Light-Induced Antioxidant Phenolic Changes among the Sprouts of Lentil Cultivar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Materials and Sprout Cultivation
2.2. Light Conditions
2.3. Extraction Method for Analysis
2.4. TPC and TFC Analysis
2.5. Acid Hydrolysis and HPLC Analysis of Phenolic Compounds
2.6. HPLC-ESI/Q-TOF MS Analysis of Phenolic Compounds
2.7. Antioxidant Activities
2.8. Statistical Analysis
3. Results and Discussion
3.1. Determination of Light Intensities on Sprout Qualities
3.2. Comparison of Phenolic Content in Different Lentil Cultivars in Response to Light Qualities
3.2.1. TPC and TFC Changes of Lentil Sprouts
3.2.2. Individual Phenolic Compound Changes in Lentil Sprouts
Identification of Phenolic Compounds in Lentil Seeds and Sprouts
Individual Phenolic Compound Variation in Lentils during Germination
3.3. Antioxidant Activities of Lentil Seeds and Sprouts
3.4. Correlation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LG | Lentil green |
FG | French green |
LR | Lentil red |
TPC | Total phenolic content |
TFC | Total flavonoid content |
HPLC | High-performance liquid chromatography |
FL | Fluorescent light |
RL | Red LED |
BL | Blue LED |
UV-A | Ultraviolet-A |
UV-B | Ultraviolet-B |
References
- Kaale, L.D.; Siddiq, M.; Hooper, S. Lentil (Lens culinaris Medik) as nutrient-rich and versatile food legume: A review. Legume Sci. 2022, 5, e169. [Google Scholar] [CrossRef]
- Faris, M.E.A.I.E.; Takruri, H.R.; Issa, A.Y. Role of lentils (Lens culinaris L.) in human health and nutrition: A review. Mediterr. J. Nutr. Metab. 2013, 6, 3–16. [Google Scholar] [CrossRef]
- Zhang, B.; Peng, H.; Deng, Z.; Tsao, R. Phytochemicals of lentil (Lens culinaris) and their antioxidant and anti-inflammatory effects. J. Food Bioact. 2018, 1, 93–103. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Abouelenein, D.; Acquaticci, L.; Alessandroni, L.; Angeloni, S.; Borsetta, G.; Caprioli, G.; Nzekoue, F.K.; Sagratini, G.; Vittori, S. Polyphenols, saponins and phytosterols in lentils and their health benefits: An overview. Pharmaceuticals 2022, 15, 1225. [Google Scholar] [CrossRef] [PubMed]
- Amarowicz, R.; Estrella, I.; Hernández, T.; Robredo, S.; Troszyńska, A.; Kosińska, A.; Pegg, R.B. Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chem. 2010, 121, 705–711. [Google Scholar] [CrossRef]
- Vidal-Valverde, C.; Frias, J.; Sierra, I.; Blazquez, I.; Lambein, F.; Kuo, Y.H. New functional legume foods by germination: Effect on the nutritive value of beans, lentils and peas. Eur. Food Res. Technol. 2002, 215, 472–477. [Google Scholar] [CrossRef]
- Bubelova, Z.; Sumczynski, D.; Salek, R.N. Effect of cooking and germination on antioxidant activity, total polyphenols and flavonoids, fiber content, and digestibility of lentils (Lens culinaris L.). J. Food Process. Preserv. 2018, 42, e13388. [Google Scholar] [CrossRef]
- Fouad, A.A.; Rehab, F.M. Effect of germination time on proximate analysis, bioactive compounds and antioxidant activity of lentil (Lens culinaris Medik.) sprouts. Acta Sci. Pol. Technol. Aliment. 2015, 14, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Oskaybaş-Emlek, B.; Özbey, A.; Kahraman, K. Effects of germination on the physicochemical and nutritional characteristics of lentil and its utilization potential in cookie-making. J. Food Meas. Charact. 2021, 15, 4245–4255. [Google Scholar] [CrossRef]
- Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Palma Tenango, M.; Valderrama-Bravo, C.; Soto Hernández, M.; Cruz-Orea, A.; Ordonez-Miranda, J. Lentil sprouts: A nutraceutical alternative for the elaboration of bread. J. Food Sci. Technol. 2020, 57, 1817–1829. [Google Scholar] [CrossRef]
- Ebert, A.W. Sprouts and microgreens—Novel food sources for healthy diets. Plants 2022, 11, 571. [Google Scholar] [CrossRef]
- Thoma, F.; Somborn-Schulz, A.; Schlehuber, D.; Keuter, V.; Deerberg, G. Effects of light on secondary metabolites in selected leafy greens: A review. Front. Plant Sci. 2020, 11, 495308. [Google Scholar] [CrossRef]
- Casal, J.J.; Sánchez, R.A. Phytochromes and seed germination. Seed Sci. Res. 1998, 8, 317–329. [Google Scholar] [CrossRef]
- Vasilean, I.; Cîrciumaru, A.; Garnai, M.; Patrascu, L. The influence of light wavelength on the germination performance of legumes. Ann. Univ. Dunarea Jos Galati Fascicle VI Food Technol. 2018, 42, 95–108. [Google Scholar]
- Ruiz-Nieto, J.E.; Hernández-Ruiz, J.; Sanzón-Gómez, D.; Isiordia-Lachica, P.C.; Zárate-Castrejón, J.L.; Mireles-Arriaga, A.I. Functional lentil sprouts produced under different led light wavelengths conditions. Legum. Res. 2022, 45, 1059–1062. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, Y.; Weng, Y.; Yang, R.; Gu, Z.; Wang, P. Effects of UV-B radiation on phenolic accumulation, antioxidant activity and physiological changes in wheat (Triticum aestivum L.) seedlings. Food Biosci. 2019, 30, 100409. [Google Scholar] [CrossRef]
- Costa, H.; Gallego, S.M.; Tomaro, M.L. Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Sci. 2002, 162, 939–945. [Google Scholar] [CrossRef]
- Thimijan, R.W.; Heins, R.D. Photometric, radiometric, and quantum light units of measure: A review of procedures for interconversion. HortScience 1983, 18, 818–822. [Google Scholar] [CrossRef]
- Kim, J.H.; Duan, S.; Park, Y.R.; Eom, S.H. Tissue-Specific Antioxidant Activities of Germinated Seeds in Lentil Cultivars during Thermal Processing. Antioxidants 2023, 12, 670. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.J.; Eom, S.H. Kiwifruit cultivar ‘Halla gold’ functional component changes during preharvest fruit maturation and postharvest storage. Sci. Hortic. 2018, 234, 134–139. [Google Scholar] [CrossRef]
- Holser, R.A. Principal component analysis of phenolic acid spectra. Int. Sch. Res. Not. 2012, 2012, 493203. [Google Scholar] [CrossRef]
- Bijlsma, J.; de Bruijn, W.J.; Velikov, K.P.; Vincken, J.P. Unravelling discolouration caused by iron-flavonoid interactions: Complexation, oxidation, and formation of networks. Food Chem. 2022, 370, 131292. [Google Scholar] [CrossRef]
- Taniguchi, M.; LaRocca, C.A.; Bernat, J.D.; Lindsey, J.S. Digital database of absorption spectra of diverse flavonoids enables structural comparisons and quantitative evaluations. J. Nat. Prod. 2023, 86, 1087–1119. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.J.; Kwon, S.J.; Qu, S.; Kim, D.G.; Eom, S.H. Antioxidant contributors in seed, seed coat, and cotyledon of γ-ray-induced soybean mutant lines with different seed coat colors. Antioxidants 2021, 10, 353. [Google Scholar] [CrossRef] [PubMed]
- Świeca, M.; Gawlik-Dziki, U.; Kowalczyk, D.; Złotek, U. Impact of germination time and type of illumination on the antioxidant compounds and antioxidant capacity of Lens culinaris sprouts. Sci. Hortic. 2012, 140, 87–95. [Google Scholar] [CrossRef]
- Nam, T.G.; Kim, D.O.; Eom, S.H. Effects of light sources on major flavonoids and antioxidant activity in common buckwheat sprouts. Food Sci. Biotechnol. 2018, 27, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.O.K.; Kim, W.W.; Park, C.H.; Cho, D.H. Effect of artificial LED light and far infrared irradiation on phenolic compound, isoflavones and antioxidant capacity in soybean (Glycine max L.) sprout. Foods 2018, 7, 174. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, Y.; Hu, T.; Zhang, S.; Zhang, Y.; Zhao, T.; Yu, H.; Kang, Y. The influence of light-emitting diodes on the phenolic compounds and antioxidant activities in pea sprouts. J. Funct. Foods 2016, 25, 459–465. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.; Rahmat, A.; Wahab, P.E.; Halim, M.R. Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe). Int. J. Mol. Sci. 2010, 11, 3885–3897. [Google Scholar] [CrossRef] [PubMed]
- Bravi, E.; Falcinelli, B.; Mallia, G.; Marconi, O.; Royo-Esnal, A.; Benincasa, P. Effect of sprouting on the phenolic compounds, glucosinolates, and antioxidant activity of five Camelina sativa (L.) crantz cultivars. Antioxidants 2023, 12, 1495. [Google Scholar] [CrossRef] [PubMed]
- Saltveit, M.E. Synthesis and metabolism of phenolic compounds. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; Yahia, E.M., Ed.; John Wiley and Sons: Somerset, NJ, USA, 2017; pp. 115–124. [Google Scholar]
- Marchiosi, R.; dos Santos, W.D.; Constantin, R.P.; de Lima, R.B.; Soares, A.R.; Finger-Teixeira, A.; Mota, T.R.; de Oliveira, D.M.; de Paiva Foletto-Felipe, M.; Abrahão, J.; et al. Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochem. Rev. 2020, 19, 865–906. [Google Scholar] [CrossRef]
- Taulavuori, K.; Pyysalo, A.; Taulavuori, E.; Julkunen-Tiitto, R. Responses of phenolic acid and flavonoid synthesis to blue and blue-violet light depends on plant species. Environ. Exp. Bot. 2018, 150, 183–187. [Google Scholar] [CrossRef]
- Meng, X.; Xing, T.; Wang, X. The role of light in the regulation of anthocyanin accumulation in Gerbera hybrida. Plant Growth Regul. 2004, 44, 243–250. [Google Scholar] [CrossRef]
- Wang, M.; Leng, C.; Zhu, Y.; Wang, P.; Gu, Z.; Yang, R. UV-B treatment enhances phenolic acids accumulation and antioxidant capacity of barley seedlings. LWT 2022, 153, 112445. [Google Scholar] [CrossRef]
- Moreira-Rodríguez, M.; Nair, V.; Benavides, J.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. UVA, UVB light doses and harvesting time differentially tailor glucosinolate and phenolic profiles in broccoli sprouts. Molecules 2017, 22, 1065. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Calzada, T.; Qian, M.; Strid, Å.; Neugart, S.; Schreiner, M.; Torres-Pacheco, I.; Guevara-González, R.G. Effect of UV-B radiation on morphology, phenolic compound production, gene expression, and subsequent drought stress responses in chili pepper (Capsicum annuum L.). Plant Physiol. Biochem. 2019, 134, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Nam, T.G.; Lim, Y.J.; Eom, S.H. Flavonoid accumulation in common buckwheat (Fagopyrum esculentum) sprout tissues in response to light. HEB 2018, 59, 19–27. [Google Scholar] [CrossRef]
- Lim, Y.J.; Kwon, S.J.; Eom, S.H. Red and blue light-specific metabolic changes in soybean seedlings. Front. Plant Sci. 2023, 14, 1128001. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.J.; Lyu, J.I.; Kwon, S.J.; Eom, S.H. Effects of UV-A radiation on organ-specific accumulation and gene expression of isoflavones and flavonols in soybean sprout. Food Chem. 2021, 339, 128080. [Google Scholar] [CrossRef] [PubMed]
- Dudonne, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef] [PubMed]
- San Miguel-Chávez, R. Phenolic antioxidant capacity: A review of the state of the art. Phenolic Compd.-Biol. Act. 2017, 8, 59–74. [Google Scholar]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Iwashina, T. The structure and distribution of the flavonoids in plants. J. Plant Res. 2000, 113, 287–299. [Google Scholar] [CrossRef]
Light | Intensity (W/m2) | Shoot Length (mm) | Root Length (mm) | TPC (mg GAE/g DW) | ABTS Radical Scavenging Activity (mg VCE/g DW) | |
---|---|---|---|---|---|---|
Dark | 87.8 ± 4.17 | 65.1 ± 3.27 | 3.32 ± 0.04 | 1.63 ± 0.01 | ||
LED | FL | 5.5 | 54.1 ± 1.28 b | 73.2 ± 0.93 a | 3.85 ± 0.06 a | 1.64 ± 0.01 b |
11 | 60.0 ± 2.66 a | 64.4 ± 2.06 b | 3.74 ± 0.13 a | 1.71 ± 0.01 a | ||
22 | 53.7 ± 1.99 b | 59.8 ± 3.33 b | 3.82 ± 0.09 a | 1.67 ± 0.03 ab | ||
44 | 40.8 ± 1.12 c | 36.2 ± 1.59 c | 3.86 ± 0.10 a | 1.68 ± 0.03 ab | ||
RL | 5.5 | 64.6 ± 2.65 b | 76.5 ± 3.76 a | 3.63 ± 0.06 c | 2.01 ± 0.04 c | |
11 | 82.4 ± 2.56 a | 52.7 ± 3.69 b | 4.81 ± 0.09 a | 2.35 ± 0.05 a | ||
22 | 67.3 ± 2.43 b | 52.5 ± 1.78 b | 3.77 ± 0.03 c | 2.06 ± 0.02 bc | ||
44 | 80.8 ± 2.22 a | 57.6 ± 3.03 b | 4.12 ± 0.06 b | 2.21 ± 0.05 ab | ||
BL | 5.5 | 23.2 ± 1.29 c | 17.6 ± 1.25 b | 1.95 ± 0.02 c | 1.38 ± 0.03 c | |
11 | 69.4 ± 2.41 a | 54.5 ± 4.88 a | 4.22 ± 0.09 a | 2.71 ± 0.06 a | ||
22 | 57.3 ± 1.11 b | 19.3 ± 0.92 b | 4.26 ± 0.07 a | 2.61 ± 0.03 a | ||
44 | 24.8 ± 0.85 c | 21.4 ± 2.07 b | 2.98 ± 0.07 b | 2.06 ± 0.04 b | ||
UV | UV-A | 0.5 | 58.7 ± 1.20 a | 67.6 ± 3.21 a | 3.59 ± 0.09 a | 2.13 ± 0.02 a |
1 | 49.5 ± 0.70 b | 63.3 ± 3.53 a | 3.66 ± 0.09 a | 2.18 ± 0.04 a | ||
2 | 44.3 ± 1.76 c | 58.9 ± 1.63 a | 3.91 ± 0.09 a | 2.21 ± 0.04 a | ||
UV-B | 0.5 | 17.9 ± 0.59 a | 14.7 ± 1.25 a | 3.30 ± 0.06 a | 2.36 ± 0.03 ab | |
1 | 13.3 ± 0.57 b | 11.1 ± 0.48 b | 3.13 ± 0.04 a | 2.46 ± 0.06 a | ||
2 | 8.1 ± 0.46 c | 9.6 ± 0.43 b | 2.84 ± 0.04 b | 2.20 ± 0.06 b |
Peak No. | TR (min) | UV λmax (nm) | Formula | [M − H]− (m/z) | Major Fragment Ions (m/z) | Identification |
---|---|---|---|---|---|---|
1 | 19.50 | 233, 277, 316 | C10H10O4 | 193.0509 | 193.0494 | Ferulic acid [21] |
2 | 22.98 | 265, 362 | C15H10O7 | 301.0362 | 301.0360 | Tricetin [22] |
3 | 25.44 | 252, 347 | C15H10O6 | 285.0415 | 285.0416 | Luteolin [23] |
4 | 27.10 | 265, 365 | C15H10O6 | 285.0412 | 285.0413 | Kaempferol [23] |
TPC | TFC | Ferulic Acid | Tricetin | Luteolin | Kaempferol | ABTS | DPPH | ||
LG | TPC | 1 | |||||||
TFC | 0.90771 *** | 1 | |||||||
Ferulic acid | 0.27315 ns | 0.2853 ns | 1 | ||||||
Tricetin | 0.84568 *** | 0.84259 *** | 0.07838 ns | 1 | |||||
Luteolin | 0.71894 *** | 0.68607 *** | 0.51332 *** | 0.61685 *** | 1 | ||||
Kaempferol | 0.54391 *** | 0.5011 *** | 0.3108 *** | 0.63274 *** | 0.52064 *** | 1 | |||
ABTS | 0.7372 *** | 0.73592 *** | 0.34687 ns | 0.80862 *** | 0.68328 *** | 0.67223 *** | 1 | ||
DPPH | −0.1735 ns | −0.05215 ns | −0.09125 ns | 0.16968 ns | 0.04678 ns | 0.35085 ** | 0.28448 * | 1 | |
TPC | TFC | Ferulic acid | Tricetin | Luteolin | Kaempferol | ABTS | DPPH | ||
FG | TPC | 1 | |||||||
TFC | 0.72591 *** | 1 | |||||||
Ferulic acid | 0.29551 ns | 0.39345 ns | 1 | ||||||
Tricetin | 0.79719 *** | 0.72989 *** | 0.37635 *** | 1 | |||||
Luteolin | 0.16431 ns | 0.3937 ** | 0.90713 *** | 0.24307 ns | 1 | ||||
Kaempferol | 0.58951 *** | 0.65101 *** | 0.4168 ** | 0.61618 *** | 0.33536 ns | 1 | |||
ABTS | 0.46137 *** | 0.42285 ** | 0.0998 ns | 0.57938 *** | 0.05519 ns | 0.44922 *** | 1 | ||
DPPH | 0.38688 ** | 0.64315 *** | 0.677 *** | 0.64571 *** | 0.64433 *** | 0.597 *** | 0.50947 *** | 1 | |
TPC | TFC | Ferulic acid | Tricetin | Luteolin | Kaempferol | ABTS | DPPH | ||
LR | TPC | 1 | |||||||
TFC | 0.73383 *** | 1 | |||||||
Ferulic acid | 0.89939 *** | 0.80813 *** | 1 | ||||||
Tricetin | 0.765 *** | 0.68743 *** | 0.67382 *** | 1 | |||||
Luteolin | 0.74408 *** | 0.38578 ** | 0.62298 *** | 0.49207 *** | 1 | ||||
Kaempferol | 0.69067 *** | 0.61567 *** | 0.63232 *** | 0.71488 *** | 0.51268 *** | 1 | |||
ABTS | 0.93597 *** | 0.65333 *** | 0.79734 *** | 0.76679 *** | 0.7078 *** | 0.69528 *** | 1 | ||
DPPH | 0.64679 *** | 0.76752 *** | 0.62988 *** | 0.67849 *** | 0.4016 ** | 0.59584 *** | 0.65449 *** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.R.; Kwon, S.-J.; Kim, J.H.; Duan, S.; Eom, S.H. Light-Induced Antioxidant Phenolic Changes among the Sprouts of Lentil Cultivar. Antioxidants 2024, 13, 399. https://doi.org/10.3390/antiox13040399
Park YR, Kwon S-J, Kim JH, Duan S, Eom SH. Light-Induced Antioxidant Phenolic Changes among the Sprouts of Lentil Cultivar. Antioxidants. 2024; 13(4):399. https://doi.org/10.3390/antiox13040399
Chicago/Turabian StylePark, You Rang, Soon-Jae Kwon, Ji Hye Kim, Shucheng Duan, and Seok Hyun Eom. 2024. "Light-Induced Antioxidant Phenolic Changes among the Sprouts of Lentil Cultivar" Antioxidants 13, no. 4: 399. https://doi.org/10.3390/antiox13040399
APA StylePark, Y. R., Kwon, S.-J., Kim, J. H., Duan, S., & Eom, S. H. (2024). Light-Induced Antioxidant Phenolic Changes among the Sprouts of Lentil Cultivar. Antioxidants, 13(4), 399. https://doi.org/10.3390/antiox13040399