 468. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Pękal, A.; Pyrzynska, K. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef]
- Galik, S. Determination of the anthocyanin concentration in table wines and fruit juices using visible light spectrophotometry. Cell Biol. 2012, 2, 1–12. [Google Scholar]
- Alara, O.; Abdurahman, N.; Mudalip, S.A.; Olalere, O. Effect of drying methods on the free radicals scavenging activity of Vernonia amygdalina growing in Malaysia. J. King Saud Univ. Sci. 2019, 31, 495–499. [Google Scholar] [CrossRef]
- Zahin, M.; Aqil, F.; Ahmad, I. Broad spectrum antimutagenic activity of antioxidant active fraction of Punica granatum L. peel extracts. Mutat. Res. Toxicol. Environ. Mutagen. 2010, 703, 99–107. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Shinde, U.A.; Phadke, A.S.; Nair, A.M.; Mungantiwar, A.A.; Dikshit, V.J.; Saraf, M.N. Membrane stabilizing activity—A possible mechanism of action for the anti-inflammatory activity of Cedrus deodara wood oil. Fitoterapia 1999, 70, 251–257. [Google Scholar] [CrossRef]
- Sadique, J.; Al-Rqobahs, W.A.; Bughaith, E.I.; Gindi, A.R. The bioactivity of certain medicinal plants on the stabilization of RBC membrane system. Fitoterapia 1989, 60, 525–532. [Google Scholar]
- Mizushima, Y.; Kobayashi, M. Interaction of anti-inflammatory drugs with serum proteins, especially with some biologically active proteins. J. Pharm. Pharmacol. 1968, 20, 169–173. [Google Scholar] [CrossRef]
- Sakat, S.; Juvekar, A.R.; Gambhire, M.N. In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. Int. J. Pharm. Pharm. Sci. 2010, 2, 146–155. [Google Scholar]
- Morris, C.J. Carrageenan-induced paw edema in the rat and mouse. Methods Mol. Biol. 2003, 225, 115–121. [Google Scholar]
- Brownlee, G. Effect of deoxycortone and ascorbic acid on formaldehyde-induced arthritis in normal and adrenalectomised rats. Lancet 1950, 255, 157–159. [Google Scholar] [CrossRef]
- Steinmann, D.; Ganzera, M. Recent advances on HPLC/MS in medicinal plant analysis. J. Pharm. Biomed. Anal. 2011, 55, 744–757. [Google Scholar] [CrossRef]
- Saldanha, L.L.; Vilegas, W.; Dokkedal, A.L. Characterization of flavonoids and phenolic acids in Myrcia bella Cambess. Using FIA-ESI-IT-MSn and HPLC-PAD-ESI-IT-MS combined with NMR. Molecules 2013, 18, 8402–8416. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.; Rasool, N.; Iqbal, M.; Tawab, A.; E-Habib, F.; Khan, A.; Farman, M. Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis of Russelia equisetiformis extract. Bulg. Chem. Commun. 2017, 49, 354–359. [Google Scholar]
- Yan, L.; Yin, P.; Ma, C.; Liu, Y. Method development and validation for pharmacokinetic and tissue distributions of ellagic acid using ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Molecules 2014, 19, 18923–18935. [Google Scholar] [CrossRef]
- Sarkar, R.; Kundu, A.; Banerjee, K.; Saha, S. Anthocyanin composition and potential bioactivity of karonda (Carissa carandas L.) fruit: An Indian source of biocolorant. LWT 2018, 93, 673–678. [Google Scholar] [CrossRef]
- Dhar, G.; Akther, S.; Sultana, A.; May, U.; Islam, M.M.; Dhali, M.; Sikdar, D. Effect of extraction solvents on phenolic contents and antioxidant capacities of Artocarpus chaplasha and Carissa carandas fruits from Bangladesh. J. Appl. Biol. Biotechnol. 2017, 5, 39–44. [Google Scholar]
- Ngonda, F. In-vitro Anti-oxidant Activity and Free Radical Scavenging Potential of roots of Malawian Trichodesma zeylanicumm (burm. f.). Asian J. Biomed. Pharm. Sci. 2013, 3, 21. [Google Scholar]
- Siddiqi, R.; Naz, S.; Sayeed, S.A.; Ishteyaque, S.; Haider, M.S.; Tarar, O.M.; Jamil, K. Antioxidant potential of the polyphenolics in Grewia asiatica, Eugenia jambolana and Carissa carandas. J. Agric. Sci. 2013, 5, 217. [Google Scholar] [CrossRef]
- Sarma, A.; Sarmah, P.; Kashyap, D.; Dutta, S.; Mahanta, M. Antioxidant activity and nutraceutical property of the fruits of an ethno-medicinal plant: Carissa carandas L. found in Brahmaputra valley agro-climatic condition. J. Pharm. Sci. Res. 2015, 7, 55. [Google Scholar]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem. 2015, 22, 132–149. [Google Scholar] [CrossRef]
- Bhalodia, N.R.; Shukla, V.J. Antibacterial and antifungal activities from leaf extracts of Cassia fistula L.: An ethnomedicinal plant. J. Adv. Pharm. Technol. Res. 2011, 2, 104–109. [Google Scholar] [CrossRef]
- Agarwal, T.; Singh, R.; Shukla, A.D.; Waris, I. In vitro study of antibacterial activity of Carissa carandas leaf extracts. Asian J. Plant Sci. Res. 2012, 2, 36–40. [Google Scholar]
- Pilasombut, K.; Laosinwattana, C.; Nguyen, T.T.; Ngamyeeesoon, N.; Teerarak, M. Antimicrobial properties of extracts from Carissa carandas L. fruits and its application in chilled and frozen ground pork. Int. J. Agric. Technol. 2019, 15, 91–102. [Google Scholar]
- Shifa, S.; Begum, T.; Afroze, F.; Shraboni, M.K. Preliminary phytochemical screening, antibacterial activity and cytotoxic activity of leaves extract of Carissa carandas Linn. J. Pharmacogn. Phytochem. 2019, 8, 801–804. [Google Scholar]
- Fartyal, M. Comparative study of antifungal potential of various extracts of leaves of Carissa carandas Linn., Nerium oleander Linn. and Allamanda cathartica Linn. against human fungal pathogen Candida albicans. Vegetos 2023, 1–8. [Google Scholar] [CrossRef]
- Sudjaroen, Y. Lack of in vitro anticancer and antimicrobial activities from Karanda (Carissa carandas) fruit extracts. J. Pharm. Negat. Results 2017, 8, 31–36. [Google Scholar] [CrossRef]
- Opie, E.L. On the relation of necrosis and inflammation to denaturation of proteins. J. Exp. Med. 1962, 115, 597–608. [Google Scholar] [CrossRef]
- Williams, L.A.D.; O’Connar, A.; Latore, L.; Dennis, O.; Ringer, S.; Whittaker, J.A.; Conrad, J.; Vogler, B.; Rosner, H.; Kraus, W. The in vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals, in the early stages of the drug discovery process. West Indian Med. J. 2008, 57, 327–331. [Google Scholar] [PubMed]
- Kumari, C.S.; Yasmin, N.; Hussain, M.R.; Babuselvam, M. In vitro anti-inflammatory and anti-arthritic property of Rhizopora mucronata leaves. Intern. J. Pharm. Sci. Res. 2015, 6, 482–485. [Google Scholar]
- Thida, M.; Aung, H.M.; Wai, N.P.; Su, M. In vitro evaluation of antioxidant, antiglycation and anti-protein denaturation potentials of indigenous Myanmar medicinal plant extracts. J. Herbs Spices Med. Plants 2024, 30, 278–291. [Google Scholar] [CrossRef]
- Moussaid, M.; Elamrani, A.E.; Bourhim, N.; Benaissa, M. In vivo anti-inflammatory and in vitro antioxidant activities of Moroccan medicinal plants. Nat. Prod. Commun. 2011, 6, 1441–1443. [Google Scholar]
- Anupama, N.; Madhumitha, G.; Rajesh, K.S. Role of dried fruits of Carissa carandas as anti-inflammatory agents and the analysis of phytochemical constituents by GC-MS. BioMed Res. Int. 2014, 2014, 512369. [Google Scholar] [CrossRef]
- Saher, S.; Narnawre, S.; Patil, J. Evaluation of phytochemical and pharmacological activity of Carissa carandas L. fruits at three different stages of maturation. Drug Res. 2020, 70, 80–85. [Google Scholar] [CrossRef]
- Malheiros, A.; Filho, V.C.; Schmitt, C.B.; Yunes, R.A.; Escalante, A.; Svetaz, L.; Zacchino, S.; Monache, F.D. Antifungal activity of drimane sesquiterpenes from Drimys brasiliensis using bioassay-guided fractionation. J. Pharm. Pharm. Sci. 2005, 8, 335–339. [Google Scholar]
- Zhang, X.; Han, F.; Gao, P.; Yu, D.; Liu, S. Bioassay-guided fractionation of antifertility components of castorbean (Ricinus communis L.) seed extracts. Nat. Prod. Res. 2007, 21, 982–989. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Satti, N.K.; Sharma, V.K.; Dutt, P.; Suri, K.A.; Bani, S. Amelioration of inflammatory responses by chlorogenic acid via suppression of pro-inflammatory mediators. J. Appl. Pharm. Sci. 2011, 1, 67–75. [Google Scholar]
- El-Shitany, N.A.; El-Bastawissy, E.A.; El-desoky, K. Ellagic acid protects against carrageenan-induced acute inflammation through inhibition of nuclear factor kappa B, inducible cyclooxygenase and proinflammatory cytokines and enhancement of interleukin-10 via an antioxidant mechanism. Int. Immunopharmacol. 2014, 19, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Liu, F.; Luo, Z.; Wu, H.; Zhang, X.; Wang, D.; Miao, Y. The antibacterial activity and mechanism of chlorogenic acid against foodborne pathogen Pseudomonas aeruginosa. Foodborne Pathog. Dis. 2019, 16, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Sung, W.S.; Lee, D.G. Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure Appl. Chem. 2010, 82, 219–226. [Google Scholar] [CrossRef]
- Ma, J.N.; Ma, C.M. Antifungal inhibitory activities of caffeic and quinic acid derivatives. In Coffee in Health and Disease Prevention; Academic Press: Washington, DC, USA, 2015; pp. 635–641. [Google Scholar]
- Ogawa, K.; Sakakibara, H.; Iwata, R.; Ishii, T.; Sato, T.; Goda, T.; Kumazawa, S. Anthocyanin composition and antioxidant activity of the crowberry (Empetrum nigrum) and other berries. J. Agric. Food Chem. 2008, 56, 4457–4462. [Google Scholar] [CrossRef] [PubMed]
- Pertuzatti, P.B.; Barcia, M.T.; Rebello, L.P.G.; Gómez-Alonso, S.; Duarte, R.M.T.; Duarte, M.C.T.; Hermosín-Gutiérrez, I. Antimicrobial activity and differentiation of anthocyanin profiles of rabbiteye and highbush blueberries using HPLC–DAD–ESI-MSn and multivariate analysis. J. Funct. Foods 2016, 26, 506–516. [Google Scholar] [CrossRef]
- Speciale, A.; Bashllari, R.; Muscarà, C.; Molonia, M.S.; Saija, A.; Saha, S.; Cimino, F. Anti-inflammatory activity of an in vitro digested anthocyanin-rich extract on intestinal epithelial cells exposed to TNF-α. Molecules 2022, 27, 5368. [Google Scholar] [CrossRef]
Phytochemicals/Antioxidant Activity | DCM | MeOH | 50% MeOH | Quercetin |
---|---|---|---|---|
TPC (mg GAE/g) | 180 ± 0.134 a | 261 ± 0.813 c | 211 ± 0.163 b | -- |
TFC (mg QE/g) | 0.32 ± 0.731 b | 1.22 ± 0.421 c | 0.21 ± 0.512 a | -- |
TAC (mg/kg) | 0.91 ± 0.612 a | 112 ± 2.12 c | 76.0 ± 0.582 b | -- |
DPPH (% inhibition) | 21.0 ± 0.522 a | 73.0 ± 0.403 c | 59.0 ± 0.122 b | 88.0± 0.112 d |
FRAP (mmol/g) | 10.2 ± 0.214 a | 51.5 ± 1.51 c | 43.3 ± 1.11 b | 59.2± 0.121 d |
Microbe Type | Type of Extracts | Standard Drugs | |||
---|---|---|---|---|---|
DCM | MeOH | 50% MeOH | Ciprofloxacin | Nystatin | |
ZOI at 50 µg/mL (mm) | ZOI at 5 μg/mL (mm) | 100 Units/mL (mm) | |||
Escherichia coli (Gram-negative) | NA | 21.0 ± 0.231 c | 11.0 ± 0.126 a | 15.0 ± 0.251 b | -- |
Klebsiella pneumoniae (Gram-negative) | NA | 26.0 ± 0.112 c | 9.0 ± 0.117 a | 19.0 ± 0.512 b | -- |
Candida albicans | NA | 12.0 ± 0.543 b | 4.0 ± 0.237 a | -- | 21.0 ± 0.548 c |
Candida glabrata | NA | 10.0 ± 1.38 a | NA | -- | 16.0 ± 0.547 b |
In Vitro Assays | Type of Extract | Standard | |||
---|---|---|---|---|---|
DCM | MeOH | 50% MeOH | Diclofenac Sodium (In Vitro) | Indomethacin (In Vivo) | |
% Inhibition at 400 µg/mL | % Inhibition at 400 µg/mL | % Inhibition at 100 mg/kg b.w. | |||
Egg albumin denaturation | 11.0 ± 0.01 ns | 76.0 ± 0.131 *** | 51.0 ± 0.932 ** | 91.0 ± 0.126 **** | -- |
Serum albumin denaturation | 14.0 ± 0.02 ns | 78.0 ± 0.546 *** | 54.0 ± 0.351 ** | 93.0 ± 0.124 **** | -- |
Heat-induced hemolysis | 8.0 ± 0.631 ns | 55.0 ± 0.581 ** | 43.0 ± 0.951 ** | 86.0 ± 0.232 **** | -- |
In vivo study | % inhibition at 400 mg/kg b.w. | ||||
Carrageenan-induced paw edema | 21.0 * | 74.0 **** | 39.0 ** | -- | 79.0 **** |
Formaldehyde-induced paw edema | 14.0 ns | 71.0 **** | 32.0 ** | -- | 73.0 **** |
Assay/Activity | LLP Fraction of Methanol Extract | RP-HPLC Sub-Fractions of LLP Fraction B | Standards | ||||
---|---|---|---|---|---|---|---|
B (50 mg/mL) | CCF4 (50 mg/mL) | CCF7 (50 mg/mL) | Qr (125 µg/mL) | Dfs (400 µg/mL) | Cip (5 μg/mL) | Nys (100 units/mL) | |
DPPH (% inhibition) | 76.1 ± 0.211 c | 65.5 ± 0.821 b | 41.4 ± 1.10 a | 88.4 ± 0.541 d | -- | -- | -- |
FRAP (mmol/g) | 59.2 ± 1.10 c | 43.2 ± 0.551 b | 34.2 ± 1.52 a | 59.4 ± 0.223 c | -- | -- | -- |
Anti-inflammtory activity (% inhibition at 400 µg/mL) | |||||||
Egg albumin denaturation | 82.4 ± 0.541 *** | 69.4 ± 0.359 ** | 57.2 ± 0.312 ** | -- | 91.2 ± 0.124 **** | -- | -- |
Serum albumin denaturation | 85.1 ± 1.81 *** | 52.1 ± 0.431 ** | 48.4 ± 0.223 ** | -- | 93.3 ± 0.115 **** | -- | -- |
Heat-induced hemolysis | 66.2 ± 1.52 ** | 29.4 ± 0.611 * | 37.1 ± 0.212 * | -- | 86.1 ± 0.241 **** | -- | -- |
Antibacterial activity (ZOI mm) 50 µg/mL | |||||||
Escherichia coli | 18.4 ± 1.12 d | 8.1 ± 0.148 b | 6.1 ± 0.259 a | -- | -- | 15.4 ± 0.15 mm c | -- |
Klebsiella pneumoniae | 22.2 ± 1.221 d | 7.4 ± 0.124 b | 4.2 ± 0.521 a | -- | -- | 19.1 ± 0.545 mm c | -- |
Candida albicans | 11.4 ± 1.51 a | NA | NA | -- | -- | -- | 21.4 ± 0.541 mm b |
Candida glabrata | 9.1 ± 0.841 a | NA | NA | -- | -- | -- | 16.1 ± 0.543 mm b |
Tenetaive Compound | Detection Mode | Molecular Weight m/z | Fragments | Reference |
---|---|---|---|---|
Quinic acid | Negative | 191 | 191, 173, 127.1, 85.3 | [36] |
Chlorogenic acid | Negative | 353 | 191, 173.1 | [37] |
Ellagic acid | Negative | 301 | 301, 285, 283.1, 256.9, 229, 178.9 | [38] |
Cyanidin-3-galactoside | Negative | 449 | 286.9 | [39] |
Peonidin-3-arabinoside | Positive | 433 | 283 | [39] |
Delphinidin-3-galactoside | Positive | 465 | 303 | [39] |
Delphinidin-3-rutinoside | Positive | 611 | 302.9 | [39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, W.; Ismail, T.; Qamar, M.; Esatbeyoglu, T. Bioactivity Profiling and Phytochemical Analysis of Carissa carandas Extracts: Antioxidant, Anti-Inflammatory, and Anti-Urinary Tract Infection Properties. Antioxidants 2024, 13, 1037. https://doi.org/10.3390/antiox13091037
Saeed W, Ismail T, Qamar M, Esatbeyoglu T. Bioactivity Profiling and Phytochemical Analysis of Carissa carandas Extracts: Antioxidant, Anti-Inflammatory, and Anti-Urinary Tract Infection Properties. Antioxidants. 2024; 13(9):1037. https://doi.org/10.3390/antiox13091037
Chicago/Turabian StyleSaeed, Wisha, Tariq Ismail, Muhammad Qamar, and Tuba Esatbeyoglu. 2024. "Bioactivity Profiling and Phytochemical Analysis of Carissa carandas Extracts: Antioxidant, Anti-Inflammatory, and Anti-Urinary Tract Infection Properties" Antioxidants 13, no. 9: 1037. https://doi.org/10.3390/antiox13091037
APA StyleSaeed, W., Ismail, T., Qamar, M., & Esatbeyoglu, T. (2024). Bioactivity Profiling and Phytochemical Analysis of Carissa carandas Extracts: Antioxidant, Anti-Inflammatory, and Anti-Urinary Tract Infection Properties. Antioxidants, 13(9), 1037. https://doi.org/10.3390/antiox13091037