Hydrogen Sulfide: An Emerging Regulator of Oxidative Stress and Cellular Homeostasis—A Comprehensive One-Year Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Hydrogen Sulfide and Oxidative Stress—Last-Year Data
Ref. | Title | Synthetic Data on Hydrogen Sulfide and Oxidative Stress | Outcomes |
---|---|---|---|
[8] | Effect of Hydrogen Sulfide on Essential Functions of Polymorphonuclear Leukocytes | Distinct from information available until 2022, this article emphasizes the dual nature of H2S in inflammation, acting both as a pro-inflammatory and anti-inflammatory molecule. It also elaborates on the complex interactions of H2S with various signaling pathways, its effects on different organ systems, and its potential therapeutic applications. The detailed exploration of H2S’s role in renal disease, including its interaction with uremic toxins and its impact on oxidative stress, offers a novel perspective that contributes to the understanding of H2S’s function in human health and disease. | The article elucidates the dual role of hydrogen sulfide (H2S) in inflammation, its complex interactions with signaling pathways, and its potential therapeutic applications, particularly in renal disease. |
[10] | Advances of H2S in Regulating Neurodegenerative Diseases by Preserving Mitochondria Function | A comprehensive insight into the multifaceted role of H2S in neurodegenerative diseases, emphasizing its neuroprotective properties. It delves into the specific mechanisms through which H2S modulates mitochondrial activity, produces reactive sulfur species, and modifies proteins through sulfhydration. The article emphasizes the potential therapeutic applications of H2S in regulating neurodegenerative diseases through anti-oxidative, anti-inflammatory, anti-apoptotic, and S-sulfhydration. | The article reveals hydrogen sulfide’s dual role as a neuromodulator and neuroprotectant, offering new therapeutic avenues in neurodegenerative diseases. |
[14] | SOD1 is an essential H2S detoxifying enzyme | Contrary to the prevailing knowledge until 2022, the paper uncovers the role of superoxide dismutase [Cu-Zn] (SOD1) as an efficient H2S oxidase, essential in limiting cytotoxicity from both endogenous and exogenous sulfide. It highlights SOD1’s ability to convert H2S to sulfate under limiting sulfide conditions rapidly and its role in forming per- and polysulfides, which induce cellular thiol oxidation. | The article reveals SOD1’s role as an H2S oxidase, essential in limiting H2S cytotoxicity, and regulating reactive sulfur species, enriching our understanding of H2S detoxification. |
[43] | Generation and Physiology of Hydrogen Sulfide and Reactive Sulfur Species in Bacteria | The article presents a nuanced understanding of hydrogen sulfide’s (H2S) role in the oxidative stress response, highlighting its combinatorial redox action with hydrogen peroxide (H2O2) in mediating cytotoxicity and its contrasting protective effect against ROS-mediated killing. This complex interplay, including the formation of sulfheme iron complexes and the impact on catalases, adds to the existing knowledge by elucidating the multifaceted roles of H2S in oxidative stress and immunometabolism. | The article reveals hydrogen sulfide’s dual role in oxidative stress, mediating cytotoxicity and offering protection against ROS-mediated killing, enhancing understanding of immunometabolism. |
[86] | Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation, and Pulmonary Disease | The article advances the understanding of hydrogen sulfide (H2S) in oxidative stress, emphasizing its dual role as an antioxidant and a pro-oxidant. It highlights the complex mechanisms of H2S in quenching free radicals and its potential therapeutic targeting in pulmonary diseases, adding nuance to existing knowledge. | Insights into the tightly controlled metabolism of H2S in mammals, achieved through physiological enzymes catalyzed reactions. |
[87] | Hydrogen sulfide: A new therapeutic target in vascular diseases | Emphasizes the intricate relationship between H2S and oxidative stress in regulating blood pressure. It details the mechanisms by which H2S acts as a vasorelaxant agent, its interaction with nitric oxide (NO), and the effects of various H2S donors in treating HBP. The potential of H2S as a therapeutic target for hypertension, including its role in inhibiting inflammation, suppressing vascular smooth muscle cell proliferation, and mitigating oxidative stress, thereby contributing to the understanding of H2S’s multifaceted role in cardiovascular health. | The article reveals hydrogen sulfide’s multifaceted role in regulating hypertension, emphasizing its potential as a therapeutic target in cardiovascular health. |
[88] | Hydrogen Sulphide-Based Therapeutics for Neurological Conditions: Perspectives and Challenges | A comprehensive insight into the catabolism of H2S and its role in oxidative stress within the brain. Specifically, it highlights the interplay between enzymes, like sulfide quinone oxidoreductase (SQR) and its homolog SQRDL, along with neuroglobin, in the metabolism of H2S in the brain. Emphasizes the protective effect of H2S against oxidative stress by enhancing the synthesis of glutathione (GSH) and directly scavenging ROS. Explores the potential therapeutic applications of H2S donors in various neurological conditions, including Parkinson’s and Alzheimer’s diseases, offering a more refined understanding of H2S’s multifaceted role. | The article elucidates the complex role of hydrogen sulfide (H2S) in neuroprotection, highlighting its potential therapeutic applications in neurodegenerative disorders and emphasizing the need for further research to understand its multifaceted functions. |
[89] | H2S regulation of ferroptosis attenuates sepsis-induced cardiomyopathy | The article presents new insights into the role of sodium hydrosulfide (NaHS) in alleviating sepsis-induced cardiomyopathy (SIC). Specifically, it demonstrates that NaHS mitigates oxidative stress and lipid peroxidation in cardiomyocytes, highlighting its potential as a therapeutic target for SIC. This adds to understanding NaHS’s anti-inflammatory, anti-oxidative stress, and anti-apoptotic properties and its regulation of pathways involved in sepsis multiorgan injury. | The study reveals that NaHS alleviates sepsis-induced cardiomyopathy by reducing oxidative stress and lipid peroxidation, suggesting therapeutic potential. |
[90] | Sulfur content in foods and beverages and its role in human and animal metabolism: A scoping review of recent studies | The text highlights recent insights into sulfur dioxide’s physiological and toxicological roles (SO2) and its derivatives, emphasizing their complex effects on oxidative stress, gastrointestinal health, and food preservation. It contrasts previous understanding by detailing SO2’s potential preventive role in colitis, its impact on the gut microbiome, and its intricate interaction with various biological pathways. | The article reveals new insights into SO2’s roles in oxidative stress, colitis prevention, and gut microbiome interaction. |
[91] | Dose-Dependent Effect of Hydrogen Sulfide in Cyclophosphamide-Induced Hepatotoxicity in Rats | This study introduces new insights into the role of hydrogen sulfide (H2S) in mitigating cyclophosphamide (CP)-induced hepatotoxicity. It emphasizes the protective effects of NaHS, an H2S donor, against liver damage caused by CP, a chemotherapeutic agent. The research highlights how H2S attenuates oxidative stress in the liver, including regulating critical enzymes and interactions with nitric oxide (NO). This adds to the existing knowledge by elucidating the potential therapeutic applications of H2S in preventing drug-induced liver injury. | The study reveals hydrogen sulfide’s potential in mitigating cyclophosphamide-induced hepatotoxicity, highlighting therapeutic applications in preventing drug-induced liver injury. |
3.2. Hydrogen Sulfide and Cellular Homeostasis—Last-Year Data
Ref. | Title | Synthetic Data on Hydrogen Sulfide and Cellular Homeostasis | Outcomes |
---|---|---|---|
[11] | Hydrogen Sulfide (H2S) Signaling as a Protective Mechanism against Endogenous and Exogenous Neurotoxicants | H2S mediates redox homeostasis, inflammatory response, mitochondrial functions, and synaptic transmission. New findings on H2S’s regulation of SIRT1 expression, its interaction with CREB, and its involvement in reducing homocysteine (Hcy)-induced endoplasmic reticulum stress (ERS), thus extending previous knowledge on its neuroprotective effects. | New insights detail hydrogen sulfide’s role in neuroprotection, redox homeostasis, SIRT1 regulation, and the reduction in Hcy-induced ERS. |
[13] | From Gasotransmitter to Immunomodulator: The Emerging Role of Hydrogen Sulfide in Macrophage Biology | The paper emphasizes H2S as a potent inflammatory mediator, modulating macrophage activities, such as migration, phagocytosis, and cytokine production. Additionally, the article underscores H2S’s involvement in maintaining GSH levels, thus contributing to cellular redox homeostasis. | Recent findings emphasize H2S as an inflammatory mediator in macrophages, contributing to cellular homeostasis. |
[63] | Recent Development of the Molecular and Cellular Mechanisms of Hydrogen Sulfide Gasotransmitter | The article highlights novel insights into H2S’s role in cellular homeostasis, emphasizing the interactions between H2S and other gasotransmitters, like NO and CO. It particularly illustrates how H2S can persulfidate specific enzymes, impacting various signaling pathways, and reveals new findings on H2S in the regulation of endocytosis, autophagy, and renal sodium homeostasis dysfunction. This information expands our understanding of H2S’s multifaceted roles in cellular processes. | H2S regulates endocytosis, autophagy, and renal sodium homeostasis dysfunction. |
[83] | Protein persulfidation: Rewiring the hydrogen sulfide signaling in cell stress response | The article emphasizes the process of persulfidation as a biological switch in the cell stress response. The explanation of H2S’s biphasic model, where its levels operate within an optimal concentration range for health, represents an advancement in understanding its dynamic regulation of biological homeostasis, potentially opening novel therapeutic avenues. | Persulfidation’s significance in stress response and the revelation of H2S’s biphasic model |
[94] | The Impact of Drugs on Hydrogen Sulfide Homeostasis in Mammals | This review highlights a novel aspect of H2S’s role in cellular homeostasis by emphasizing its interaction with commonly prescribed pharmacological drugs. Specifically, it catalogs the impact of these drugs on H2S production in mammalian cells and tissues, providing new insights into their influence on various physiological and pathological conditions. | The review reveals the impact of pharmacological drugs on hydrogen sulfide production in mammalian systems. |
[96] | Mitochondria in endothelial cells angiogenesis and function: current understanding and future perspectives | The text highlights novel insights into H2S’s role in endothelial cell (EC) angiogenesis and mitochondrial function. Specifically, it elucidates the dual role of H2S in mitochondrial metabolism, showing its function enhancement at low concentrations and inhibition at high concentrations. | Explanation of H2S’s impact on specific enzymes and signaling pathways related to angiogenesis. |
[97] | H2S- and Redox-State-Mediated PTP1B S-Sulfhydration in Insulin Signaling | This article introduces new insights into the role of H2S in cellular homeostasis, specifically in the context of insulin signaling. Furthermore, the report reveals the differential effects of insulin and metformin on H2S and GSH levels in different cell lines, thereby enriching our understanding of the role of H2S in insulin signaling and redox regulation. | It emphasizes the significance of PTP1B S-sulfhydration mediated by H2S and the redox state in insulin response and regulation. |
[98] | Hydrogen sulfide plays an important role by regulating endoplasmic reticulum stress in myocardial diseases | This article introduces the emerging understanding of H2S’s role in regulating endoplasmic reticulum (ER) stress in myocardial diseases, a subject not widely explored until recently. The text emphasizes the novel findings on H2S’s involvement in physiological and pathological processes related to ER stress. | H2S’s involvement in physiological and pathological processes related to ER stress. |
[99] | Epigenetic regulation of macrophage polarization in wound healing | The article explores the intricate role of H2S in the polarization and function of macrophages in cardiac pathophysiology, including atherosclerosis. Specifically, it highlights the inhibition of cystathionine γ-lyase (CSE) expression and H2S production in macrophages by homocysteine (Hcy) and the contribution of the dysregulated CSE-H2S signaling pathway to atherosclerosis pathogenesis. | Dysregulation of the CSE- H2S signaling pathway in macrophages contributes to atherosclerosis pathogenesis, with homocysteine (Hcy) affecting macrophage polarization. |
3.3. H2S Therapeutic Potential
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
References
- Rodrigues, L.M.; Gregório, J.; Wehrwein, E. Contemporary views on the future of physiology—A report from the 2019 P-MIG focus group. Front. Physiol. 2023, 14, 1176146. [Google Scholar] [CrossRef]
- Munteanu, C.; Rotariu, M.; Turnea, M.-A.; Anghelescu, A.; Albadi, I.; Dogaru, G.; Silișteanu, S.C.; Ionescu, E.V.; Firan, F.C.; Ionescu, A.M.; et al. Topical Reappraisal of Molecular Pharmacological Approaches to Endothelial Dysfunction in Diabetes Mellitus Angiopathy. Curr. Issues Mol. Biol. 2022, 44, 3378–3397. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, C.; Munteanu, D.; Onose, G. Hydrogen sulfide (H2S)—Therapeutic relevance in rehabilitation and balneotherapy Systematic literature review and meta-analysis based on the PRISMA paradig. Balneo PRM Res. J. 2021, 12, 176–195. [Google Scholar] [CrossRef]
- Panthi, S.; Chung, H.J.; Jung, J.; Jeong, N.Y. Physiological importance of hydrogen sulfide: Emerging potent neuroprotector and neuromodulator. Oxidative Med. Cell. Longev. 2016, 2016, 9049782. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Qian, L.L.; Wang, R.X. Hydrogen Sulfide-Induced Vasodilation: The Involvement of Vascular Potassium Channels. Front. Pharmacol. 2022, 13, 911704. [Google Scholar] [CrossRef]
- Huerta de la Cruz, S.; Medina-Terol, G.J.; Tapia-Martínez, J.A.; Silva-Velasco, D.L.; Beltran-Ornelas, J.H.; Sánchez-López, A.; Sancho, M.; Centurión, D. Hydrogen sulfide as a neuromodulator of the vascular tone. Eur. J. Pharmacol. 2023, 940, 175455. [Google Scholar] [CrossRef]
- Munteanu, C.; Rotariu, M.; Turnea, M.; Dogaru, G.; Popescu, C.; Spînu, A.; Andone, I.; Postoiu, R.; Ionescu, E.; Oprea, C.; et al. Recent Advances in Molecular Research on Hydrogen Sulfide (H2S) Role in Diabetes Mellitus (DM)—A Systematic Review. Int. J. Mol. Sci. 2022, 23, 6720. [Google Scholar] [CrossRef]
- Farahat, S.; Kherkheulidze, S.; Nopp, S.; Kainz, A.; Borriello, M.; Perna, A.F.; Cohen, G. Effect of Hydrogen Sulfide on Essential Functions of Polymorphonuclear Leukocytes. Toxins 2023, 15, 198. [Google Scholar] [CrossRef]
- Seydi, E.; Irandoost, Z.; Khansari, M.G.; Naserzadeh, P.; Tanbakosazan, F.; Pourahmad, J. Toxicity of Hydrogen Sulfide on Rat Brain Neurons. Drug Res. 2022, 72, 197–202. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Q. Advances of H2S in Regulating Neurodegenerative Diseases by Preserving Mitochondria Function. Antioxidants 2023, 12, 652. [Google Scholar] [CrossRef]
- Aschner, M.; Skalny, A.V.; Ke, T.; da Rocha, J.B.; Paoliello, M.M.; Santamaria, A.; Bornhorst, J.; Rongzhu, L.; Svistunov, A.A.; Djordevic, A.B.; et al. Hydrogen Sulfide (H2S) Signaling as a Protective Mechanism against Endogenous and Exogenous Neurotoxicants. Curr. Neuropharmacol. 2022, 20, 1908–1924. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xia, H.; Sharp, T.E., 3rd; Lapenna, K.B.; Elrod, J.W.; Casin, K.M.; Liu, K.; Calvert, J.W.; Chau, V.Q.; Salloum, F.N.; et al. Mitochondrial H2S Regulates BCAA Catabolism in Heart Failure. Circ. Res. 2022, 131, 222–235. [Google Scholar] [CrossRef]
- Cornwell, A.; Badiei, A. From Gasotransmitter to Immunomodulator: The Emerging Role of Hydrogen Sulfide in Macrophage Biology. Antioxidants 2023, 12, 935. [Google Scholar] [CrossRef] [PubMed]
- Switzera, C.H.; Kasamatsu, S.; Ihara, H.; Eaton, P. SOD1 is an essential H2S detoxifying enzyme. Proc. Natl. Acad. Sci. USA 2023, 120, e2205044120. [Google Scholar] [CrossRef]
- Jena, A.B.; Samal, R.R.; Bhol, N.K.; Duttaroy, A.K. Cellular Red-Ox system in health and disease: The latest update. Biomed. Pharmacother. 2023, 162, 114606. [Google Scholar] [CrossRef]
- Rathod, D.C.; Vaidya, S.M.; Hopp, M.-T.; Kühl, T.; Imhof, D. Shapes and Patterns of Heme-Binding Motifs in Mammalian Heme-Binding Proteins. Biomolecules 2023, 13, 1031. [Google Scholar] [CrossRef] [PubMed]
- Jîtcă, G.; Ősz, B.E.; Tero-Vescan, A.; Miklos, A.P.; Rusz, C.M.; Bătrînu, M.G.; Vari, C.E. Positive Aspects of Oxidative Stress at Different Levels of the Human Body: A Review. Antioxidants 2022, 11, 572. [Google Scholar] [CrossRef] [PubMed]
- Filipovic, M.R.; Zivanovic, J.; Alvarez, B.; Banerjee, R. Chemical Biology of H2S Signaling through Persulfidation. Chem. Rev. 2018, 118, 1253–1337. [Google Scholar] [CrossRef]
- Chen, C.-J.; Cheng, M.-C.; Hsu, C.-N.; Tain, Y.-L. Sulfur-Containing Amino Acids, Hydrogen Sulfide, and Sulfur Compounds on Kidney Health and Disease. Metabolites 2023, 13, 688. [Google Scholar] [CrossRef]
- Li, X.; Jiang, K.; Ruan, Y.; Zhao, S.; Zhao, Y.; He, Y.; Wang, Z.; Wei, J.; Li, Q.; Yang, C.; et al. Hydrogen Sulfide and Its Donors: Keys to Unlock the Chains of Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2022, 23, 12202. [Google Scholar] [CrossRef]
- Yang, Y.L.; Zhang, K.; Zhou, Z.T.; Jiang, Z.L.; Liu, Y.; Zhang, Y.X.; Liu, Z.H.; Ji, X.Y.; Wu, D.D. The Role of Hydrogen Sulfide in the Development and Progression of Lung Cancer. Molecules 2022, 27, 9005. [Google Scholar] [CrossRef] [PubMed]
- Kolluru, G.K.; Shackelford, R.E.; Shen, X.; Dominic, P.; Kevil, C.G. Sulfide regulation of cardiovascular function in health and disease. Nat. Rev. Cardiol. 2023, 20, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.X.; Jing, M.R.; Cai, C.B.; Zhu, S.G.; Zhang, C.J.; Wang, Q.M.; Zhai, Y.K.; Ji, X.Y.; Wu, D.D. Role of hydrogen sulphide in physiological and pathological angiogenesis. Cell Prolif. 2023, 56, e13374. [Google Scholar] [CrossRef] [PubMed]
- Fahmy, S.A.; Dawoud, A.; Zeinelabdeen, Y.A.; Kiriacos, C.J.; Daniel, K.A.; Eltahtawy, O.; Abdelhalim, M.M.; Braoudaki, M.; Youness, R.A. Molecular Engines, Therapeutic Targets, and Challenges in Pediatric Brain Tumors: A Special Emphasis on Hydrogen Sulfide and RNA-Based Nano-Delivery. Cancers 2022, 14, 5244. [Google Scholar] [CrossRef] [PubMed]
- Petrosino, M.; Zuhra, K.; Kopec, J.; Hutchin, A.; Szabo, C.; Majtan, T. H2S biogenesis by cystathionine beta-synthase: Mechanism of inhibition by aminooxyacetic acid and unexpected role of serine. Cell. Mol. Life Sci. 2022, 79, 438. [Google Scholar] [CrossRef]
- Czikora, Á.; Erdélyi, K.; Ditrói, T.; Szántó, N.; Jurányi, E.P.; Szanyi, S.; Tóvári, J.; Strausz, T.; Nagy, P. Cystathionine β-synthase overexpression drives metastatic dissemination in pancreatic ductal adenocarcinoma via inducing epithelial-to-mesenchymal transformation of cancer cells. Redox Biol. 2022, 57, 102505. [Google Scholar] [CrossRef]
- Paul, B.D.; Pieper, A.A. Protective Roles of Hydrogen Sulfide in Alzheimer’s Disease and Traumatic Brain Injury. Antioxidants 2023, 12, 1095. [Google Scholar] [CrossRef]
- Hatami, N.; Büttner, C.; Bock, F.; Simfors, S.; Musial, G.; Reis, A.; Cursiefen, C.; Clahsen, T. Cystathionine β-synthase as novel endogenous regulator of lymphangiogenesis via modulating VEGF receptor 2 and 3. Commun. Biol. 2022, 5, 950. [Google Scholar] [CrossRef]
- Cornwell, A.; Fedotova, S.; Cowan, S.; Badiei, A. Cystathionine γ-lyase and hydrogen sulfide modulates glucose transporter Glut1 expression via NF-κB and PI3k/Akt in macrophages during inflammation. PLoS ONE 2022, 17, e0278910. [Google Scholar] [CrossRef]
- Wu, D.; Tan, B.; Sun, Y.; Hu, Q. Cystathionine γ lyase S-sulfhydrates Drp1 to ameliorate heart dysfunction. Redox Biol. 2022, 58, 102519. [Google Scholar] [CrossRef]
- Thanki, K.K.; Johnson, P.; Higgins, E.J.; Maskey, M.; Phillips, C.N.; Dash, S.; Almenas, F.A.; Govar, A.A.; Tian, B.; Villéger, R.; et al. Deletion of cystathionine-γ-lyase in bone marrow-derived cells promotes colitis-associated carcinogenesis. Redox Biol. 2022, 55, 102417. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Cui, C.; Cui, C.; Chen, Z.; Zhang, H.; Cui, Q.; Xu, G.; Fan, J.; Han, Y.; Tang, L.; et al. Hepatocellular cystathionine γ lyase/hydrogen sulfide attenuates nonalcoholic fatty liver disease by activating farnesoid X receptor. Hepatology 2022, 76, 1794–1810. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.P.; Dobariya, P.; Bellamkonda, H.; More, S.S. Role of 3-Mercaptopyruvate Sulfurtransferase (3-MST) in Physiology and Disease. Antioxidants 2023, 12, 603. [Google Scholar] [CrossRef]
- Shibuya, N.; Koike, S.; Tanaka, M.; Ishigami-Yuasa, M.; Kimura, Y.; Ogasawara, Y.; Fukui, K.; Nagahara, N.; Kimura, H. A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat. Commun. 2013, 4, 1366–1367. [Google Scholar] [CrossRef]
- Robert, B.; Subramaniam, S. Gasotransmitter-Induced Therapeutic Angiogenesis: A Biomaterial Prospective. ACS Omega 2022, 7, 45849–45866. [Google Scholar] [CrossRef] [PubMed]
- Naviaux, R.K. Mitochondrial and metabolic features of salugenesis and the healing cycle. Mitochondrion 2023, 70, 131–163. [Google Scholar] [CrossRef]
- Rodkin, S.; Nwosu, C.; Sannikov, A.; Tyurin, A.; Chulkov, V.S.; Raevskaya, M.; Ermakov, A.; Kirichenko, E.; Gasanov, M. The Role of Gasotransmitter-Dependent Signaling Mechanisms in Apoptotic Cell Death in Cardiovascular, Rheumatic, Kidney, and Neurodegenerative Diseases and Mental Disorders. Int. J. Mol. Sci. 2023, 24, 6014. [Google Scholar] [CrossRef]
- Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Feher, A.; Csipo, T.; Forrai, J.; Dosa, N.; Peterfi, A.; Lehoczki, A.; Tarantini, S.; et al. Nutrition Strategies Promoting Healthy Aging: From Improvement of Cardiovascular and Brain Health to Prevention of Age-Associated Diseases. Nutrients 2023, 15, 47. [Google Scholar] [CrossRef]
- Cheng, Z.; Kishore, R. Potential role of hydrogen sulfide in diabetes-impaired angiogenesis and ischemic tissue repair. Redox Biol. 2020, 37, 101704. [Google Scholar] [CrossRef]
- Rodkin, S.; Nwosu, C.; Sannikov, A.; Raevskaya, M.; Tushev, A.; Vasilieva, I.; Gasanov, M. The Role of Hydrogen Sulfide in Regulation of Cell Death following Neurotrauma and Related Neurodegenerative and Psychiatric Diseases. Int. J. Mol. Sci. 2023, 24, 10742. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.J.; Li, K.; Qin, Y.Z.; Zhou, J.J.; Li, T.; Qian, L.; Yang, C.Y.; Ji, X.Y.; Wu, D.D. Recent advances in the role of endogenous hydrogen sulphide in cancer cells. Cell Prolif. 2023, 56, e13449. [Google Scholar] [CrossRef]
- Han, S.; Li, Y.; Gao, H. Generation and Physiology of Hydrogen Sulfide and Reactive Sulfur Species in Bacteria. Antioxidants 2022, 11, 2487. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Yang, B.; Ma, D.; Wang, L.; Duan, W. Hydrogen sulfide, adipose tissue and diabetes mellitus. Diabetes Metab. Syndr. Obes. 2020, 13, 1873–1886. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Moore, J.; Devarie-Baez, N.O.; Lewis, J.; Wu, H.; Shukla, K.; Lopez, E.I.S.; Vitvitsky, V.; Key, C.C.C.; Porosnicu, M.; et al. Redox integration of signaling and metabolism in a head and neck cancer model of radiation resistance using COSMRO. Front. Oncol. 2023, 12, 946320. [Google Scholar] [CrossRef]
- Miljkovic, J.L.; Burger, N.; Gawel, J.M.; Mulvey, J.F.; Norman, A.A.I.; Nishimura, T.; Tsujihata, Y.; Logan, A.; Sauchanka, O.; Caldwell, S.T.; et al. Rapid and selective generation of H2S within mitochondria protects against cardiac ischemia-reperfusion injury. Redox Biol. 2022, 55, 102429. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Andrés Juan, C.; Manuel Pérez de la Lastra, J.; Plou, F.J.; Pérez-Lebeña, E.; Reinbothe, S. Molecular Sciences The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Gusev, E.Y.; Zotova, N.V. Cellular Stress and General Pathological Processes. Curr. Pharm. Des. 2019, 25, 251–297. [Google Scholar] [CrossRef]
- Xiao, Q.; Ying, J.; Xiang, L.; Zhang, C. The biologic effect of hydrogen sulfide and its function in various diseases. Medicine 2018, 97, e13065. [Google Scholar] [CrossRef] [PubMed]
- Szabo, C. Hydrogen sulfide, an endogenous stimulator of mitochondrial function in cancer cells. Cells 2021, 10, 220. [Google Scholar] [CrossRef] [PubMed]
- Pal, V.K.; Bandyopadhyay, P.; Singh, A. Hydrogen sulfide in physiology and pathogenesis of bacteria and viruses. IUBMB Life 2018, 70, 393–410. [Google Scholar] [CrossRef]
- Corsello, T.; Komaravelli, N.; Casola, A. Role of hydrogen sulfide in nrf2-and sirtuin-dependent maintenance of cellular redox balance. Antioxidants 2018, 7, 129. [Google Scholar] [CrossRef] [PubMed]
- Ling, K.; Zhou, W.; Guo, Y.; Hu, G.; Chu, J.; Xie, F.; Li, Y.; Wang, W. H2S attenuates oxidative stress via Nrf2/NF-κB signaling to regulate restenosis after percutaneous transluminal angioplasty. Exp. Biol. Med. 2021, 246, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Hammad, M.; Raftari, M.; Cezario, R.; Salma, R.; Godoy, P.; Emami, S.N.; Haghdoost, S. Roles of Oxidative Stress and Nrf2 Signaling in Pathogenic and Non-Pathogenic Cells: A Possible General Mechanism of Resistance to Therapy. Antioxidants 2023, 12, 1371. [Google Scholar] [CrossRef]
- Ramsay, D.S.; Woods, S.C. Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychol. Rev. 2014, 121, 225–247. [Google Scholar] [CrossRef]
- Billman, G.E. Homeostasis: The Underappreciated and Far Too Often Ignored Central Organizing Principle of Physiology. Front. Physiol. 2020, 11, 200. [Google Scholar] [CrossRef]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell. Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef]
- López-Otín, C.; Kroemer, G. Hallmarks of Health. Cell 2021, 184, 33–63. [Google Scholar] [CrossRef]
- Altaany, Z.; Alkaraki, A.; Abo Alrob, O.; Taani, O.; Khatatbeh, M. The Interplay of Exogenous and Endogenous Hydrogen Sulfide (H2S) in Maintaining Redox Homeostasis in Individuals with Low Ferritin Levels. Appl. Sci. 2023, 13, 6621. [Google Scholar] [CrossRef]
- Kimura, H. The physiological role of hydrogen sulfide and beyond. Nitric Oxide Biol. Chem. 2014, 41, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Mesfin, F.M.; Hunter, C.E.; Olson, K.R.; Shelley, W.C.; Brokaw, J.P.; Manohar, K.; Markel, T.A. Recent Development of the Molecular and Cellular Mechanisms of Hydrogen Sulfide Gasotransmitter. Antioxidants 2022, 11, 1788. [Google Scholar] [CrossRef] [PubMed]
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Arancibia-Hernández, Y.L.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J. RONS and Oxidative Stress: An Overview of Basic Concepts. Oxygen 2022, 2, 437–478. [Google Scholar] [CrossRef]
- Mladenov, M.; Lubomirov, L.; Grisk, O.; Avtanski, D.; Mitrokhin, V.; Sazdova, I.; Keremidarska-Markova, M.; Danailova, Y.; Nikolaev, G.; Konakchieva, R.; et al. Oxidative Stress, Reductive Stress and Antioxidants in Vascular Pathogenesis and Aging. Antioxidants 2023, 12, 1126. [Google Scholar] [CrossRef]
- Huang, Y.; Omorou, M.; Gao, M.; Mu, C.; Xu, W.; Xu, H. Hydrogen sulfide and its donors for the treatment of cerebral ischaemia-reperfusion injury: A comprehensive review. Biomed. Pharmacother. 2023, 161, 114506. [Google Scholar] [CrossRef]
- Domán, A.; Dóka, É.; Garai, D.; Bogdándi, V.; Balla, G.; Balla, J.; Nagy, P. Interactions of reactive sulfur species with metalloproteins. Redox Biol. 2023, 60, 102617. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Y. The role of sulfur compounds in chronic obstructive pulmonary disease. Front. Mol. Biosci. 2022, 9, 928287. [Google Scholar] [CrossRef]
- Marini, E.; Rolando, B.; Sodano, F.; Blua, F.; Concina, G.; Guglielmo, S.; Lazzarato, L.; Chegaev, K. Comparative Study of Different H2S Donors as Vasodilators and Attenuators of Superoxide-Induced Endothelial Damage. Antioxidants 2023, 12, 344. [Google Scholar] [CrossRef]
- Pruteanu, L.L.; Bailey, D.S.; Grădinaru, A.C.; Jäntschi, L. The Biochemistry and Effectiveness of Antioxidants in Food, Fruits, and Marine Algae. Antioxidants 2023, 12, 860. [Google Scholar] [CrossRef]
- Bergstedt, J.H.; Skov, P.V.; Letelier-Gordo, C.O. Efficacy of H2O2 on the removal kinetics of H2S in saltwater aquaculture systems, and the role of O2 and NO3−. Water Res. 2022, 222, 118892. [Google Scholar] [CrossRef] [PubMed]
- Putman, A.K.; Contreras, G.A.; Mottillo, E.P. Thermogenic Adipose Redox Mechanisms: Potential Targets for Metabolic Disease Therapies. Antioxidants 2023, 12, 196. [Google Scholar] [CrossRef] [PubMed]
- Benchoam, D.; Semelak, J.A.; Cuevasanta, E.; Mastrogiovanni, M.; Grassano, J.S.; Ferrer-Sueta, G.; Zeida, A.; Trujillo, M.; Möller, M.N.; Estrin, D.A.; et al. Acidity and nucleophilic reactivity of glutathione persulfide. J. Biol. Chem. 2020, 295, 15466–15481. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Wang, Z.; Li, B.; Zhu, H. Modulation of redox homeostasis: A strategy to overcome cancer drug resistance. Front. Pharmacol. 2023, 14, 1156538. [Google Scholar] [CrossRef] [PubMed]
- Verhaegen, D.; Smits, K.; Osório, N.; Caseiro, A. Oxidative Stress in Relation to Aging and Exercise. Encyclopedia 2022, 2, 1545–1558. [Google Scholar] [CrossRef]
- Pinho, S.A.; Anjo, S.I.; Cunha-Oliveira, T. Metabolic Priming as a Tool in Redox and Mitochondrial Theragnostics. Antioxidants 2023, 12, 1072. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.T.T.; Huynh, T.D.; Wang, C.S.; Lai, K.H.; Lin, Z.C.; Lin, W.N.; Chen, Y.L.; Peng, T.Y.; Wu, H.C.; Lee, I.T. The Potential Implications of Hydrogen Sulfide in Aging and Age-Related Diseases through the Lens of Mitohormesis. Antioxidants 2022, 11, 1619. [Google Scholar] [CrossRef]
- Chavda, V.; Lu, B. Reverse Electron Transport at Mitochondrial Complex I in Ischemic Stroke, Aging, and Age-Related Diseases. Antioxidants 2023, 12, 895. [Google Scholar] [CrossRef]
- Papiri, G.; D’Andreamatteo, G.; Cacchiò, G.; Alia, S.; Silvestrini, M.; Paci, C.; Luzzi, S.; Vignini, A. Multiple Sclerosis: Inflammatory and Neuroglial Aspects. Curr. Issues Mol. Biol. 2023, 45, 1443–1470. [Google Scholar] [CrossRef]
- Locascio, A.; Annona, G.; Caccavale, F.; D’Aniello, S.; Agnisola, C.; Palumbo, A. Nitric Oxide Function and Nitric Oxide Synthase Evolution in Aquatic Chordates. Int. J. Mol. Sci. 2023, 24, 11182. [Google Scholar] [CrossRef]
- Kim, D.S.; Pessah, I.N.; Santana, C.M.; Purnell, B.S.; Li, R.; Buchanan, G.F.; Rumbeiha, W.K. Investigations into hydrogen sulfide-induced suppression of neuronal activity in vivo and calcium dysregulation in vitro. Toxicol. Sci. 2023, 192, 247–264. [Google Scholar] [CrossRef] [PubMed]
- Santana Maldonado, C.; Weir, A.; Rumbeiha, W.K. A comprehensive review of treatments for hydrogen sulfide poisoning: Past, present, and future. Toxicol. Mech. Methods 2023, 33, 183–196. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Zhang, Z.; Huang, Z.; Duan, X.; Wang, Y.; Cao, J.; Li, L.; He, K.; Nice, E.C.; He, W.; et al. Protein persulfidation: Rewiring the hydrogen sulfide signaling in cell stress response. Biochem. Pharmacol. 2023, 209, 115444. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, X.; Feng, J.; Zhu, S. Biological Functions of Hydrogen Sulfide in Plants. Int. J. Mol. Sci. 2022, 23, 15107. [Google Scholar] [CrossRef] [PubMed]
- Bresgen, N.; Kovacs, M.; Lahnsteiner, A.; Felder, T.K.; Rinnerthaler, M. The Janus-Faced Role of Lipid Droplets in Aging: Insights from the Cellular Perspective. Biomolecules 2023, 13, 912. [Google Scholar] [CrossRef]
- Zhu, Z.; Lian, X.; Bhatia, M. Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease. Antioxidants 2022, 11, 2162. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, Q.; Li, X.; Wei, R.; Ge, T.; Zheng, X.; Li, B.; Liu, K.; Cui, R. Hydrogen sulfide: A new therapeutic target in vascular diseases. Front. Endocrinol. 2022, 13, 934231. [Google Scholar] [CrossRef] [PubMed]
- Sharif, A.H.; Iqbal, M.; Manhoosh, B.; Gholampoor, N.; Ma, D.; Marwah, M.; Sanchez-Aranguren, L. Hydrogen Sulphide-Based Therapeutics for Neurological Conditions: Perspectives and Challenges. Neurochem. Res. 2023, 48, 1981–1996. [Google Scholar] [CrossRef]
- Cao, G.; Zeng, Y.; Zhao, Y.; Lin, L.; Luo, X.; Guo, L.; Zhang, Y.; Cheng, Q. H2S regulation of ferroptosis attenuates sepsis-induced cardiomyopathy. Mol. Med. Rep. 2022, 26, 335. [Google Scholar] [CrossRef]
- Dordevic, D.; Capikova, J.; Dordevic, S.; Tremlová, B.; Gajdács, M.; Kushkevych, I. Sulfur content in foods and beverages and its role in human and animal metabolism: A scoping review of recent studies. Heliyon 2023, 9, e15452. [Google Scholar] [CrossRef]
- Ozatik, F.Y.; Ozatik, O.; Teksen, Y.; Kocak, H.; Ari, N.S.; Cengelli Unel, C. Dose-Dependent Effect of Hydrogen Sulfide in Cyclophosphamide-Induced Hepatotoxicity in Rats. Turk. J. Gastroenterol. 2023, 34, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Beckett, E.A.H.; Gaganis, V.; Bakker, A.J.; Towstoless, M.; Hayes, A.; Hryciw, D.H.; Lexis, L.; Tangalakis, K. Unpacking the homeostasis core concept in physiology: An Australian perspective. Adv. Physiol. Educ. 2023, 47, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, C.; Rotariu, M.; Turnea, M.; Ionescu, A.M.; Popescu, C.; Spinu, A.; Ionescu, E.V.; Oprea, C.; Țucmeanu, R.E.; Tătăranu, L.G.; et al. Main Cations and Cellular Biology of Traumatic Spinal Cord Injury. Cells 2022, 11, 250. [Google Scholar] [CrossRef]
- Alsaeedi, A.; Welham, S.; Rose, P.; Zhu, Y. The Impact of Drugs on Hydrogen Sulfide Homeostasis in Mammals. Antioxidants 2023, 12, 908. [Google Scholar] [CrossRef]
- Richardson, R.B.; Mailloux, R.J. Mitochondria Need Their Sleep: Redox, Bioenergetics, and Temperature Regulation of Circadian Rhythms and the Role of Cysteine-Mediated Redox Signaling, Uncoupling Proteins, and Substrate Cycles. Antioxidants 2023, 12, 674. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Yao, J.; Wang, Z.; Xu, J. Mitochondria in endothelial cells angiogenesis and function: Current understanding and future perspectives. J. Transl. Med. 2023, 21, 441. [Google Scholar] [CrossRef]
- Lin, Y.; Zeng, W.; Lee, D. H2S- and Redox-State-Mediated PTP1B S-Sulfhydration in Insulin Signaling. Int. J. Mol. Sci. 2023, 24, 2898. [Google Scholar] [CrossRef]
- Zhao, H.; Fu, X.; Zhang, Y.; Yang, Y.; Wang, H. Hydrogen sulfide plays an important role by regulating endoplasmic reticulum stress in myocardial diseases. Front. Pharmacol. 2023, 14, 1172147. [Google Scholar] [CrossRef]
- Chen, C.; Liu, T.; Tang, Y.; Luo, G.; Liang, G.; He, W. Epigenetic regulation of macrophage polarization in wound healing. Burn. Trauma 2023, 11, tkac057. [Google Scholar] [CrossRef]
- Dogaru, B.G.; Munteanu, C. The Role of Hydrogen Sulfide (H2S) in Epigenetic Regulation of Neurodegenerative Diseases: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 12555. [Google Scholar] [CrossRef]
- Piragine, E.; Malanima, M.A.; Lucenteforte, E.; Martelli, A.; Calderone, V. Circulating Levels of Hydrogen Sulfide (H2S) in Patients with Age-Related Diseases: A Systematic Review and Meta-Analysis. Biomolecules 2023, 13, 1023. [Google Scholar] [CrossRef] [PubMed]
- Panagaki, T.; Randi, E.B.; Augsburger, F.; Szabo, C. Overproduction of H2S, generated by CBS, inhibits mitochondrial Complex IV and suppresses oxidative phosphorylation in down syndrome. Proc. Natl. Acad. Sci. USA 2019, 116, 18769–18771. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Hessler, W.; Henary, M. H2S Sensors: Synthesis, Optical Properties, and Selected Biomedical Applications under Visible and NIR Light. Molecules 2023, 28, 1295. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Yu, Y.; Zhu, L.; Lai, N.; Zhang, L.; Guo, Y.; Lin, X.; Yang, D.; Ren, N.; Zhu, Z.; et al. Implications of hydrogen sulfide in colorectal cancer: Mechanistic insights and diagnostic and therapeutic strategies. Redox Biol. 2023, 59, 102601. [Google Scholar] [CrossRef] [PubMed]
- Kaziród, K.; Myszka, M.; Dulak, J.; Łoboda, A. Hydrogen sulfide as a therapeutic option for the treatment of Duchenne muscular dystrophy and other muscle-related diseases. Cell. Mol. Life Sci. 2022, 79, 608. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.P.; Xie, W.; Christopher Kwon, Y.I.; Juckel, N.; Xie, J.; Dronamraju, V.R.; Vince, R.; Lee, M.K.; More, S.S. Sulfanegen stimulates 3-mercaptopyruvate sulfurtransferase activity and ameliorates Alzheimer’s disease pathology and oxidative stress in vivo. Redox Biol. 2022, 57, 102484. [Google Scholar] [CrossRef]
- Akpoveso, O.O.P.; Ubah, E.E.; Obasanmi, G. Antioxidant Phytochemicals as Potential Therapy for Diabetic Complications. Antioxidants 2023, 12, 123. [Google Scholar] [CrossRef]
- Ji, X.; Zhang, W.; Yin, L.; Shi, Z.; Luan, J.; Chen, L.; Liu, L. The Potential Roles of Post-Translational Modifications of PPARγ in Treating Diabetes. Biomolecules 2022, 12, 1832. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munteanu, C.; Turnea, M.A.; Rotariu, M. Hydrogen Sulfide: An Emerging Regulator of Oxidative Stress and Cellular Homeostasis—A Comprehensive One-Year Review. Antioxidants 2023, 12, 1737. https://doi.org/10.3390/antiox12091737
Munteanu C, Turnea MA, Rotariu M. Hydrogen Sulfide: An Emerging Regulator of Oxidative Stress and Cellular Homeostasis—A Comprehensive One-Year Review. Antioxidants. 2023; 12(9):1737. https://doi.org/10.3390/antiox12091737
Chicago/Turabian StyleMunteanu, Constantin, Marius Alexandru Turnea, and Mariana Rotariu. 2023. "Hydrogen Sulfide: An Emerging Regulator of Oxidative Stress and Cellular Homeostasis—A Comprehensive One-Year Review" Antioxidants 12, no. 9: 1737. https://doi.org/10.3390/antiox12091737
APA StyleMunteanu, C., Turnea, M. A., & Rotariu, M. (2023). Hydrogen Sulfide: An Emerging Regulator of Oxidative Stress and Cellular Homeostasis—A Comprehensive One-Year Review. Antioxidants, 12(9), 1737. https://doi.org/10.3390/antiox12091737