A Structure–Activity Relationship Study on the Antioxidant Properties of Dithiocarbamic Flavanones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.1.1. General Procedure for 6,8-Dibromo-2-(4-chlorophenyl)-4-oxochroman-3-yl-pyrrolidine-1-carbodithioate (5h)
2.1.2. 6,8-Dibromo-2-(4-chlorophenyl)-4-oxochroman-3-yl-piperidine-1-carbodithioate (5i)
2.1.3. 6,8-Dibromo-2-(4-chlorophenyl)-4-oxochroman-3-yl-morpholine-4-carbodithioate (5j)
2.1.4. 6,8-Diiodo-2-(4-chlorophenyl)-4-oxochroman-3-yl-pyrrolidine-1-carbodithioate (5m)
2.1.5. 6,8-Diiodo-2-(4-chlorophenyl)-4-oxochroman-3-yl-piperidine-1-carbodithioate (5n)
2.2. In Vitro Antioxidant Activities
2.2.1. 2,2-Diphenyl-1-picrylhydrazyl radical (DPPH) Assay
2.2.2. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Assay
2.2.3. Ferric Reducing Antioxidant Power (FRAP) Assay
3. Results
3.1. Chemistry
3.2. In Vitro Antioxidant Activities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Checa, J.; Aran, J.M. Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B. Antioxidants and Human Disease: A General Introduction. Nutr. Rev. 1997, 55, S44–S49. [Google Scholar] [CrossRef] [PubMed]
- Dröge, W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Kuang, Z.; Zhang, D.; Gao, Y.; Ying, M. Reactive oxygen species in immune cells: A new antitumor target. Biomed. Pharmacother. 2021, 133, 110978. [Google Scholar] [CrossRef] [PubMed]
- Pietta, P.G. Flavonoids as Antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Speisky, H.; Shahidi, F.; Costa de Camargo, A.; Fuentes, J. Revisiting the Oxidation of Flavonoids: Loss, Conservation or Enhancement of Their Antioxidant Properties. Antioxidants 2022, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Agati, G.; Brunetti, C.; Fini, A.; Gori, A.; Guidi, L.; Landi, M.; Sebastiani, F.; Tattini, M. Are Flavonoids Effective Antioxidants in Plants? Twenty Years of Our Investigation. Antioxidants 2020, 9, 1098. [Google Scholar] [CrossRef]
- Kurepa, J.; Shull, T.E.; Smalle, J.A. Friends in Arms: Flavonoids and the Auxin/Cytokinin Balance in Terrestrialization. Plants 2023, 12, 517. [Google Scholar] [CrossRef]
- Peer, W.A.; Murphy, A.S. Flavonoids and auxin transport: Modulators or regulators? Trends Plant Sci. 2007, 12, 556–563. [Google Scholar] [CrossRef]
- Narbona, E.; del Valle, J.C.; Arista, M.; Buide, M.L.; Ortiz, P.L. Major Flower Pigments Originate Different Colour Signals to Pollinators. Front. Ecol. Evol. 2021, 9, 743850. [Google Scholar] [CrossRef]
- Ramaroson, M.L.; Koutouan, C.; Helesbeux, J.J.; Le Clerc, V.; Hamama, L.; Geoffriau, E.; Briard, M. Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. Molecules 2022, 27, 8371. [Google Scholar] [CrossRef] [PubMed]
- Bondonno, C.P.; Croft, K.D.; Ward, N.; Considine, M.J.; Hodgson, J.M. Dietary flavonoids and nitrate: Effects on nitric oxide and vascular function. Nutr. Rev. 2015, 73, 216–235. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Deb, P.K.; Priya, S.; Medina, K.D.; Devi, R.; Walode, S.G.; Rudrapal, M. Dietary Flavonoids: Cardioprotective Potential with Antioxidant Effects and Their Pharmacokinetic, Toxicological and Therapeutic Concerns. Molecules 2021, 26, 4021. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.L.; Shih, P.H.; Yen, G.C. Neuroprotective Effects of Citrus Flavonoids. J. Agric. Food Chem. 2012, 60, 877–885. [Google Scholar] [CrossRef]
- Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev. 2003, 23, 519–534. [Google Scholar] [CrossRef]
- Ninfali, P.; Antonelli, A.; Magnani, M.; Scarpa, E.S. Antiviral Properties of Flavonoids and Delivery Strategies. Nutrients 2020, 12, 2534. [Google Scholar] [CrossRef]
- Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral activities of flavonoids. Biomed. Pharmacother. 2021, 140, 111596. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Y.; Tian, W.; Cui, X.; Tu, P.; Li, J.; Shi, S.; Liu, X. Biosynthesis Investigations of Terpenoid, Alkaloid, and Flavonoid Antimicrobial Agents Derived from Medicinal Plants. Antibiotics 2022, 11, 1380. [Google Scholar] [CrossRef]
- Bahrin, L.G.; Apostu, M.O.; Birsa, L.M.; Stefan, M. The antibacterial properties of sulfur containing flavonoids. Bioorg. Med. Chem. Lett. 2014, 24, 2315–2318. [Google Scholar] [CrossRef]
- Bahrin, L.G.; Sarbu, L.G.; Hopf, H.; Jones, P.G.; Babii, C.; Stefan, M.; Birsa, M.L. The influence of halogen substituents on the biological properties of sulfur-containing flavonoids. Bioorg. Med. Chem. 2016, 24, 3166–3173. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Gursoy, N.; Sarikurkcu, C.; Cengiz, M.; Halil Solak, M. Antioxidant activities, metal contents, total phenolics and flavonoids of seven Morchella species. Food Chem. Toxicol. 2009, 47, 2381–2388. [Google Scholar] [CrossRef]
- Arts, M.J.T.J.; Haenen, G.R.M.M.; Voss, H.-P.; Bast, A. Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Food Chem. Toxicol. 2004, 42, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Buu-Hoi, N.P.; Lavit, D. The bromination of o- and p-hydroxyaryl ketones. J. Chem. Soc. 1955, 18–20. [Google Scholar] [CrossRef]
- Sandulache, A.; Cascaval, A.; Toniutti, N.; Giumanini, A.G. New flavones by a novel synthetic route. Tetrahedron 1997, 53, 9813–9822. [Google Scholar] [CrossRef]
- Kano, M.; Takayanagi, T.; Harada, K.; Makino, K.; Ishikawa, F. Antioxidative activity of anthocyanins from purple sweet potato Ipomoera batatas cultivar Ayamurasaki. Biosci. Biotechnol. Biochem. 2005, 69, 979–988. [Google Scholar] [CrossRef] [PubMed]
- Ricci, D.; Fraternale, D.; Giamperi, L.; Bucchini, A.; Epifano, F.; Burini, G.; Curini, M. Chemical composition, antimicrobial and antioxidant activity of the essential oil of Teucrium marum (Lamiaceae). J. Ethnopharmacol. 2005, 98, 195–200. [Google Scholar] [CrossRef]
- Mimica-Dukic, N.; Bozin, B.; Sokovic, M.; Simin, N. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem. 2004, 52, 2485–2489. [Google Scholar] [CrossRef]
Compound | DPPH | ABTS+ | FRAP | |
---|---|---|---|---|
(6-Bromo) | 5a | 277.47 ± 0.5 | 26.77 ± 0.2 | 89.73 ± 0.3 |
5b | 357.75 ± 0.7 | 26.14 ± 0.2 | 94.71 ± 0.3 | |
5c | 257.11 ± 0.4 | 29.50 ± 0.3 | 84.72 ± 0.2 | |
5d | 198.35 ± 0.4 | 28.02± 0.2 | 83.72 ± 0.4 | |
5e | 240.93 ± 0.5 | 22.81 ± 0.1 | 77.85 ± 0.2 | |
(6,8-Dibromo) | 5f | 165.67 ± 0.7 | 11.81 ± 0.1 | 12.46 ± 0.2 |
5g | 175.40 ± 0.8 | 14.20 ± 0.2 | 14.55 ± 0.3 | |
5h | 119.11 ± 0.2 | 10.27 ± 0.2 | 10.01 ± 0.2 | |
5i | 141.58 ± 0.4 | 16.78 ± 0.3 | 18.88 ± 0.4 | |
5j | 120.08 ± 0.1 | 13.75 ± 0.3 | 14.54 ± 0.4 | |
(6,8-Diiodo) | 5k | 166.73 ± 0.5 | 16.85 ± 0.1 | 37.45 ± 0.2 |
5l | 152.43 ± 0.4 | 14.77 ± 0.1 | 16.51 ± 0.1 | |
5m | 206.05 ± 0.1 | 15.78 ± 0.2 | 47.54 ± 0.3 | |
5n | 132.48 ± 0.2 | 16.70 ± 0.3 | 59.68 ± 0.3 | |
5o | 127.02 ± 0.3 | 13.00 ± 0.2 | 15.16 ± 0.1 | |
6 | - | - | - | |
Ascorbic acid | 74.17 ± 0.2 | 15.64 ± 0.1 | 27.18 ± 0.2 | |
BHT | 179.32 ± 0.5 | 14.66 ± 0.2 | 75.68 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birsa, M.L.; Sarbu, L.G. A Structure–Activity Relationship Study on the Antioxidant Properties of Dithiocarbamic Flavanones. Antioxidants 2024, 13, 963. https://doi.org/10.3390/antiox13080963
Birsa ML, Sarbu LG. A Structure–Activity Relationship Study on the Antioxidant Properties of Dithiocarbamic Flavanones. Antioxidants. 2024; 13(8):963. https://doi.org/10.3390/antiox13080963
Chicago/Turabian StyleBirsa, Mihail Lucian, and Laura Gabriela Sarbu. 2024. "A Structure–Activity Relationship Study on the Antioxidant Properties of Dithiocarbamic Flavanones" Antioxidants 13, no. 8: 963. https://doi.org/10.3390/antiox13080963
APA StyleBirsa, M. L., & Sarbu, L. G. (2024). A Structure–Activity Relationship Study on the Antioxidant Properties of Dithiocarbamic Flavanones. Antioxidants, 13(8), 963. https://doi.org/10.3390/antiox13080963