Mutations Selectively Evolving Peroxidase Activity Among Alternative Catalytic Functions of Human Glutathione Transferase P1-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Expression and Purification of Enzymes
2.3. Activity Measurements with Alternative Substrates
2.4. Saturation Curves for Steady-State Kinetic Parameters
2.5. Statistical Data Analysis
3. Results
3.1. Mutant Libraries
3.2. Specific Activities with Alternative Substrates
3.3. Multivariate Data Analysis of Activity Profiles
3.4. Design of a New Set of Mutants for the Identification of Substitutions Relevant to CuOOH Activity
3.5. Determination of Steady-State Kinetic Parameters with CuOOH
4. Discussion
4.1. Physiological Role of Hydroperoxide Reduction
4.2. Structure–Activity Relationship
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jena, A.B.; Samal, R.R.; Bhol, N.K.; Duttaroy, A.K. Cellular Red-Ox system in health and disease: The latest update. Biomed. Pharmacother. 2023, 162, 114606. [Google Scholar] [CrossRef] [PubMed]
- Micic, N.; Rønager, A.H.; Sørensen, M.; Bjarnholt, N. Overlooked and misunderstood: Can glutathione conjugates be clues to understanding plant glutathione transferases? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2024, 379, 20230365. [Google Scholar] [CrossRef] [PubMed]
- Panday, S.; Talreja, R.; Kavdia, M. The role of glutathione and glutathione peroxidase in regulating cellular level of reactive oxygen and nitrogen species. Microvasc. Res. 2020, 131, 104010. [Google Scholar] [CrossRef]
- Mannervik, B.; Morgenstern, R. Glutathione transferases. In Comprehensive Toxicology, 4th ed.; Elsevier: New York, NY, USA, 2024; Chapter 10.16. [Google Scholar] [CrossRef]
- Mazari, A.M.A.; Zhang, L.; Ye, Z.-W.; Zhang, J.; Tew, K.D.; Townsend, D.M. The multifaceted role of glutathione S-transferases in health and disease. Biomolecules 2023, 13, 688. [Google Scholar] [CrossRef]
- Tew, K.D.; Townsend, D.M. Glutathione S-transferases as determinants of cell survival and death. Antioxid. Redox Signal. 2012, 17, 1728–1737. [Google Scholar] [CrossRef]
- Mannervik, B. Glutathione peroxidase. Methods Enzymol. 1985, 113, 490–495. [Google Scholar] [CrossRef]
- Chasseaud, L.F. The role of glutathione and glutathione S-transferases in the metabolism of chemical carcinogens and other electrophilic agents. Adv. Cancer Res. 1979, 29, 175–274. [Google Scholar] [CrossRef]
- Armstrong, R.N. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem. Res. Toxicol. 1997, 10, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Lo Bello, M.; Oakley, A.J.; Battistoni, A.; Mazzetti, A.P.; Nuccetelli, M.; Mazzarese, G.; Rossjohn, J.; Parker, M.W.; Ricci, G. Multifunctional role of Tyr 108 in the catalytic mechanism of human glutathione transferase P1-1. Crystallographic and kinetic studies on the Y108F mutant enzyme. Biochemistry 1997, 36, 6207–6217. [Google Scholar] [CrossRef]
- Nuccetelli, M.; Mazzetti, A.P.; Rossjohn, J.; Parker, M.W.; Board, P.; Caccuri, A.M.; Federici, G.; Ricci, G.; Lo Bello, M. Shifting substrate specificity of human glutathione transferase (from class Pi to class alpha) by a single point mutation. Biochem. Biophys. Res. Commun. 1998, 252, 184–189. [Google Scholar] [CrossRef]
- Govindarajan, S.; Mannervik, B.; Silverman, A.J.; Wright, K.; Regitsky, D.; Hegazy, U.; Purcell, J.T.; Welch, M.; Minshull, J.; Gustafsson, C. Mapping of amino acid substitutions conferring herbicide resistance in wheat glutathione transferase. ACS. Synth. Biol. 2015, 4, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Runarsdottir, A.; Mannervik, B. A novel quasi-species of glutathione transferase with high activity towards naturally occurring isothiocyanates evolves from promiscuous low-activity variants. J. Mol. Biol. 2010, 401, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Axarli, I.; Muleta, A.W.; Chronopoulou, E.G.; Papageorgiou, A.C.; Labrou, N.E. Directed evolution of glutathione transferases towards a selective glutathione-binding site and improved oxidative stability. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 3416–3428. [Google Scholar] [CrossRef]
- Kalita, J.; Shukla, H.; Tripathi, T. Engineering glutathione S-transferase with a point mutation at conserved F136 residue increases the xenobiotic-metabolizing activity. Int. J. Biol. Macromol. 2020, 163, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Axarli, I.; Ataya, F.; Labrou, N.E. Repurposing glutathione transferases: Directed evolution combined with chemical modification for the creation of a semisynthetic enzyme with high hydroperoxidase activity. Antioxidants 2023, 13, 41. [Google Scholar] [CrossRef]
- Gulick, A.M.; Fahl, W.E. Forced evolution of glutathione S-transferase to create a more efficient drug detoxication enzyme. Proc. Natl. Acad. Sci. USA 1995, 92, 8140–8144. [Google Scholar] [CrossRef]
- Sautner, V.; Friedrich, M.M.; Lehwess-Litzmann, A.; Tittmann, K. Converting transaldolase into aldolase through swapping of the multifunctional acid-base catalyst: Common and divergent catalytic principles in F6P aldolase and transaldolase. Biochemistry 2015, 54, 4475–4486. [Google Scholar] [CrossRef]
- Matsumura, I.; Ellington, A.D. In vitro evolution of beta-glucuronidase into a beta-galactosidase proceeds through non-specific intermediates. J. Mol. Biol. 2001, 305, 331–339. [Google Scholar] [CrossRef]
- Reetz, M.T.; Jaeger, K.E. Enantioselective enzymes for organic synthesis created by directed evolution. Chemistry 2000, 6, 407–412. [Google Scholar] [CrossRef]
- Joo, H.; Lin, Z.; Arnold, F. Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature 1999, 399, 670–673. [Google Scholar] [CrossRef]
- Ismail, A.; Govindarajan, S.; Mannervik, B. Human GST P1-1 Redesigned for enhanced catalytic activity with the anticancer prodrug telcyta and improved thermostability. Cancers 2024, 16, 762. [Google Scholar] [CrossRef]
- Aloke, C.; Onisuru, O.O.; Achilonu, I. Glutathione S-transferase: A versatile and dynamic enzyme. Biochem. Biophys. Res. Commun. 2024, 734, 150774. [Google Scholar] [CrossRef]
- Wang, X.; Dong, J.; Hu, Y.; Huang, Q.; Lu, X.; Huang, Y.; Sheng, M.; Cao, L.; Xu, B.; Li, Y.; et al. Identification and characterization of the glutathione s-transferase gene family in blueberry (Vaccinium corymbosum) and their potential roles in anthocyanin intracellular transportation. Plants 2024, 13, 1316. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef] [PubMed]
- Mannervik, B.; Jemth, P. Measurement of Glutathione Transferases. In Current Protocols in Toxicology; Maines, M.D., Costa, L.G., Reed, D.J., Sassa, S., Sipes, I.G., Eds.; John Wiley & Sons: New York, NY, USA, 1999; pp. 6.4.1–6.4.10. [Google Scholar]
- Hitchens, T.K.; Mannervik, B.; Rule, S.G. Disorder-to-order transition of the active site of human class pi glutathione transferase, GST P1-1. Biochemistry 2001, 40, 11660–11669. [Google Scholar] [CrossRef]
- Stella, L.; Caccuri, A.M.; Rosato, N.; Nicotra, M.; Lo Bello, M.; De Matteis, F.; Mazzetti, A.P.; Federici, G.; Ricci, G. Flexibility of helix 2 in the human glutathione transferase P1-1: Time-resolved fluorescence spectroscopy. J. Biol. Chem. 1998, 273, 23267–23273. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Warmuth, M.K.; Govindarajan, S.; Ness, J.E.; Wang, R.P.; Gustafsson, C.; Minshull, J. Engineering proteinase K using machine learning and synthetic genes. BMC Biotechnol. 2007, 7, 16. [Google Scholar] [CrossRef]
- Dayhoff, M.O.; Schwartz, R.M.; Orcutt, B.C. A Model of Evolutionary Change in Proteins. Atlas Protein Seq. Struct. 1978, 5 (Suppl. S3), 345–352. [Google Scholar]
- Zhang, Y.; Talalay, P. Anticarcinogenic activities of organic isothiocyanates: Chemistry and mechanisms. Cancer Res. 1994, 54, 1976s–1981s. [Google Scholar]
- Kolm, R.H.; Danielson, U.H.; Zhang, Y.; Talalay, P.; Mannervik, B. Isothiocyanates as substrates for human glutathione transferases: Structure-activity studies. Biochem. J. 1995, 311 Pt 2, 453–459. [Google Scholar] [CrossRef]
- Meyer, D.J.; Crease, D.J.; Ketterer, B. Forward and reverse catalysis and product sequestration by human glutathione S-transferases in the reaction of GSH with dietary aralkyl isothiocyanates. Biochem. J. 1995, 306 Pt 2, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Mannervik, B.; Ålin, P.; Guthenberg, C.; Jensson, H.; Tahir, M.K.; Warholm, M.; Jörnvall, H. Identification of three classes of cytosolic glutathione transferase common to several mammalian species: Correlation between structural data and enzymatic properties. Proc. Natl. Acad. Sci. USA 1985, 82, 7202–7206. [Google Scholar] [CrossRef] [PubMed]
- Ploemen, J.H.; van Ommen, B.; Bogaards, J.J.; van Bladeren, P.J. Ethacrynic acid and its glutathione conjugate as inhibitors of glutathione S-transferases. Xenobiotica 1993, 23, 913–923. [Google Scholar] [CrossRef]
- Phillips, M.F.; Mantle, T.J. The initial-rate kinetics of mouse glutathione S-transferase YfYf. Evidence for an allosteric site for ethacrynic acid. Biochem. J. 1991, 275 Pt 3, 703–709, Erratum in Biochem. J. 1992, 286 Pt 3, 981. [Google Scholar] [CrossRef] [PubMed]
- Prohaska, J.R. The glutathione peroxidase activity of glutathione S-transferases. Biochim. Biophys. Acta 1980, 611, 87–98. [Google Scholar] [CrossRef]
- Kurtovic, S.; Runarsdottir, A.; Emrén, L.O.; Larsson, A.K.; Mannervik, B. Multivariate-activity mining for molecular quasi-species in a glutathione transferase mutant library. Protein Eng. Des. Sel. 2007, 20, 243–256. [Google Scholar] [CrossRef]
- Johansson, A.-S.; Stenberg, G.; Widersten, M.; Mannervik, B. Structure-activity relationship and thermal stability of human glutathione transferase P1-1 governed by the H-site residue 105. J. Mol. Biol. 1998, 278, 687–698. [Google Scholar] [CrossRef]
- Chance, B.; Sies, H.; Boveris, A. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979, 59, 527–605. [Google Scholar] [CrossRef]
- Flohé, L.; Toppo, S.; Orian, L. The glutathione peroxidase family: Discoveries and mechanism. Free Radic. Biol. Med. 2022, 187, 113–122. [Google Scholar] [CrossRef]
- Lawrence, R.A.; Parkhill, L.K.; Burk, R.F. Hepatic cytosolic nonselenium-dependent glutathione peroxidase activity: Its nature and the effect of selenium deficiency. J. Nutr. 1978, 108, 981–987. [Google Scholar] [CrossRef]
- Kurtovic, S.; Shokeer, A.; Mannervik, B. Emergence of novel enzyme quasi-species depends on the substrate matrix. J. Mol. Biol. 2008, 382, 136–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Dourado, D.F.; Fernandes, P.A.; Ramos, M.J.; Mannervik, B. Multidimensional epistasis and fitness landscapes in enzyme evolution. Biochem. J. 2012, 445, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Oakley, A.J.; Rossjohn, J.; Lo Bello, M.; Caccuri, A.M.; Federici, G.; Parker, M.W. The three-dimensional structure of the human Pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate. Biochemistry 1997, 36, 576–585. [Google Scholar] [CrossRef]
- Bartlett, G.J.; Porter, C.T.; Borkakoti, N.; Thornton, J.M. Analysis of catalytic residues in enzyme active sites. J. Mol. Biol. 2002, 324, 105–121. [Google Scholar] [CrossRef]
- Quesada-Soriano, I.; Parker, L.J.; Primavera, A.; Casas-Solvas, J.M.; Vargas-Berenguel, A.; Barón, C.; Morton, C.J.; Mazzetti, A.P.; Lo Bello, M.; Parker, M.W.; et al. Influence of the H-site residue 108 on human glutathione transferase P1-1 ligand binding: Structure-thermodynamic relationships and thermal stability. Protein Sci. 2009, 18, 2454–2470. [Google Scholar] [CrossRef] [PubMed]
- Parker, L.J.; Ciccone, S.; Italiano, L.C.; Primavera, A.; Oakley, A.J.; Morton, C.J.; Hancock, N.C.; Bello, M.L.; Parker, M.W. The anti-cancer drug chlorambucil as a substrate for the human polymorphic enzyme glutathione transferase P1-1: Kinetic properties and crystallographic characterisation of allelic variants. J. Mol. Biol. 2008, 380, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Prade, L.; Huber, R.; Manoharan, T.H.; Fahl, W.E.; Reuter, W. Structures of class pi glutathione S-transferase from human placenta in complex with substrate, transition-state analogue and inhibitor. Structure 1997, 5, 1287–1295. [Google Scholar] [CrossRef]
- Cunningham, B.C.; Wells, J.A. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 1989, 244, 1081–1085. [Google Scholar] [CrossRef]
- Morrison, K.L.; Weiss, G.A. Combinatorial alanine-scanning. Curr. Opin. Chem. Biol. 2001, 5, 302–307. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Sali, A.; Blundell, T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993, 234, 779–815. [Google Scholar] [CrossRef] [PubMed]
- Reetz, M.T. The importance of additive and non-additive mutational effects in protein engineering. Angew. Chem. Int. Ed. 2013, 52, 2658–2666. [Google Scholar] [CrossRef] [PubMed]
- Starr, T.N.; Thornton, J.W. Epistasis in protein evolution. Protein Sci. 2016, 25, 1204–1218. [Google Scholar] [CrossRef]
- Lozovsky, E.R.; Chookajorn, T.; Brown, K.M.; Imwong, M.; Shaw, P.J.; Kamchonwongpaisan, S.; Neafsey, D.E.; Weinreich, D.M.; Hartl, D.L. Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc. Natl. Acad. Sci. USA 2009, 106, 12025–12030. [Google Scholar] [CrossRef]
- Noor, S.; Taylor, M.C.; Russell, R.J.; Jermiin, L.S.; Jackson, C.J.; Oakeshott, J.G.; Scott, C. Intramolecular epistasis and the evolution of a new enzymatic function. PLoS ONE 2012, 7, e39822. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Anderson, D.W.; Baier, F.; Dohmen, E.; Hong, N.; Carr, P.D.; Kamerlin, S.C.L.; Jackson, C.J.; Bornberg-Bauer, E.; Tokuriki, N. Higher-order epistasis shapes the fitness landscape of a xenobiotic-degrading enzyme. Nat. Chem. Biol. 2019, 15, 1120–1128, Erratum in Nat. Chem. Biol. 2020, 16, 930. [Google Scholar] [CrossRef]
- Judge, A.; Sankaran, B.; Hu, L.; Palaniappan, M.; Birgy, A.; Prasad, B.V.V.; Palzkill, T. Network of epistatic interactions in an enzyme active site revealed by large-scale deep mutational scanning. Proc. Natl. Acad. Sci. USA 2024, 121, e2313513121. [Google Scholar] [CrossRef]
- Hegazy, U.M.; Mannervik, B.; Stenberg, G. Functional role of the lock and key motif at the subunit interface of glutathione transferase p1-1. J. Biol. Chem. 2004, 279, 9586–9596. [Google Scholar] [CrossRef]
- Dourado, D.F.A.R.; Fernandes, P.A.; Mannervik, B.; Ramos, M.J. Glutathione transferase: New model for glutathione activation. Chem. Eur. J. 2008, 14, 9591–9598. [Google Scholar] [CrossRef]
- Oakley, A.J.; Lo Bello, M.; Battistoni, A.; Ricci, G.; Rossjohn, J.; Villar, H.O.; Parker, M.W. The structures of human glutathione transferase P1-1 in complex with glutathione and various inhibitors at high resolution. J. Mol. Biol. 1997, 274, 84–100. [Google Scholar] [CrossRef]
- Tokuriki, N.; Jackson, C.J.; Afriat-Jurnou, L.; Wyganowski, K.T.; Tang, R.; Tawfik, D.S. Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. Nat. Commun. 2012, 3, 1257, Erratum in Nat. Commun. 2013, 4, 2678.. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Miton, C.M.; Tokuriki, N. A mechanistic view of enzyme evolution. Protein Sci. 2020, 29, 1724–1747. [Google Scholar] [CrossRef] [PubMed]
- Dellus-Gur, E.; Elias, M.; Caselli, E.; Prati, F.; Salverda, M.L.; de Visser, J.A.; Fraser, J.S.; Tawfik, D.S. Negative Epistasis and Evolvability in TEM-1 β-Lactamase--The thin line between an enzyme’s conformational freedom and disorder. J. Mol. Biol. 2015, 427, 2396–2409. [Google Scholar] [CrossRef]
- Hayes, J.D.; Pulford, D.J. The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 445–600. [Google Scholar] [CrossRef] [PubMed]
- Fersht, A. Enzyme Structure and Mechanism, 2nd ed.; W.H. Freeman: New York, NY, USA, 1984. [Google Scholar]
- Koshland, D.E. The application and usefulness of the ratio k(cat)/K(M). Bioorg. Chem. 2002, 30, 211–213. [Google Scholar] [CrossRef]
Specific Activity (μmol min−1 mg−1) Substrate | ||||
---|---|---|---|---|
GST P1-1 Variant | CDNB | PEITC | CuOOH | EA |
P1-1 | 106 ± 4 | 60 ± 3.0 | 0.030 ± 0.001 | 2.00 ± 0.10 |
R1 (Y109H) | 20.9 ± 0.7 | 13.4 ± 0.1 | 0.49 ± 0.03 | 1.7 ± 0.1 |
R2 (Y8H) | 0.080 ± 0.004 | ND | ND | ND |
R3 (Y8E) | ND | ND | ND | ND |
R201 (Y109H-V11E) | 0.027 ± 0.002 | ND | ND | 0.047 ± 0.004 |
R202 (Y109H-V11H) | 0.0097 ± 0.0008 | 0.85 ± 0.07 | 0.03 ± 0.01 | 0.031 ± 0.001 |
R203 (Y109H-V11A) | 17.5 ± 0.4 | 4.31 ± 0.06 | 0.05 ± 0.01 | 0.14 ± 0.01 |
R204 (Y109H-V11S) | 1.82 ± 0.02 | 0.46 ± 0.02 | 0.024 ± 0.004 | 0.16 ± 0.01 |
R205 (Y109H-V11T) | 5.2 ± 0.2 | 0.31 ± 0.03 | 0.066 ± 0.004 | 0.21 ± 0.01 |
R206 (Y109H-F9H) | 0.71 ± 0.01 | 0.42 ± 0.01 | ND | 0.046 ± 0.007 |
R207 (Y109H-V36R) | 20.6 ± 1.2 | 11.9 ± 1.6 | 0.09 ± 0.01 | 1.46 ± 0.06 |
R208 (Y109H-V36M) | 24.4 ± 1.1 | 13.3 ± 0.8 | 0.44 ± 0.03 | 1.29 ± 0.02 |
R209 (Y109H-V36G) | 12.4 ± 0.3 | 14.5 ± 0.5 | 0.10 ± 0.02 | 1.06 ± 0.08 |
R210 (Y109H-V36L) | 22.0 ± 0.3 | 15.3 ± 0.8 | 0.35 ± 0.02 | 1.24 ± 0.04 |
R211 (Y109H-V36K) | 27.0 ± 2.5 | 19.8 ± 0.8 | 0.11 ± 0.01 | 1.38 ± 0.06 |
R212 (Y109H-V36I) | 18.5 ± 0.2 | 18.8 ± 0.7 | 0.27 ± 0.09 | 1.19 ± 0.09 |
R213 (Y109H-V36T) | 15.6 ± 0.2 | 15.5 ± 0.2 | 0.11 ± 0.02 | 1.23 ± 0.07 |
Specific Activity (μmol min−1 mg−1) Substrate | ||||
---|---|---|---|---|
GST P1-1 Variant | CDNB | PEITC | CuOOH | EA |
P1-1 | 106 ± 4 | 60 ± 3.0 | 0.030 ± 0.001 | 2.00 ± 0.10 |
V1 (T35S-Q40L-A46S-Q85R-Y109H) | 20.5 ± 1.2 | 12.5 ± 0.2 | 0.70 ± 0.10 | 1.50 ± 0.10 |
V2 (Q40M-E41Q-A46S-Y109H-V200L) | 19.2 ± 0.7 | 11.8 ± 0.5 | 0.90 ± 0.20 | 1.66 ± 0.08 |
V3 (Q40L-S43P-Q85K-Y109H-V200L) | 20.6 ± 0.5 | 16.8 ± 1.8 | 0.80 ± 0.20 | 1.53 ± 0.06 |
V4 (T35S-E41Q-Q85K-S106T-Y109H) | 20.7 ± 0.6 | 18.7 ± 0.4 | 0.61 ± 0.05 | 1.55 ± 0.02 |
V5 (Q40M-S43P-Q85R-Y109H-S185C) | 17.5 ± 0.5 | 14.4 ± 0.4 | 0.58 ± 0.06 | 1.70 ± 0.10 |
V6 (Q85R-C102S-S106T-Y109H-V200L) | 28.2 ± 0.3 | 15.6 ± 0.5 | 0.43 ± 0.08 | 1.80 ± 0.10 |
V7 (A46S-S106T-Y109H-S185C-V200A) | 19.7 ± 0.2 | 16.0 ± 1.6 | 0.50 ± 0.10 | 1.72 ± 0.03 |
V8 (Q40L-E41Q-Q84P-Y109H-V200A) | 21.3 ± 1.3 | 17.0 ± 1.4 | 0.70 ± 0.10 | 2.40 ± 0.10 |
V9 (T35S-S43P-C102S-Y109H-V200A) | 17.9 ± 1.1 | 10.0 ± 0.6 | 0.36 ± 0.02 | 1.94 ± 0.08 |
V10 (Q40M-Q84P-Q85K-C102S-Y109H) | 20.3 ± 0.4 | 15.9 ± 0.3 | 0.44 ± 0.06 | 1.48 ± 0.05 |
V11 (T35S-Q84P-Y109H-S185C-V200L) | 21.9 ± 0.3 | 17.2 ± 0.8 | 0.45 ± 0.06 | 1.39 ± 0.06 |
V201 (T35S-Q40L-E41Q-Q84P-Q85K-S106T-Y109H) | 22.4 ± 1.1 | 18.6 ± 3.6 | 0.35 ± 0.02 | 1.17 ± 0.21 |
V202 (T35S-Q40L-E41Q-Q85K-S106T-Y109H-S185C) | 22.2 ± 1.3 | 13.4 ± 3.6 | 0.28 ± 0.02 | 1.06 ± 0.24 |
V203 (T35S-E41Q-Q84P-Q85K-S106T-Y109H-S185C) | 14.0 ± 0.2 | 12.8 ± 2.1 | 0.23 ± 0.01 | 1.07 ± 0.03 |
V204 (T35S-Q40L-E41Q-Q84P-Q85K-S106T-Y109H-S185C) | 14.1 ± 0.5 | 11.5 ± 0.4 | 0.28 ± 0.02 | 0.98 ± 0.04 |
V205 (E41Q-Q84P-Q85K-S106T-Y109H-S185C) | 13.1 ± 1.0 | 9.68 ± 1.6 | 0.19 ± 0.01 | 1.16 ± 0.14 |
V206 (Q40L-E41Q-Q84P-Q85K-S106T-Y109H-S185C) | 14.6 ± 0.4 | 9.06 ± 1.4 | 0.26 ± 0.02 | 1.08 ± 0.06 |
V401 (Q85R-Y109H) | 20.2 ± 0.7 | 10.8 ± 0.3 | 0.54 ± 0.04 | 1.7 ± 0.011 |
V402 (Q85R-Y109H-V200L) | 18.5 ± 0.4 | 11.2 ± 0.2 | 0.50 ± 0.08 | 1.84 ± 0.02 |
V501 (Q40M-Y109H) | NM | NM | 0.59 ± 0.09 | NM |
V502 (Q40L-Y109H) | NM | NM | 0.70 ± 0.12 | NM |
V503 (E41Q-Y109H) | NM | NM | 0.63 ± 0.08 | NM |
V504 (S43P-Y109H) | NM | NM | 0.53 ± 0.04 | NM |
V505 (A46S-Y109H) | NM | NM | 0.50 ± 0.08 | NM |
Specific Activity (μmol min−1 mg−1) Substrate | ||||
---|---|---|---|---|
GST P1-1 Variant | CDNB | PEITC | CuOOH | EA |
P1-1 | 106 ± 4 | 60 ± 3 | 0.030 ± 0.001 | 2.0 ± 0.1 |
V301 (P10H-E41Q-Q84P-Q85K-S106T-Y109H-S185C) | 4.86 ± 0.02 | 2.52 ± 0.21 | 0.030 ± 0.001 | 0.23 ± 0.01 |
V302 (E41Q-Q84P-Q85K-I105D-S106T-Y109H-S185C) | 0.130 ± 0.008 | 0.050 ± 0.006 | 0.011 ± 0.001 | 0.17 ± 0.01 |
V303 (E41Q-Q84P-Q85K-I105E-S106T-Y109H-S185C) | 0.060 ± 0.005 | 0.09 ± 0.01 | 0.018 ± 0.001 | 0.092 ± 0.020 |
V304 (E41Q-Q84P-Q85K-S106T-Y109H-S185C-G206D) | 7.89 ± 0.60 | 4.11 ± 0.40 | ND | 0.046 ± 0.002 |
V305 (E41Q-Q84P-Q85K-S106T-Y109H-S185C-G206E) | 0.85 ± 0.06 | 0.41 ± 0.04 | ND | 0.064 ± 0.004 |
V306 (P10H-E41Q-Q84P-Q85K-I105D-S106T-Y109H-S185C) | 0.090 ± 0.004 | 0.008 ± 0.008 | 0.0140 ± 0.0004 | 0.38 ± 0.01 |
V307 (P10H-E41Q-Q84P-Q85K-I105E-S106T-Y109H-S185C) | 0.090 ± 0.001 | 0.100 ± 0.003 | 0.0100 ± 0.0007 | 0.27 ± 0.02 |
V308 (P10H-E41Q-Q84P-Q85K-S106T-Y109H-S185C-G206E) | 4.44 ± 0.10 | 1.00 ± 0.13 | 0.0010 ± 0.0004 | 0.061 ± 0.002 |
V309 (P10H-E41Q-Q84P-Q85K-S106T-Y109H-S185C-G206D) | 11.4 ± 0.3 | 1.96 ± 0.17 | 0.0019 ± 0.0002 | 0.038 ± 0.001 |
V310 (E41Q-Q84P-Q85K-I105D-S106T-Y109H-S185C-G206E) | 0.45 ± 0.02 | 0.007 ± 0.001 | 0.0020 ± 0.0009 | 0.024 ± 0.003 |
V311 (E41Q-Q84P-Q85K-I105D-S106T-Y109H-S185C-G206D) | 0.14 ± 0.01 | 0.008 ± 0.001 | ND | 0.0040 ± 0.0006 |
V312 (P10H-E41Q-Q84P-Q85K-I105D-S106T-Y109H-S185C-G206E) | 0.130 ± 0.004 | 0.013 ± 0.019 | ND | 0.038 ± 0.002 |
V313 (E41Q-Q84P-Q85K-I105E-S106T-Y109H-S185C-S185C-G206D) | 0.180 ± 0.008 | 0.013 ± 0.002 | ND | 0.020 ± 0.001 |
V314 (P10H-E41Q-Q84P-Q85K-I105D-S106T-Y109H-S185C-G206E) | 0.35 ± 0.02 | ND | ND | 0.017 ± 0.003 |
V315 (P10H-E41Q-Q84P-Q85K-I105D-S106T-Y109H-S185C-G206D) | 0.070 ± 0.001 | ND | ND | ND |
V316 (P10H-E41Q-Q84P-Q85K-I105E-S106T-Y109H-S185C-G206E) | 0.090 ± 0.001 | ND | ND | 0.031 ± 0.002 |
V317 (P10H-E41Q-Q84P-Q85K-I105E-S106T-Y109H-S185C-G206D) | 0.170 ± 0.005 | ND | ND | 0.023 ± 0.002 |
Specific Activity μmol min−1 mg−1 Substrate | ||||
---|---|---|---|---|
GST P1-1 Variant | CDNB | PEITC | CuOOH | EA |
Human GST P1-1 | 106 ± 4 | 60 ± 4 | 0.030 ± 0.001 | 2.0 ± 0.1 |
R1 (Y109H) | 20.9 ± 0.7 | 13.4 ± 0.1 | 0.49 ± 0.03 | 1.7 ± 0.1 |
R211 (Y109H-V36K) | 27.0 ± 2.5 | 19.8 ± 0.8 | 0.11 ± 0.01 | 1.38 ± 0.06 |
V1 (T35S-Q40L-A46S-Q85R-Y109H) | 20.5 ± 1.2 | 12.5 ± 0.2 | 0.7 ± 0.1 | 1.5 ± 0.1 |
V2 (Q40M-E41Q-A46S-Y109H-V200L) | 19.2 ± 0.7 | 11.8 ± 0.5 | 0.9 ± 0.2 | 1.66 ± 0.08 |
V3 (Q40L-S43P-Q85K-Y109H-V200L) | 20.6 ± 0.5 | 16.8 ± 1.8 | 0.8 ± 0.2 | 1.53 ± 0.06 |
V8 (Q40L-E41Q-Q84P-Y109H-V200A) | 21.3 ± 1.3 | 17.0 ± 1.4 | 0.7 ± 0.1 | 2.4 ± 0.1 |
Specific Activity (μmol min−1 mg−1) | |||||||
---|---|---|---|---|---|---|---|
Y109H | Q40M-Y109H | Q40L-Y109H | E41Q-Y109H | S43P-Y109H | A46S-Y109H | Q85R-Y109H | Q85R-Y109H-V200L |
0.49 ± 0.03 | 0.59 ± 0.09 | 0.70 ± 0.12 | 0.63 ± 0.08 | 0.53 ± 0.04 | 0.48 ± 0.08 | 0.54 ± 0.04 | 0.51 ± 0.08 |
Kinetic Parameter | GST P1-1 Variant | ||
---|---|---|---|
Wildtype | Y109H | V2 | |
kcat (s−1) | 0.039 ± 0.005 | 1.31 ± 0.39 | 2.21 ± 0.44 |
Km (mM) | 1.25 ± 0.25 | 4.3 ± 1.6 | 3.26 ± 0.89 |
kcat/Km (mM−1 s−1) | 0.031 ± 0.005 | 0.31 ± 0.10 | 0.68 ± 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, A.; Mannervik, B. Mutations Selectively Evolving Peroxidase Activity Among Alternative Catalytic Functions of Human Glutathione Transferase P1-1. Antioxidants 2024, 13, 1347. https://doi.org/10.3390/antiox13111347
Ismail A, Mannervik B. Mutations Selectively Evolving Peroxidase Activity Among Alternative Catalytic Functions of Human Glutathione Transferase P1-1. Antioxidants. 2024; 13(11):1347. https://doi.org/10.3390/antiox13111347
Chicago/Turabian StyleIsmail, Aram, and Bengt Mannervik. 2024. "Mutations Selectively Evolving Peroxidase Activity Among Alternative Catalytic Functions of Human Glutathione Transferase P1-1" Antioxidants 13, no. 11: 1347. https://doi.org/10.3390/antiox13111347
APA StyleIsmail, A., & Mannervik, B. (2024). Mutations Selectively Evolving Peroxidase Activity Among Alternative Catalytic Functions of Human Glutathione Transferase P1-1. Antioxidants, 13(11), 1347. https://doi.org/10.3390/antiox13111347