Enhancing the Antioxidant Potential of Weissella confusa PP29 Probiotic Media through Incorporation of Hibiscus sabdariffa L. Anthocyanin Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hibiscus sabdariffa L. Extract and Microorganism Stock Culture
2.2. Fermentation Conditions
2.3. In Vitro Antioxidant Activity Evaluation of the Fermented Culture Media
2.3.1. Total Phenolic Content (TPC)
2.3.2. ABTS Radical Scavenging Assay
2.3.3. DPPH Radical Scavenging Assay
2.3.4. Hydroxyl Radical (HO•) Scavenging Ability
2.3.5. Superoxide Anion Radical (O2−•) Scavenging Activity
2.3.6. Ferrous Ions’ (Fe2+) Chelating Activity
2.3.7. Ferric Ions’ (Fe3+) Reducing Antioxidant Power (FRAP) Assay
2.3.8. Lipid Peroxidation Inhibitory Assay
2.4. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content (TPC)
3.2. ABTS Radical Scavenging Activity
3.3. DPPH Radical Scavenging Assay
3.4. Hydroxyl Radical (HO•−) Scavenging Ability
3.5. Superoxide Anion Radical (O2−•) Scavenging Activity
3.6. Ferrous Ions’ (Fe2+) Chelating Activity
3.7. Ferric Ions’ (Fe3+) Reducing Antioxidant Power (FRAP) Assay
3.8. Lipid Peroxidation Inhibitory Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anghel, N.; Dinu, M.V.; Zaltariov, M.; Pamfil, D.; Spiridon, I. New Cellulose-Collagen-Alginate Materials Incorporated with Quercetin, Anthocyanins and Lipoic Acid. Int. J. Biol. Macromol. 2021, 181, 30–40. [Google Scholar] [CrossRef]
- Ling, J.K.U.; Chan, Y.S.; Nandong, J.; Chin, S.F.; Ho, B.K. Formulation of Choline Chloride/Ascorbic Acid Natural Deep Eutectic Solvent: Characterization, Solubilization Capacity and Antioxidant Property. LWT 2020, 133, 110096. [Google Scholar] [CrossRef]
- Magdalena Pisoschi, A. Methods for Total Antioxidant Activity Determination: A Review. Biochem. Anal. Biochem. 2011, 1, 106. [Google Scholar] [CrossRef]
- Gülçin, I. Antioxidant Activity of Food Constituents: An Overview. Arch. Toxicol. 2011, 86, 345–391. [Google Scholar] [CrossRef] [PubMed]
- Usoh, I.F.; Akpan, E.J.; Etim, E.O.; Farombi, E.O. Antioxidant Actions of Dried Flower Extracts of Hibiscus sabdariffa L. on Sodium Arsenite—Induced Oxidative Stress in Rats. Pakistan J. Nutr. 2005, 4, 135–141. [Google Scholar] [CrossRef]
- Min, W.H.; Fang, X.B.; Wu, T.; Fang, L.; Liu, C.L.; Wang, J. Characterization and Antioxidant Activity of an Acidic Exopolysaccharide from Lactobacillus plantarum JLAU103. J. Biosci. Bioeng. 2019, 127, 758–766. [Google Scholar] [CrossRef]
- Taylan, O.; Yilmaz, M.T.; Dertli, E. Partial Characterization of a Levan Type Exopolysaccharide (EPS) Produced by Leuconostoc mesenteroides Showing Immunostimulatory and Antioxidant Activities. Int. J. Biol. Macromol. 2019, 136, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Adesulu-Dahunsi, A.T.; Sanni, A.I.; Jeyaram, K. Production, Characterization and In Vitro Antioxidant Activities of Exopolysaccharide from Weissella cibaria GA44. LWT 2018, 87, 432–442. [Google Scholar] [CrossRef]
- Angelin, J.; Kavitha, M. Exopolysaccharides from Probiotic Bacteria and Their Health Potential. Int. J. Biol. Macromol. 2020, 162, 853–865. [Google Scholar] [CrossRef]
- Adebayo-Tayo, B.; Fashogbon, R. In Vitro Antioxidant, Antibacterial, in Vivo Immunomodulatory, Antitumor and Hematological Potential of Exopolysaccharide Produced by Wild Type and Mutant Lactobacillus delbureckii subsp. Bulgaricus. Heliyon 2020, 6, e03268. [Google Scholar] [CrossRef]
- Pan, D.; Mei, X. Antioxidant Activity of an Exopolysaccharide Purified from Lactococcus lactis subsp. lactis 12. Carbohydr. Polym. 2010, 80, 908–914. [Google Scholar] [CrossRef]
- Guérin, M.; Robert-Da Silva, C.; Garcia, C.; Remize, F. Lactic Acid Bacterial Production of Exopolysaccharides from Fruit and Vegetables and Associated Benefits. Fermentation 2020, 6, 115. [Google Scholar] [CrossRef]
- Van Nguyen Thien, T.; Do, L.T.M.; Dang, P.H.; Huynh, N.V.; Dang, H.P.; Nguyen, T.T.; Tran, K.T.; Nguyen Huu, D.M.; Ton That, Q. A New Lignan from the Flowers of Hibiscus sabdariffa L. (Malvaceae). Nat. Prod. Res. 2019, 35, 2218–2223. [Google Scholar] [CrossRef]
- Da-Costa-Rocha, I.; Bonnlaender, B.; Sievers, H.; Pischel, I.; Heinrich, M. Hibiscus sabdariffa L.—A Phytochemical and Pharmacological Review. Food Chem. 2014, 165, 424–443. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, E.M. Antibacterial Activity of Hibiscus sabdariffa L. Calyces against Hospital Isolates of Multidrug Resistant Acinetobacter baumannii. J. Acute Dis. 2016, 5, 512–516. [Google Scholar] [CrossRef]
- Higginbotham, K.L.; Burris, K.P.; Zivanovic, S.; Davidson, P.M.; Stewart, C.N. Aqueous Extracts of Hibiscus sabdariffa Calyces as an Antimicrobial Rinse on Hot Dogs against Listeria monocytogenes and Methicillin-Resistant Staphylococcus aureus. Food Control 2014, 40, 274–277. [Google Scholar] [CrossRef]
- Jabeur, I.; Pereira, E.; Barros, L.; Calhelha, R.C.; Soković, M.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Hibiscus sabdariffa L. as a Source of Nutrients, Bioactive Compounds and Colouring Agents. Food Res. Int. 2017, 100, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Al-Hashimi, A. Antioxidant and Antibacterial Activities of Hibiscus sabdariffa L. Extracts. African J. Food Sci. 2012, 6, 506–511. [Google Scholar] [CrossRef]
- Sulaiman, F.A.; Kazeem, M.O.; Waheed, A.M.; Temowo, S.O.; Azeez, I.O.; Zubair, F.I.; Adeyemi, T.A.; Nyang, A.; Adeyemi, O.S. Antimicrobial and Toxic Potential of Aqueous Extracts of Allium sativum, Hibiscus sabdariffa and Zingiber officinale in Wistar Rats. J. Taibah Univ. Sci. 2018, 8, 315–322. [Google Scholar] [CrossRef]
- Laskar, Y.B.; Mazumder, P.B. Insight into the Molecular Evidence Supporting the Remarkable Chemotherapeutic Potential of Hibiscus sabdariffa L. Biomed. Pharmacother. 2020, 127, 110153. [Google Scholar] [CrossRef]
- Huang, C.C.; Hung, C.H.; Chen, C.C.; Kao, S.H.; Wang, C.J. Hibiscus sabdariffa Polyphenol-Enriched Extract Inhibits Colon Carcinoma Metastasis Associating with FAK and CD44/c-MET Signaling. J. Funct. Foods 2018, 48, 542–550. [Google Scholar] [CrossRef]
- Goldberg, K.H.; Yin, A.C.; Mupparapu, A.; Retzbach, E.P.; Goldberg, G.S.; Yang, C.F. Components in Aqueous Hibiscus rosa-sinensis Flower Extract Inhibit in Vitro Melanoma Cell Growth. J. Tradit. Complement. Med. 2017, 7, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.Z.; Deng, G.; Zhang, Y.C. Multiple Free Radical Scavenging Reactions of Flavonoids. Dyes Pigments 2022, 198, 109877. [Google Scholar] [CrossRef]
- Riaz, G.; Chopra, R. A Review on Phytochemistry and Therapeutic Uses of Hibiscus sabdariffa L. Biomed. Pharmacother. 2018, 102, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Su, C.C.; Wang, C.J.; Huang, K.H.; Lee, Y.J.; Chan, W.M.; Chang, Y.C. Anthocyanins from Hibiscus sabdariffa Calyx Attenuate in Vitro and in Vivo Melanoma Cancer Metastasis. J. Funct. Foods 2018, 48, 614–631. [Google Scholar] [CrossRef]
- Dimofte, A.; Simionescu, N.; Petrovici, A.R.; Spiridon, I. Probiotic Properties of Weissella confusa PP29 on Hibiscus sabdariffa L. Media. Fermentation 2022, 8, 553. [Google Scholar] [CrossRef]
- Khan, N.H.; Abdulbaqi, I.M.; Darwis, Y.; Aminu, N.; Chan, S.Y. A Stability-Indicating HPLC-UV Method for the Quantification of Anthocyanin in Roselle (Hibiscus sabdariffa L.) Spray-Dried Extract, Oral Powder, and Lozenges. Heliyon 2022, 8, e09177. [Google Scholar] [CrossRef]
- Huang, H.C.; Chang, W.T.; Wu, Y.H.; Yang, B.C.; Xu, M.R.; Lin, M.K.; Chen, H.J.; Cheng, J.H.; Lee, M.S. Phytochemicals Levels and Biological Activities in Hibiscus sabdariffa L. Were Enhanced Using Microbial Fermentation. Ind. Crops Prod. 2022, 176, 114408. [Google Scholar] [CrossRef]
- Silva, M.; Cueva, C.; Alba, C.; Rodriguez, J.M.; de Pascual-Teresa, S.; Jones, J.; Caturla, N.; Victoria Moreno-Arribas, M.; Bartolomé, B. Gut Microbiome-Modulating Properties of a Polyphenol-Enriched Dietary Supplement Comprised of Hibiscus and Lemon Verbena Extracts. Monitoring of Phenolic Metabolites. J. Funct. Foods 2022, 91, 105016. [Google Scholar] [CrossRef]
- Rosca, I.; Petrovici, A.R.; Peptanariu, D.; Nicolescu, A.; Dodi, G.; Avadanei, M.; Ivanov, I.C.; Bostanaru, A.C.; Mares, M.; Ciolacu, D. Biosynthesis of Dextran by Weissella confusa and Its In Vitro Functional Characteristics. Int. J. Biol. Macromol. 2018, 107, 1765–1772. [Google Scholar] [CrossRef]
- Petrovici, A.R.; Anghel, N.; Dinu, M.V.; Spiridon, I. Dextran-Chitosan Composites: Antioxidant and Anti-Inflammatory Properties. Polymers 2023, 15, 1980. [Google Scholar] [CrossRef]
- Petrovici, A.R.; Simionescu, N.; Sandu, A.I.; Paraschiv, V.; Silion, M.; Pinteala, M. New Insights on Hemp Oil Enriched in Cannabidiol: Decarboxylation, Antioxidant Properties and in Vitro Anticancer Effect. Antioxidants 2021, 10, 738. [Google Scholar] [CrossRef]
- Petreni, A.; Iacobescu, A.; Simionescu, N.; Petrovici, A.R.; Angeli, A.; Fifere, A.; Pinteala, M.; Supuran, C.T. Carbonic Anhydrase Inhibitors Bearing Organotelluride Moieties as Novel Agents for Antitumor Therapy. Eur. J. Med. Chem. 2022, 244, 114811. [Google Scholar] [CrossRef] [PubMed]
- Tirawattanakoson, R.; Rattanarat, P.; Ngamrojanavanich, N.; Rodthongkum, N.; Chailapakul, O. Free Radical Scavenger Screening of Total Antioxidant Capacity in Herb and Beverage Using Graphene/PEDOT: PSS-Modified Electrochemical Sensor. J. Electroanal. Chem. 2016, 767, 68–75. [Google Scholar] [CrossRef]
- Hainal, A.-R.; Ignat, I.; Volf, I.; Popa, V.I. Transformation of polyphenols from Biomass by some yeast species. Cellul. Chem. Technol. 2011, 45, 211–219. [Google Scholar]
- Hainal, A.R.; Capraru, A.M.; Irina, V.; Popa, V.I. Lignin as a Carbon Source for the Cultivation of Some Rhodotorula Species. Cellul. Chem. Technol. 2012, 46, 87–96. [Google Scholar]
- Endo, A.; Futagawa-Endo, Y.; Kawasaki, S.; Dicks, L.M.T.; Niimura, Y.; Okada, S. Sodium Acetate Enhances Hydrogen Peroxide Production in Weissella cibaria. Lett. Appl. Microbiol. 2009, 49, 136–141. [Google Scholar] [CrossRef]
- Özkan, M.; Yemenicioǧlu, A.; Cemeroǧlu, B. Degradation of Various Fruit Juice Anthocyanins by Hydrogen Peroxide. Food Res. Int. 2005, 38, 1015–1021. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Phan-Thi, H.; Pham-Hoang, B.N.; Ho, P.T.; Tran, T.T.T.; Waché, Y. Encapsulation of Hibiscus sabdariffa L. Anthocyanins as Natural Colours in Yeast. Food Res. Int. 2018, 107, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Pei, F.; Ma, Y.; Chen, X.; Liu, H. Purification and Structural Characterization and Antioxidant Activity of Levan from Bacillus megaterium PFY-147. Int. J. Biol. Macromol. 2020, 161, 1181–1188. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Cao, C.; Zhu, X.Y.; Wang, C.; Wu, R.; Wu, J. Extraction and Biological Activity of Exopolysaccharide Produced by Leuconostoc mesenteroides SN-8. Int. J. Biol. Macromol. 2020, 157, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Njus, D.; Kelley, P.M.; Tu, Y.J.; Schlegel, H.B. Ascorbic Acid: The Chemistry Underlying Its Antioxidant Properties. Free Radic. Biol. Med. 2020, 159, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; He, Y.; Yang, J.; Li, Y.; Liu, Z.; Wang, W. Effects of Exogenous Ascorbic Acid on Yields of Citrinin and Pigments, Antioxidant Capacities, and Fatty Acid Composition of Monascus ruber. LWT 2022, 154, 112800. [Google Scholar] [CrossRef]
- Vo, Q.V.; Hoa, N.T.; Thong, N.M.; Mechler, A. The Hydroperoxyl and Superoxide Anion Radical Scavenging Activity of Anthocyanidins in Physiological Environments: Theoretical Insights into Mechanisms and Kinetics. Phytochemistry 2021, 192, 112968. [Google Scholar] [CrossRef] [PubMed]
Sample Code | μg Anthocyanins/mL Culture Media | Description |
---|---|---|
A1 | 1000 | Anthocyanins extracted from H. sabdariffa—1000 μg/mL in water |
A2 | 2000 | Anthocyanins extracted from H. sabdariffa—2000 μg/mL in water |
M0 105 | – | PP29 strain fermented in M0 inoculated with 105 CFU/mL |
M0 109 | – | PP29 strain fermented in M0 inoculated with 109 CFU/mL |
M1 105 | 1000 | PP29 strain fermented in M1 inoculated with 105 CFU/mL |
M1 109 | 1000 | PP29 strain fermented in M1 inoculated with 109 CFU/mL |
M2 105 | 2000 | PP29 strain fermented in M2 inoculated with 105 CFU/mL |
M2 109 | 2000 | PP29 strain fermented in M2 inoculated with 109 CFU/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simionescu, N.; Petrovici, A.-R. Enhancing the Antioxidant Potential of Weissella confusa PP29 Probiotic Media through Incorporation of Hibiscus sabdariffa L. Anthocyanin Extract. Antioxidants 2024, 13, 165. https://doi.org/10.3390/antiox13020165
Simionescu N, Petrovici A-R. Enhancing the Antioxidant Potential of Weissella confusa PP29 Probiotic Media through Incorporation of Hibiscus sabdariffa L. Anthocyanin Extract. Antioxidants. 2024; 13(2):165. https://doi.org/10.3390/antiox13020165
Chicago/Turabian StyleSimionescu, Natalia, and Anca-Roxana Petrovici. 2024. "Enhancing the Antioxidant Potential of Weissella confusa PP29 Probiotic Media through Incorporation of Hibiscus sabdariffa L. Anthocyanin Extract" Antioxidants 13, no. 2: 165. https://doi.org/10.3390/antiox13020165
APA StyleSimionescu, N., & Petrovici, A.-R. (2024). Enhancing the Antioxidant Potential of Weissella confusa PP29 Probiotic Media through Incorporation of Hibiscus sabdariffa L. Anthocyanin Extract. Antioxidants, 13(2), 165. https://doi.org/10.3390/antiox13020165