Effects of Aspirin Eugenol Ester on Liver Oxidative Damage and Energy Metabolism in Immune-Stressed Broilers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diets and Broiler Chickens
2.2. Experimental Procedures
2.3. Production Performance
2.4. Sample Collection
2.5. Determination of Oxidative Damage Indices
2.6. Metabolome Assay and Data Analysis
2.7. Transcriptome Determination and Data Analysis
2.8. Conjoint Analysis of Transcriptomics and Metabolomics Data
2.9. Verification of Quantitative Real-Time PCR Results
2.10. Statistical Analysis
3. Results
3.1. Production Performance
3.2. Antioxidant Function
3.3. Metabolomic Analysis
3.4. Conjoint Analysis of Transcriptomics and Metabolomics Data
3.5. Quantitative Real-Time-PCR Validation of DEGs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, X.; Jiao, H.; Zhao, J.; Wang, X.; Lin, H. Lipopolysaccharide impairs mucin secretion and stimulated mucosal immune stress response in respiratory tract of neonatal chicks. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2018, 204, 71–78. [Google Scholar] [CrossRef]
- Bi, S.; Ma, X.; Wang, Y.; Chi, X.; Zhang, Y.; Xu, W.; Hu, S. Protective Effect of Ginsenoside Rg1 on Oxidative Damage Induced by Hydrogen Peroxide in Chicken Splenic Lymphocytes. Oxidative Med. Cell. Longev. 2019, 2019, 8465030. [Google Scholar] [CrossRef]
- Li, Y.; Fan, G.; Liu, Y.; Yao, W.; Albrecht, E.; Zhao, R.; Yang, X. Heat stress during late pregnancy of sows influences offspring longissimus dorsi muscle growth at weaning. Res. Vet. Sci. 2021, 136, 336–342. [Google Scholar] [CrossRef]
- Xing, Y.Y.; Zheng, Y.K.; Yang, S.; Zhang, L.H.; Guo, S.W.; Shi, L.L.; Xu, Y.Q.; Jin, X.; Yan, S.M.; Shi, B.L. Artemisia ordosica Polysaccharide Alleviated Lipopolysaccharide-induced Oxidative Stress of Broilers via Nrf2/Keap1 and TLR4/NF-κB Pathway. Ecotoxicol. Environ. Saf. 2021, 223, 112566. [Google Scholar] [CrossRef]
- Tan, H.; Zhen, W.; Bai, D.; Liu, K.; He, X.; Ito, K.; Liu, Y.; Li, Y.; Zhang, Y.; Zhang, B.; et al. Effects of dietary chlorogenic acid on intestinal barrier function and the inflammatory response in broilers during lipopolysaccharide-induced immune stress. Poult. Sci. 2023, 102, 102623. [Google Scholar] [CrossRef]
- Bai, D.; Liu, K.; He, X.; Tan, H.; Liu, Y.; Li, Y.; Zhang, Y.; Zhen, W.; Zhang, C.; Ma, Y. Effect of Dietary Chlorogenic Acid on Growth Performance, Antioxidant Function, and Immune Response of Broiler Breeders under Immune Stress and Stocking Density Stress. Vet. Sci. 2022, 9, 582. [Google Scholar] [CrossRef]
- Hu, W.; Bi, S.; Shao, J.; Qu, Y.; Zhang, L.; Li, J.; Chen, S.; Ma, Y.; Cao, L. Ginsenoside Rg1 and Re alleviates inflammatory responses and oxidative stress of broiler chicks challenged by lipopolysaccharide. Poult. Sci. 2023, 102, 102536. [Google Scholar] [CrossRef]
- Ye, J.; Yang, H.; Hu, W.; Tang, K.; Liu, A.; Bi, S. Changed cecal microbiota involved in growth depression of broiler chickens induced by immune stress. Poult. Sci. 2023, 102, 102598. [Google Scholar] [CrossRef]
- Shen, D.; Ma, N.; Yang, Y.; Liu, X.; Qin, Z.; Li, S.; Jiao, Z.; Kong, X.; Li, J. UPLC-Q-TOF/MS-Based Plasma Metabolomics to Evaluate the Effects of Aspirin Eugenol Ester on Blood Stasis in Rats. Molecules 2019, 24, 2380. [Google Scholar] [CrossRef]
- Li, J.; Yu, Y.; Yang, Y.; Liu, X.; Zhang, J.; Li, B.; Zhou, X.; Niu, J.; Wei, X.; Liu, Z. A 15-day oral dose toxicity study of aspirin eugenol ester in Wistar rats. Food Chem. Toxicol. 2012, 50, 1980–1985. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, X.; Yang, Y.; Li, J.; Ma, N.; Li, B. In vivo and in vitro metabolism of aspirin eugenol ester in dog by liquid chromatography tandem mass spectrometry. Biomed. Chromatogr. 2015, 29, 129–137. [Google Scholar] [CrossRef]
- Li, J.; Kong, X.; Li, X.; Yang, Y.; Zhang, J. Genotoxic evaluation of aspirin eugenol ester using the Ames test and the mouse bone marrow micronucleus assay. Food Chem. Toxicol. 2013, 62, 805–809. [Google Scholar] [CrossRef]
- Ma, N.; Liu, X.W.; Yang, Y.J.; Li, J.Y.; Mohamed, I.; Liu, G.R.; Zhang, J.Y. Preventive Effect of Aspirin Eugenol Ester on Thrombosis in κ-Carrageenan-Induced Rat Tail Thrombosis Model. PLoS ONE 2015, 10, e0133125. [Google Scholar]
- Ma, N.; Liu, X.W.; Yang, Y.J.; Shen, D.S.; Zhao, X.L.; Mohamed, I.; Kong, X.J.; Li, J.Y. Evaluation on antithrombotic effect of aspirin eugenol ester from the view of platelet aggregation, hemorheology, TXB2/6-keto-PGF1α and blood biochemistry in rat model. BMC Vet. Res. 2016, 12, 108. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Huang, M.Z.; Yang, Y.J.; Liu, X.W.; Qin, Z.; Li, S.H.; Li, J.Y. Aspirin Eugenol Ester Attenuates Paraquat-Induced Hepatotoxicity by Inhibiting Oxidative Stress. Front. Physiol. 2020, 11, 582801. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Yang, Y.J.; Liu, X.W.; Qin, Z.; Li, S.H.; Li, J.Y. The Protective Effect of Aspirin Eugenol Ester on Paraquat-Induced Acute Liver Injury Rats. Front. Med. 2020, 7, 589011. [Google Scholar] [CrossRef]
- Tao, Q.; Zhang, Z.D.; Qin, Z.; Liu, X.W.; Li, S.H.; Bai, L.X.; Ge, W.B.; Li, J.Y.; Yang, Y.J. Aspirin eugenol ester alleviates lipopolysaccharide-induced acute lung injury in rats while stabilizing serum metabolites levels. Front. Immunol. 2022, 13, 939106. [Google Scholar] [CrossRef] [PubMed]
- Xiao-Rong, L.; Ning, M.; Xi-Wang, L.; Shi-Hong, L.; Zhe, Q.; Li-Xia, B.; Ya-Jun, Y.; Jian-Yong, L. Untargeted and Targeted Metabolomics Reveal the Underlying Mechanism of Aspirin Eugenol Ester Ameliorating Rat Hyperlipidemia via Inhibiting FXR to Induce CYP7A1. Front. Immunol. 2021, 12, 733789. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, H.; Chen, Y.P.; Yang, M.X.; Zhang, L.L.; Lu, Z.X.; Zhou, Y.M.; Wang, T. Bacillus amyloliquefaciens supplementation alleviates immunological stress in lipopolysaccharide-challenged broilers at early age. Poult. Sci. 2015, 94, 1504–1511. [Google Scholar] [CrossRef] [PubMed]
- Warren, C.R.; O’Sullivan, J.F.; Friesen, M.; Becker, C.E.; Zhang, X.; Liu, P.; Wakabayashi, Y.; Morningstar, J.E.; Shi, X.; Choi, J.; et al. Induced Pluripotent Stem Cell Differentiation Enables Functional Validation of GWAS Variants in Metabolic Disease. Cell Stem Cell 2017, 20, 547–557. [Google Scholar] [CrossRef]
- Zelena, E.; Dunn, W.B.; Broadhurst, D.; Francis-McIntyre, S.; Carroll, K.M.; Begley, P.; O’Hagan, S.; Knowles, J.D.; Halsall, A.; Wilson, I.D.; et al. Development of a robust and repeatable UPLC-MS method for the long-term metabolomic study of human serum. Anal. Chem. 2009, 81, 1357–1364. [Google Scholar] [CrossRef]
- Want, E.J.; Masson, P.; Michopoulos, F.; Wilson, I.D.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Loftus, N.; Holmes, E.; Nicholson, J.K. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 2013, 8, 17–32. [Google Scholar] [CrossRef]
- Yang, L.; Liu, G.; Liang, X.; Wang, M.; Zhu, X.; Luo, Y.; Shang, Y.; Yang, J.Q.; Zhou, P.; Gu, X.L. Effects of berberine on the growth performance, antioxidative capacity and immune response to lipopolysaccharide challenge in broilers. Anim. Sci. J. 2019, 90, 1229–1238. [Google Scholar] [CrossRef]
- Zheng, A.; Zhang, A.; Chen, Z.; Pirzado, S.A.; Chang, W.; Cai, H.; Bryden, W.L.; Liu, G. Molecular mechanisms of growth depression in broiler chickens (Gallus Gallus domesticus) mediated by immune stress: A hepatic proteome study. J. Anim. Sci. Biotechnol. 2021, 12, 90. [Google Scholar] [CrossRef]
- Zhang, P.F.; Shi, B.L.; Su, J.L.; Yue, Y.X.; Cao, Z.X.; Chu, W.B.; Li, K.; Yan, S.M. Relieving effect of Artemisia argyi aqueous extract on immune stress in broilers. J. Anim. Physiol. Anim. Nutr. 2017, 101, 251–258. [Google Scholar] [CrossRef]
- Fowler, J.; Kakani, R.; Haq, A.; Byrd, J.A.; Bailey, C.A. Growth promoting effects of prebiotic yeast cell wall products in starter broilers under an immune stress and Clostridium perfringens challenge. J. Appl. Poult. Res. 2015, 24, 66–72. [Google Scholar] [CrossRef]
- Zheng, X.C.; Wu, Q.J.; Song, Z.H.; Zhang, H.; Zhang, J.F.; Zhang, L.L.; Zhang, T.Y.; Wang, C.; Wang, T. Effects of Oridonin on growth performance and oxidative stress in broilers challenged with lipopolysaccharide. Poult. Sci. 2016, 95, 2281–2289. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, J.; Jiang, Y.; Xu, Y.Q.; Jin, X.; Yan, S.M.; Shi, B.L. Effects of Artemisia argyi flavonoids on growth performance and immune function in broilers challenged with lipopolysaccharide. Anim. Biosci. 2021, 34, 1169–1180. [Google Scholar] [CrossRef]
- Tanaka, K.I.; Sugizaki, T.; Kanda, Y.; Tamura, F.; Niino, T.; Kawahara, M. Preventive Effects of Carnosine on Lipopolysaccharide-induced Lung Injury. Sci. Rep. 2017, 7, 42813. [Google Scholar] [CrossRef]
- Shah, S.A.; Khan, M.; Jo, M.H.; Jo, M.G.; Amin, F.U.; Kim, M.O. Melatonin Stimulates the SIRT1/Nrf2 Signaling Pathway Counteracting Lipopolysaccharide (LPS)-Induced Oxidative Stress to Rescue Postnatal Rat Brain. CNS Neurosci. Ther. 2017, 23, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Mou, D.; Zhao, L.; Jiang, X.; Che, L.; Fang, Z.; Xu, S.; Lin, Y.; Zhuo, Y.; Li, J.; et al. Maternal organic selenium supplementation alleviates LPS induced inflammation, autophagy and ER stress in the thymus and spleen of offspring piglets by improving the expression of selenoproteins. Food Funct. 2021, 12, 11214–11228. [Google Scholar] [CrossRef]
- Sasaki, M.; Joh, T. Oxidative stress and ischemia-reperfusion injury in gastrointestinal tract and antioxidant, protective agents. J. Clin. Biochem. Nutr. 2007, 40, 1–12. [Google Scholar] [CrossRef]
- Bouzid, D.; Gargouri, B.; Mansour, R.B.; Amouri, A.; Tahri, N.; Lassoued, S.; Masmoudi, H. Oxidative stress markers in intestinal mucosa of Tunisian inflammatory bowel disease patients. Saudi J. Gastroenterol. 2013, 19, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.F.; Chen, Y.P.; Jin, R.; Wang, C.; Wen, C.; Zhou, Y.M. Dietary chitooligosaccharide supplementation alleviates intestinal barrier damage, and oxidative and immunological stress in lipopolysaccharide-challenged laying hens. Poult. Sci. 2022, 101, 101701. [Google Scholar] [CrossRef] [PubMed]
- Aluwong, T.; Kawu, M.; Raji, M.; Dzenda, T.; Govwang, F.; Sinkalu, V.; Ayo, J. Effect of Yeast Probiotic on Growth, Antioxidant Enzyme Activities and Malondialdehyde Concentration of Broiler Chickens. Antioxidants 2013, 2, 326–339. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Liu, J.; Peng, Y.; Xiong, X.; Huang, L.; Yang, H.; Zhang, J.; Tao, L. GSTA3 Attenuates Renal Interstitial Fibrosis by Inhibiting TGF-Beta-Induced Tubular Epithelial-Mesenchymal Transition and Fibronectin Expression. PLoS ONE 2016, 11, e0160855. [Google Scholar] [CrossRef]
- Li, J.; Tang, X.; Wen, X.; Ren, X.; Zhang, H.; Du, Y.; Lu, J. Mitochondrial GLRX2 Knockout Augments Acetaminophen-Induced Hepatotoxicity in Mice. Antioxidants 2022, 11, 1643. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Yang, Y.J.; Liu, X.W.; Qin, Z.; Li, S.H.; Li, J.Y. Corrigendum to “Aspirin eugenol ester ameliorates paraquat-induced oxidative damage through ROS/p38-MAPK-mediated mitochondrial apoptosis pathway” [Toxicology 453 (2021) 152721]. Toxicology 2021, 454, 152763. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Yang, G.Z.; Liu, X.W.; Yang, Y.J.; Mohamed, I.; Liu, G.R.; Li, J.Y. Impact of Aspirin Eugenol Ester on Cyclooxygenase-1, Cyclooxygenase-2, C-Reactive Protein, Prothrombin and Arachidonate 5-Lipoxygenase in Healthy Rats. Iran. J. Pharm. Res. 2017, 16, 1443–1451. [Google Scholar]
- Maehara, T.; Higashitarumi, F.; Kondo, R.; Fujimori, K. Prostaglandin F(2α) receptor antagonist attenuates LPS-induced systemic inflammatory response in mice. FASEB J. 2020, 34, 15197–15207. [Google Scholar] [CrossRef]
- Liu, K.; Zhen, W.; Bai, D.; Tan, H.; He, X.; Li, Y.; Liu, Y.; Zhang, Y.; Ito, K.; Zhang, B.; et al. Lipopolysaccharide-induced immune stress negatively regulates broiler chicken growth via the COX-2-PGE(2)-EP4 signaling pathway. Front. Immunol. 2023, 14, 1193798. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Wang, X.; Liu, Y.; Dong, X.; Zou, X. Parental dietary arachidonic acid altered serum fatty acid profile, hepatic antioxidant capacity, and lipid metabolism in domestic pigeons (Columba livia). Anim. Sci. J. 2021, 92, e13616. [Google Scholar] [CrossRef]
- Wang, T.; Fu, X.; Chen, Q.; Patra, J.K.; Wang, D.; Wang, Z.; Gai, Z. Arachidonic Acid Metabolism and Kidney Inflammation. Int. J. Mol. Sci. 2019, 20, 3683. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Jia, J. Natural COX-2 Inhibitors as Promising Anti-inflammatory Agents: An Update. Curr. Med. Chem. 2021, 28, 3622–3646. [Google Scholar] [CrossRef]
- Chen, F.; Jiang, G.; Liu, H.; Li, Z.; Pei, Y.; Wang, H.; Pan, H.; Cui, H.; Long, J.; Wang, J.; et al. Melatonin alleviates intervertebral disc degeneration by disrupting the IL-1β/NF-κB-NLRP3 inflammasome positive feedback loop. Bone Res. 2020, 8, 10. [Google Scholar] [CrossRef]
- Tiku, V.; Tan, M.W. Host immunity and cellular responses to bacterial outer membrane vesicles. Trends Immunol. 2021, 42, 1024–1036. [Google Scholar] [CrossRef]
- Wang, G.; Song, Q.; Huang, S.; Wang, Y.; Cai, S.; Yu, H.; Ding, X.; Zeng, X.; Zhang, J. Effect of Antimicrobial Peptide Microcin J25 on Growth Performance, Immune Regulation, and Intestinal Microbiota in Broiler Chickens Challenged with Escherichia coli and Salmonella. Animals 2020, 10, 345. [Google Scholar] [CrossRef]
- Van Heugten, E.; Coffey, M.T.; Spears, J.W. Effects of immune challenge, dietary energy density, and source of energy on performance and immunity in weanling pigs. J. Anim. Sci. 1996, 74, 2431–2440. [Google Scholar] [CrossRef]
- Nolfi-Donegan, D.; Braganza, A.; Shiva, S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020, 37, 101674. [Google Scholar] [CrossRef]
- Boyman, L.; Karbowski, M.; Lederer, W.J. Regulation of Mitochondrial ATP Production: Ca(2+) Signaling and Quality Control. Trends Mol. Med. 2020, 26, 21–39. [Google Scholar] [CrossRef]
- Lyly, A.; von Schantz, C.; Heine, C.; Schmiedt, M.L.; Sipilä, T.; Jalanko, A.; Kyttälä, A. Novel interactions of CLN5 support molecular networking between Neuronal Ceroid Lipofuscinosis proteins. BMC Cell Biol. 2009, 10, 83. [Google Scholar] [CrossRef]
- Doccini, S.; Morani, F.; Nesti, C.; Pezzini, F.; Calza, G.; Soliymani, R.; Signore, G.; Rocchiccioli, S.; Kanninen, K.M.; Huuskonen, M.T.; et al. Proteomic and functional analyses in disease models reveal CLN5 protein involvement in mitochondrial dysfunction. Cell Death Discov. 2020, 6, 18. [Google Scholar] [CrossRef]
- Cobley, J.N. Mechanisms of Mitochondrial ROS Production in Assisted Reproduction: The Known, the Unknown, and the Intriguing. Antioxidants 2020, 9, 933. [Google Scholar] [CrossRef] [PubMed]
- Mills, E.L.; Kelly, B.; Logan, A.; Costa, A.S.H.; Varma, M.; Bryant, C.E.; Tourlomousis, P.; Däbritz, J.H.M.; Gottlieb, E.; Latorre, I.; et al. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell 2016, 167, 457–470.e13. [Google Scholar] [CrossRef] [PubMed]
- Muller, F.L.; Liu, Y.; Van Remmen, H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 2004, 279, 49064–49073. [Google Scholar] [CrossRef] [PubMed]
- Marín, R.; Chiarello, D.I.; Abad, C.; Rojas, D.; Toledo, F.; Sobrevia, L. Oxidative stress and mitochondrial dysfunction in early-onset and late-onset preeclampsia. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165961. [Google Scholar] [CrossRef] [PubMed]
- Sarniak, A.; Lipińska, J.; Tytman, K.; Lipińska, S. Endogenous mechanisms of reactive oxygen species (ROS) generation. Postep. Hig. Med. Dosw. Online 2016, 70, 1150–1165. [Google Scholar] [CrossRef]
- Yin, M.; O’neill, L.A.J. The role of the electron transport chain in immunity. FASEB J. 2021, 35, e21974. [Google Scholar] [CrossRef]
- Klasing, K.C. Nutrition and the immune system. Br. Poult. Sci. 2007, 48, 525–537. [Google Scholar] [CrossRef]
- Venter, C.; Eyerich, S.; Sarin, T.; Klatt, K.C. Nutrition and the Immune System: A Complicated Tango. Nutrients 2020, 12, 818. [Google Scholar] [CrossRef]
- Bi, S.; Shao, J.; Qu, Y.; Hu, W.; Ma, Y.; Cao, L. Hepatic transcriptomics and metabolomics indicated pathways associated with immune stress of broilers induced by lipopolysaccharide. Poult. Sci. 2022, 101, 102199. [Google Scholar] [CrossRef]
- Eichinger, A.; Danecka, M.K.; Möglich, T.; Borsch, J.; Woidy, M.; Büttner, L.; Muntau, A.C.; Gersting, S.W. Secondary BH4 deficiency links protein homeostasis to regulation of phenylalanine metabolism. Hum. Mol. Genet. 2018, 27, 1732–1742. [Google Scholar] [CrossRef]
- Ferreira, G.K.; Scaini, G.; Carvalho-Silva, M.; Gomes, L.M.; Borges, L.S.; Vieira, J.S.; Constantino, L.S.; Ferreira, G.C.; Schuck, P.F.; Streck, E. L Effect of L-tyrosine in vitro and in vivo on energy metabolism parameters in brain and liver of young rats. Neurotox. Res. 2013, 23, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Wang, X.; Tan, H.; Liao, Y.; Xu, P.; Kang, M.; Dong, F.; Yang, Z. Alternative Pathway to the Formation of trans-Cinnamic Acid Derived from l-Phenylalanine in Tea (Camellia sinensis) Plants and Other Plants. J. Agric. Food Chem. 2020, 68, 3415–3424. [Google Scholar] [CrossRef] [PubMed]
- Valerio, F.; Di Biase, M.; Lattanzio, V.M.; Lavermicocca, P. Improvement of the antifungal activity of lactic acid bacteria by addition to the growth medium of phenylpyruvic acid, a precursor of phenyllactic acid. Int. J. Food Microbiol. 2016, 222, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Xiong, T.; Bai, Y.; Fan, T.P.; Zheng, X.; Cai, Y. Biosynthesis of phenylpyruvic acid from l-phenylalanine using chromosomally engineered Escherichia coli. Biotechnol. Appl. Biochem. 2022, 69, 1909–1916. [Google Scholar] [CrossRef]
- Ziamajidi, N.; Jamshidi, S.; Ehsani-Zonouz, A. In-silico and in-vitro investigation on the phenylalanine metabolites’ interactions with hexokinase of Rat’s brain mitochondria. J. Bioenerg. Biomembr. 2017, 49, 139–147. [Google Scholar] [CrossRef]
- Eagling, L.; Leonard, D.J.; Schwarz, M.; Urruzuno, I.; Boden, G.; Wailes, J.S.; Ward, J.W.; Clayden, J. ‘Reverse biomimetic’ synthesis of l-arogenate and its stabilized analogues from l-tyrosine. Chem. Sci. 2021, 12, 11394–11398. [Google Scholar] [CrossRef]
- Wu, M.M.; Chen, X.; Xu, Q.X.; Zang, L.S.; Wang, S.; Li, M.; Xiao, D. Melanin Synthesis Pathway Interruption: CRISPR/Cas9-mediated Knockout of dopa decarboxylase (DDC) in Harmonia axyridis (Coleoptera: Coccinellidae). J. Insect Sci. 2022, 22, 1. [Google Scholar] [CrossRef]
- Zhou, S.; Zeng, H.; Huang, J.; Lei, L.; Tong, X.; Li, S.; Zhou, Y.; Guo, H.; Khan, M.; Luo, L.; et al. Epigenetic regulation of melanogenesis. Ageing Res. Rev. 2021, 69, 101349. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Wang, L.; Yang, Z.; Shi, L.; Zheng, D.; Zhang, K.; Sun, J.; Luo, J. Transcriptome Analysis Reveals the Complex Regulatory Pathway of Background Color in Juvenile Plectropomus leopardus Skin Color Variation. Int. J. Mol. Sci. 2022, 23, 11186. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Liu, X.H.; He, J.; Gao, J.; Zhou, J.T.; Fan, J.N.; Jin, X.; Zhang, J.; Chang, L.; Xiong, Z.; et al. Apolipoprotein A4 Restricts Diet-Induced Hepatic Steatosis via SREBF1-Mediated Lipogenesis and Enhances IRS-PI3K-Akt Signaling. Mol. Nutr. Food Res. 2022, 66, e2101034. [Google Scholar] [CrossRef]
- Chen, G.; Xiong, S.; Jing, Q.; van Gestel, C.A.M.; van Straalen, N.M.; Roelofs, D.; Sun, L.; Qiu, H. Maternal exposure to polystyrene nanoparticles retarded fetal growth and triggered metabolic disorders of placenta and fetus in mice. Sci. Total Environ. 2023, 854, 158666. [Google Scholar] [CrossRef]
Target Gene 1 | Forward Primer, Reverse Primer (5′-3′) 2 | GenBank Number |
---|---|---|
HPRT | F: CAGCCCCTGCATCGTGATTG | NM_204848.2 |
R: TTCACGTGCCAGTCTCTCTG | ||
GSTA3 | F: CATCCTCAACTACATAGCA | NM_001001777.2 |
R: CAGTCCTTCCACATACAT | ||
GLRX2 | F: ACTGCGTGGTGATTTTCTCT | XM_004943130.5 |
R: CCACCCGTCATCTGTTCAAG | ||
PTGS2 | F: CCGAATCGCAGCTGAATTCA | XM_040704521.2 |
R: GAAAGGCCATGTTCCAGCAT | ||
IL-1β | F: TGGGCATCAAGGGCTACAAG | XM_015297469.3 |
R: AGGCGGTAGAAGATGAAGCG | ||
CLN5 | F: GACTCTTACGAATGCTCTAA | XM_046910089.1 |
R: TAGGTTCTCCGCTGAATA | ||
DDC | F: TTGACTGCTCTGCTATGTG | XM_419032.8 |
R: AGACTCCTGGTGGTGATG | ||
DCT | F: AAGCAGAATGGAATGGAA | XM_025144675.3 |
R: TCTCTATTGTATGTCTTCTTCA | ||
APOA4 | F: GCAAGCTGAGATCACCAA | NM_204938.3 |
R: TCCTCGGCGTATGAGTTC |
Items 1 | Saline | LPS | SAEE | LAEE | SEM | p Value |
---|---|---|---|---|---|---|
BW (g) | 530.69 a | 491.42 b | 532.63 a | 516.76 a | 4.471 | 0.00 |
ADG (g) | 47.24 a | 35.49 b | 46.74 a | 44.15 a | 0.944 | 0.00 |
ADFI (g) | 62.07 a | 52.67 b | 61.65 a | 60.04 a | 0.678 | 0.00 |
FCR | 1.31 b | 1.50 a | 1.32 b | 1.36 b | 0.021 | 0.02 |
Items 1 | Saline | LPS | SAEE | LAEE | SEM | p Value |
---|---|---|---|---|---|---|
T-AOC (mmol/g) | ||||||
14 d (2H) | 0.18 | 0.16 | 0.18 | 0.18 | 0.005 | 0.18 |
14 d (4H) | 0.18 a | 0.15 b | 0.18 a | 0.18 a | 0.003 | 0.01 |
15 d | 0.19 a | 0.16 b | 0.19 a | 0.18 a | 0.004 | 0.04 |
17 d | 0.21 a | 0.17 b | 0.21 a | 0.20 a | 0.005 | 0 |
SOD (U/mgprot) | ||||||
14 d (2H) | 26.79 | 24.09 | 26.42 | 27.04 | 0.315 | 0.16 |
14 d (4H) | 27.58 a | 24.36 b | 26.33 a | 26.53 a | 0.372 | 0.02 |
15 d | 27.01 a | 23.60 b | 26.33 a | 26.07 a | 0.472 | 0.04 |
17 d | 23.75 a | 20.09 b | 24.84 a | 23.41 a | 0.426 | 0.03 |
MDA (nmol/mgprot) | ||||||
14 d (2H) | 0.49 | 0.54 | 0.49 | 0.46 | 0.016 | 0.46 |
14 d (4H) | 0.44 b | 0.68 a | 0.47 b | 0.48 b | 0.031 | 0.03 |
15 d | 0.39 b | 0.51 a | 0.37 b | 0.39 b | 0.02 | 0.04 |
17 d | 0.37 b | 0.52 a | 0.39 b | 0.38 b | 0.021 | 0.02 |
Items 1 | Saline | LPS | SAEE | LAEE | SEM | p Value |
---|---|---|---|---|---|---|
T-AOC (mmol) | ||||||
14 d (2H) | 0.94 | 0.89 | 0.93 | 0.85 | 0.018 | 0.22 |
14 d (4H) | 1.12 | 0.97 | 1 | 1.11 | 0.03 | 0.18 |
15 d | 1.21 a | 1.10 b | 1.21 a | 1.22 a | 0.015 | 0.01 |
17 d | 1.24 a | 1.10 b | 1.20 a | 1.21 a | 0.016 | 0.01 |
SOD (U/mL) | ||||||
14 d (2H) | 10.62 | 9.84 | 11.63 | 10.34 | 0.485 | 0.62 |
14 d (4H) | 13.56 a | 10.51 b | 12.24 ab | 12.15 ab | 0.451 | 0.12 |
15 d | 12.41 a | 9.56 b | 11.68 a | 11.95 a | 0.37 | 0.02 |
17 d | 11.51 a | 9.28 b | 10.50 ab | 10.70 a | 0.311 | 0.02 |
MDA (nmol/mL) | ||||||
14 d (2H) | 1.4 | 1.39 | 1.36 | 1.3 | 0.066 | 0.96 |
14 d (4H) | 1.02 | 1.15 | 1.1 | 1 | 0.034 | 0.36 |
15 d | 1.66 | 1.95 | 1.61 | 1.71 | 0.071 | 0.35 |
17 d | 1.58 b | 2.19 a | 1.79 b | 1.77 b | 0.044 | 0.01 |
Metabolite | p Value | Variation | Pathway |
---|---|---|---|
Succinic acid | 0.00 | Down | Oxidative phosphorylation |
adenosine diphosphate (ADP) | 0.00 | Up | Oxidative phosphorylation |
L-Tyrosine | 0.00 | Up | Phenylalanine metabolism |
Trans-Cinnamate | 0.00 | Up | Phenylalanine metabolism |
Phenyllactate | 0.00 | Up | Phenylalanine metabolism |
Prostaglandin F2α | 0.01 | Up | Arachidonic acid metabolism |
Metabolite | p Value | Variation | Pathway |
---|---|---|---|
Succinic acid | 0.018 | Up | Oxidative phosphorylation |
adenosine diphosphate (ADP) | 0.04 | Down | Oxidative phosphorylation |
Phenylpyruvic acid | 0.01 | Up | Phenylalanine metabolism |
Phenyllactate | 0.04 | Down | Phenylalanine metabolism |
L-Arogenate | 0.03 | Down | Phenylalanine metabolism |
Prostaglandin F2α | 0.04 | Down | Arachidonic acid metabolism |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, J.; Zhen, W.; Bai, D.; Hu, X.; Zhang, H.; Zhang, R.; Ito, K.; Zhang, Y.; Zhang, B.; Ma, Y. Effects of Aspirin Eugenol Ester on Liver Oxidative Damage and Energy Metabolism in Immune-Stressed Broilers. Antioxidants 2024, 13, 341. https://doi.org/10.3390/antiox13030341
Zhong J, Zhen W, Bai D, Hu X, Zhang H, Zhang R, Ito K, Zhang Y, Zhang B, Ma Y. Effects of Aspirin Eugenol Ester on Liver Oxidative Damage and Energy Metabolism in Immune-Stressed Broilers. Antioxidants. 2024; 13(3):341. https://doi.org/10.3390/antiox13030341
Chicago/Turabian StyleZhong, Jiale, Wenrui Zhen, Dongying Bai, Xiaodi Hu, Haojie Zhang, Ruilin Zhang, Koichi Ito, Yi Zhang, Bingkun Zhang, and Yanbo Ma. 2024. "Effects of Aspirin Eugenol Ester on Liver Oxidative Damage and Energy Metabolism in Immune-Stressed Broilers" Antioxidants 13, no. 3: 341. https://doi.org/10.3390/antiox13030341
APA StyleZhong, J., Zhen, W., Bai, D., Hu, X., Zhang, H., Zhang, R., Ito, K., Zhang, Y., Zhang, B., & Ma, Y. (2024). Effects of Aspirin Eugenol Ester on Liver Oxidative Damage and Energy Metabolism in Immune-Stressed Broilers. Antioxidants, 13(3), 341. https://doi.org/10.3390/antiox13030341