A Physiological Approach to Explore How Thioredoxin–Glutathione Reductase (TGR) and Peroxiredoxin (Prx) Eliminate H2O2 in Cysticerci of Taenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Biological Material
2.3. Cloning and Overexpression of TsPrx1 and TsPrx3
2.4. Purification of the TGR from T. crassiceps and Recombinant Trx from T. solium
2.5. Bioinformatics Analysis
2.6. Electrophoresis
2.7. Protein Determination
2.8. Enzyme Assays
2.8.1. Peroxidase Activity Assays
2.8.2. Thioredoxin Peroxidase Activity of TcTGR and EcTrxR
2.8.3. Glutamine Synthetase Protection Assay
2.9. Data Presentation and Statistical Analysis
3. Results
3.1. Recombinant Peroxiredoxins
3.2. Purity Degree of Recombinant Proteins
3.3. Peroxidase Activity of the Recombinant TsPrx1 and TsPrx3
3.4. Kinetic Analysis of TcTGR
3.5. Dependence of the Peroxidase Activity of TsPrx1 and TsPrx3 on the H2O2 Concentration
3.6. Peroxidase Activity of TrxR of E. coli
3.7. Protection of the Glutamine Synthetase
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winterbourn, C.C. Hydrogen peroxide reactivity and specificity in thiol-based cell signalling. Biochem. Soc. Trans. 2020, 48, 745–754. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, A.R.; Chausse, B.; da Cunha, F.; Luévano-Martínez, L.A.; Marazzi, T.B.M.; Pessoa, P.S.; Queliconi, B.B.; Kowaltowski, A.J. Mitochondrial compartmentalization of redox processes. Free Radic. Biol. Med. 2012, 52, 2201–2208. [Google Scholar] [CrossRef] [PubMed]
- Sepasi Tehrani, H.; Moosavi-Movahedi, A.A. Catalase and its mysteries. Prog. Biophys. Mol. Biol. 2018, 140, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Das, K.C.; White, C.W. Redox systems of the cell: Possible links and implications. Proc. Natl. Acad. Sci. USA 2002, 99, 9617–9618. [Google Scholar] [CrossRef]
- Lennicke, C.; Cochemé, H.M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell. 2021, 81, 3691–3707. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Role of Metabolic H2O2 Generation. Redox Signaling and Oxidative Stress. J. Biol. Chem. 2014, 289, 8735–8741. [Google Scholar] [CrossRef]
- Williams, D.L.; Bonilla, M.; Gladyshev, V.N.; Salinas, G. Thioredoxin Glutathione Reductase-Dependent Redox Networks in Platyhelminth Parasites. Antioxid. Redox Signal. 2013, 19, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.G.; Woo, H.A.; Kil, I.S.; Bae, S.H. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 2012, 287, 4403–4410. [Google Scholar] [CrossRef] [PubMed]
- Flohé, L.; Budde, H.; Hofmann, B. Peroxiredoxins in antioxidant defense and redox regulation. BioFactors 2003, 19, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Gretes, M.C.; Poole, L.B.; Karplus, P.A. Peroxiredoxins in parasites. Antioxid. Redox Signal. 2012, 17, 608–633. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Flores, A.; Martínez-González, J.J.; Rendón, J.L.; Del Arenal, I.P. The Architecture of The Antioxidants Systems among Invertebrate Parasites. Molecules 2017, 22, 259. [Google Scholar] [CrossRef] [PubMed]
- Andreyev, A.Y.; Kushnareva, Y.E.; Murphy, A.N.; Starkov, A.A. Mitochondrial ROS Metabolism: 10 Years Later. Biochemistry 2015, 80, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Barranco-Medina, S.; Lázaro, J.J.; Dietz, K.J. The oligomeric conformation of peroxiredoxins links redox state to function. FEBS Lett. 2009, 583, 1809–1816. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.G. Overview on peroxiredoxin. Mol. Cells. 2016, 39, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.J.; Knutson, S.T.; Soito, L.; Klomsiri, C.; Poole, L.B.; Fetrow, J.S. Analysis of the peroxiredoxin family: Using active site structure and sequence information for global classification and residue analysis. Proteins 2010, 79, 947–964. [Google Scholar] [CrossRef] [PubMed]
- Wood, Z.A.; Schröder, E.; Robin, H.J.; Poole, L.B. Structure, mechanism, and regulation of peroxiredoxins. Trends Biochem. Sci. 2003, 28, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Wood, Z.A.; Poole, L.B.; Karplus, P.A. Peroxiredoxin Evolution and the Regulation of Hydrogen Peroxide Signaling. Science 2003, 300, 650–653. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.; Karplus, P.A.; Poole, L.B. Typical 2-Cys peroxiredoxins: Structures, mechanisms, and functions. FEBS J. 2009, 276, 2469–2477. [Google Scholar] [CrossRef] [PubMed]
- Bolduc, J.A.; Nelson, K.J.; Haynes, A.C.; Lee, J.; Reisz, J.A.; Graff, A.H.; Clodfelter, J.E.; Parsonage, D.; Poole, L.B.; Furdui, C.M.; et al. Novel hyperoxidation resistance motifs in 2-Cys peroxiredoxins. J. Biol. Chem. 2019, 293, 11901–11912. [Google Scholar] [CrossRef]
- Sayed, A.A.; Williams, D.L. Biochemical characterization of 2-Cys peroxiredoxins from Schistosoma mansoni. J. Biol. Chem. 2004, 279, 26159–26166. [Google Scholar] [CrossRef]
- Bae, Y.A.; Kim, S.H.; Lee, E.G.; Sohn, W.M.; Kong, Y. Identification, and biochemical characterization of two novel peroxiredoxins in a liver fluke, Clonorchis sinensis. Parasitology 2011, 138, 1143–1153. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Park, S.J.; Kim, K.; Rhee, S.G.; Kang, S.W. Activity assay of mammalian 2-Cys peroxiredoxins using yeast thioredoxin reductase system. Anal. Biochem. 2005, 338, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Krnajski, Z.; Walter, R.D.; Müller, S. Isolation, and functional analysis of two thioredoxin peroxidases (peroxiredoxins) from Plasmodium falciparum. Mol. Biochem. Parasitol. 2001, 113, 303–308. [Google Scholar] [CrossRef]
- Kanzok, S.M.; Schirmer, R.H.; Turbachova, I.; Lozef, R.; Becker, K. The thioredoxin system of the malaria parasite Plasmodium falciparum. Glutathione reduction revisited. J. Biol. Chem. 2000, 275, 40180–40186. [Google Scholar] [CrossRef] [PubMed]
- Kanzok, S.M.; Fechner, A.; Bauer, H.; Ulschmid, J.K.; Müller, H.M.; Botella-Munoz, J.; Schneuwly, S.; Schirmer, R.H.; Becker, K. Substitution of the Thioredoxin System for Glutathione Reductase in Drosophila melanogaster. Science 2001, 291, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Vaca-Paniagua, F.; Torres-Rivera, A.; Parra-Unda, R.; Landa, A. Taenia solium: Antioxidant metabolism enzymes as targets for cestocidal drugs and vaccines. Curr. Top. Med. Chem. 2008, 8, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, J.J.; Guevara-Flores, A.; Rendón, J.L.; Del Arenal, I.P. Auranofin-induced oxidative stress causes redistribution of the glutathione pool in Taenia crassiceps cysticerci. Mol. Biochem. Parasitol. 2015, 201, 16–25. [Google Scholar] [CrossRef] [PubMed]
- del Arenal, I.P.; Rubio, M.E.; Ramírez, J.; Rendón, J.L.; Escamilla, J.E. Cyanide-resistant respiration in Taenia crassiceps metacestode (cysticerci) is explained by the H2O2-producing side-reaction of respiratory complex I with O2. Parasitol. Int. 2005, 54, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Vaca-Paniagua, F.; Parra-Unda, R.; Landa, A. Characterization of one typical 2-Cys Peroxiredoxin gene of Taenia solium and Taenia crassiceps. Parasitol. Res. 2009, 105, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Kesherwani, M.; Velmurugan, D.; Tripathi, T. Fasciola gigantica thioredoxin glutathione reductase: Biochemical properties and structural modeling. Int. J. Biol. Macromol. 2016, 89, 152–173. [Google Scholar] [CrossRef] [PubMed]
- Tsai, I.J.; Zarowiecki, M.; Holroyd, N.; Garciarrubio, A.; Sánchez-Flores, A.; Brooks, K.L.; Tracey, A.; Bobes, R.J.; Fragoso, G.; Sciutto, E.; et al. Taenia solium Genome Consortium. The genomes of four tapeworm species reveal adaptations to parasitism. Nature 2013, 496, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Velázquez, M.; Hernández, R.; Larralde, C.; Ostoa-Saloma, P. Crosstalk among Taenia crassiceps (ORF Strain) cysts regulates their rates of budding by ways of soluble and contact signals exchanged between them. Biomed. Res. Int. 2014, 2014, 703693. [Google Scholar] [CrossRef]
- Molina-López, J.; Jiménez, L.; Ochoa-Sánchez, A.; Landa, A. Molecular cloning and characterization of a 2-Cys peroxiredoxin from Taenia solium. J. Parasitol. 2006, 92, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Sanger, F.; Coulson, A.R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 1975, 94, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.C.; von Hippel, P.H. Calculation of Protein Extinction Coefficients from Amino Acids Sequence Data. Anal. Biochem. 1989, 182, 319–326. [Google Scholar] [CrossRef]
- Rendón, J.L.; del Arenal, I.P.; Guevara-Flores, A.; Uribe, A.; Plancarte, A.; Mendoza-Hernández, G. Purification, characterization, and kinetic properties of the multifunctional thioredoxin-glutathione reductase from Taenia crassiceps metacestode (cysticerci). Mol. Biochem. Parasitol. 2004, 133, 61–69. [Google Scholar] [CrossRef]
- Nava, G.; Maldonado, G.; Plancarte, A. Cloning, expression, purification, and kinetic characterization of mitochondrial thioredoxin (TsTrx2), cytosolic thioredoxin (TsTrx1), and glutaredoxin (TsGrx1) from Taenia solium. Parasitol. Res. 2019, 118, 1785–1797. [Google Scholar] [CrossRef] [PubMed]
- Shägger, H.; von Jagow, G. Tricine-sodium Dodecyl-sulphate- Polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 1987, 166, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Villela, S.M.A.; Kraïem, H.; Bouhaouala-Zahar, B.; Bideaux, C.; Aceves Lara, C.A.; Fillaudeau, L. A protocol for recombinant protein quantification by densitometry. MicrobiologyOpen 2020, 9, e1027. [Google Scholar] [CrossRef]
- Kim, K.; Kim, H.; Lee, K.Y.; Rhee, S.G.; Stadtman, E.R. The isolation and purification of a specific “protector” protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J. Biol. Chem. 1988, 263, 4704–4711. [Google Scholar] [CrossRef] [PubMed]
- Hudson, A.L.; Sotirchos, I.M.; Davey, M.W. The activity and hydrogen peroxide sensitivity of the peroxiredoxins from the parasitic nematode Haemonchus contortus. Mol. Biochem. Parasitol. 2011, 176, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, J.J.; Guevara-Flores, A.; Rendón, J.L.; Sosa-Peinado, A.; Del Arenal Mena, I.P. Purification and characterization of Taenia crassiceps cysticerci thioredoxin: Insight into thioredoxin-glutathione-reductase (TGR) substrate recognition. Parasitol. Int. 2015, 64, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Sharapov, M.G.; Ravin, V.K.; Novoselov, V.I. Peroxiredoxins as Multifunctional Enzymes. Mol. Biol. 2014, 48, 600–628. [Google Scholar] [CrossRef]
- Cha, M.K.; Bae, Y.J.; Kim, K.J.; Park, B.J.; Kim, I.H. Characterization of two alkyl hydroperoxide reductase C homologs alkyl hydroperoxide reductase C_H1 and alkyl hydroperoxide reductase C_H2 in Bacillus subtilis. World J. Biol. Chem. 2015, 6, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Baker, L.M.S.; Raudonikiene, A.; Hoffman, P.S.; Poole, L.B. Essential Thioredoxin-Dependent Peroxiredoxin System from Helicobacter pylori: Genetic and Kinetic Characterization. J. Bacteriol. 2001, 183, 1961–1973. [Google Scholar] [CrossRef] [PubMed]
- Sztajer, H.; Gamain, B.; Aumann, K.-D.; Slomianny, C.; Becker, K.; Brigelius-Flohé, R.; Flohé, L. The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J. Biol. Chem. 2001, 276, 7397–7403. [Google Scholar] [CrossRef] [PubMed]
- Mousa, R.; Notis Dardashti, R.; Metanis, N. Selenium and Selenocysteine in Protein Chemistry. Angew. Chem. Int. Ed. Engl. 2017, 56, 15818–15827. [Google Scholar] [CrossRef] [PubMed]
- Maroney, M.J.; Hondal, R.J. Selenium versus sulfur: Reversibility of chemical reactions and resistance to permanent oxidation in proteins and nucleic acids. Free Radic. Biol. Med. 2018, 127, 228–237. [Google Scholar] [CrossRef] [PubMed]
Hydrogen Peroxide | ||||
---|---|---|---|---|
Enzyme | Reducing Substrate | Km (M) | kcat (s−1) | kcat/Km (M−1 s−1) |
TsPrx1 | TsTrx | 1.8 ± 0.5 × 10−6 | 160 ± 7.1 × 10−3 | 8.8 × 104 |
TsPrx3 | TsTrx | 1.3 ± 0.5 × 10−6 | 90 ± 4.2 × 10−3 | 6.9 × 104 |
Enzyme | TsTrx | ||
---|---|---|---|
Km (M) | kcat (s−1) | kcat/Km (M−1 s−1) | |
TsPrx1 | 38.6 ± 1.8 × 10−6 | 160 ± 4.0 × 10−3 | 4.1 × 103 |
TsPrx3 | 122.0 ± 14.5 × 10−6 | 100 ± 7.3 × 10−3 | 0.8 × 103 |
Hydrogen Peroxide | ||||
---|---|---|---|---|
Enzyme | Thioredoxin System | Km (M) | kcat (s−1) | kcat/Km (M−1 s−1) |
TsPrx1 * | TcTGR + TsTrx | 5.8 ± 1.0 × 10−6 | 64 ± 2.1 × 10−3 | 1.0 × 104 |
TsPrx3 ** | TcTGR + TsTrx | 4.9 ± 1.2 × 10−6 | 35 ± 1.9 × 10−3 | 0.7 × 104 |
TcTGR * | TsPrx1 + TsTrx | 192.0 ± 16.1 × 10−6 | 11,200 ± 230.0 × 10−3 | 5.8 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guevara-Flores, A.; Nava-Balderas, G.; de Jesús Martínez-González, J.; Vásquez-Lima, C.; Rendón, J.L.; del Arenal Mena, I.P. A Physiological Approach to Explore How Thioredoxin–Glutathione Reductase (TGR) and Peroxiredoxin (Prx) Eliminate H2O2 in Cysticerci of Taenia. Antioxidants 2024, 13, 444. https://doi.org/10.3390/antiox13040444
Guevara-Flores A, Nava-Balderas G, de Jesús Martínez-González J, Vásquez-Lima C, Rendón JL, del Arenal Mena IP. A Physiological Approach to Explore How Thioredoxin–Glutathione Reductase (TGR) and Peroxiredoxin (Prx) Eliminate H2O2 in Cysticerci of Taenia. Antioxidants. 2024; 13(4):444. https://doi.org/10.3390/antiox13040444
Chicago/Turabian StyleGuevara-Flores, Alberto, Gabriela Nava-Balderas, José de Jesús Martínez-González, César Vásquez-Lima, Juan Luis Rendón, and Irene Patricia del Arenal Mena. 2024. "A Physiological Approach to Explore How Thioredoxin–Glutathione Reductase (TGR) and Peroxiredoxin (Prx) Eliminate H2O2 in Cysticerci of Taenia" Antioxidants 13, no. 4: 444. https://doi.org/10.3390/antiox13040444
APA StyleGuevara-Flores, A., Nava-Balderas, G., de Jesús Martínez-González, J., Vásquez-Lima, C., Rendón, J. L., & del Arenal Mena, I. P. (2024). A Physiological Approach to Explore How Thioredoxin–Glutathione Reductase (TGR) and Peroxiredoxin (Prx) Eliminate H2O2 in Cysticerci of Taenia. Antioxidants, 13(4), 444. https://doi.org/10.3390/antiox13040444