ZIF-8 Nanoparticles Induce Behavior Abnormality and Brain Oxidative Stress in Adult Zebrafish (Danio rerio)
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Organism
2.2. Chemicals
2.3. Experimental Design
2.4. Behavioral Assay
2.5. Measurement of Oxidative Stress-Related Biomarkers
2.6. Statistical Analysis
3. Results
3.1. Impacts on the Normal Locomotor Behaviors
3.2. Impacts on Post-Stimulation Behaviors
3.3. Impacts on Oxidative Stress-Related Bio-Markers
3.4. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.-W.; Sun, T.-J.; Hu, J.-L.; Wang, S.-D. Composites of metal–organic frameworks and carbon-based materials: Preparations, functionalities and applications. J. Mater. Chem. A 2016, 4, 3584–3616. [Google Scholar] [CrossRef]
- Alhumaimess, M.S. Metal–organic frameworks and their catalytic applications. J. Saudi Chem. Soc. 2020, 24, 461–473. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Li, D.S.; Bu, X.; Feng, P. Metal-organic frameworks for separation. Adv. Mater. 2018, 30, e1705189. [Google Scholar] [CrossRef]
- Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C.Y. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061. [Google Scholar] [CrossRef] [PubMed]
- Ania, C.O.; García-Pérez, E.; Haro, M.; Gutiérrez-Sevillano, J.J.; Valdés-Solís, T.; Parra, J.B.; Calero, S. Understanding gas-induced structural deformation of ZIF-8. J. Phys. Chem. Lett. 2012, 3, 1159–1164. [Google Scholar] [CrossRef]
- Jing, H.-P.; Wang, C.-C.; Zhang, Y.-W.; Wang, P.; Li, R. Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv. 2014, 4, 54454–54462. [Google Scholar] [CrossRef]
- Sann, E.E.; Pan, Y.; Gao, Z.; Zhan, S.; Xia, F. Highly hydrophobic ZIF-8 particles and application for oil-water separation. Sep. Purif. Technol. 2018, 206, 186–191. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, Y.; Li, S.; Zhang, P.; Yao, Q. Synthesis and modification of ZIF-8 and its application in drug delivery and tumor therapy. RSC Adv. 2020, 10, 37600–37620. [Google Scholar] [CrossRef]
- Chen, P.; He, M.; Chen, B.; Hu, B. Size- and dose-dependent cytotoxicity of ZIF-8 based on single cell analysis. Ecotoxicol. Environ. Saf. 2020, 205, 111110. [Google Scholar] [CrossRef]
- Hoop, M.; Walde, C.F.; Riccò, R.; Mushtaq, F.; Terzopoulou, A.; Chen, X.-Z.; deMello, A.J.; Doonan, C.J.; Falcaro, P.; Nelson, B.J.; et al. Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Appl. Mater. Today 2018, 11, 13–21. [Google Scholar] [CrossRef]
- Kota, D.; Kang, L.; Rickel, A.; Liu, J.; Smith, S.; Hong, Z.; Wang, C. Low doses of zeolitic imidazolate framework-8 nanoparticles alter the actin organization and contractility of vascular smooth muscle cells. J. Hazard. Mater. 2021, 414, 125514. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Liu, F.; Wang, C.; Zhang, J.; Zhu, A.; Zou, L.; Han, A.; Li, J.; Chang, X.; Sun, Y. Role of oxidative stress in liver toxicity induced by nickel oxide nanoparticles in rats. Mol. Med. Rep. 2017, 17, 3133–3139. [Google Scholar] [CrossRef] [PubMed]
- Adeel, M.; Tingting, J.; Hussain, T.; He, X.; Ahmad, M.A.; Irshad, M.K.; Shakoor, N.; Zhang, P.; Changjian, X.; Hao, Y.; et al. Bioaccumulation of ytterbium oxide nanoparticles insinuate oxidative stress, inflammatory, and pathological lesions in ICR mice. Environ. Sci. Pollut. Res. 2020, 27, 32944–32953. [Google Scholar] [CrossRef]
- Qiu, X.; Tengbe, M.S.; Xia, X.; Dong, K.; Chen, C.; Shi, Y.; Li, M.; Xu, H.; Wu, X.; Chen, K. Impacts of cetylpyridinium chloride on the survival, development, behavior, and oxidative stress of early-life-stage zebrafish (Danio rerio). Antioxidants 2022, 11, 676. [Google Scholar] [CrossRef]
- Hu, H.; Su, M.; Ba, H.; Chen, G.; Luo, J.; Liu, F.; Liao, X.; Cao, Z.; Zeng, J.; Lu, H.; et al. ZIF-8 nanoparticles induce neurobehavioral disorders through the regulation of ROS-mediated oxidative stress in zebrafish embryos. Chemosphere 2022, 305, 135453. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Gundlach, M.; Yang, S.; Jiang, J.; Velki, M.; Yin, D.; Hollert, H. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Sci. Total Environ. 2017, 584, 1022–1031. [Google Scholar] [CrossRef]
- Yang, C.; Wen, J.; Xue, Z.; Yin, X.; Li, Y.; Yuan, L. The accumulation and toxicity of ZIF-8 nanoparticles in Corbicula fluminea. J. Environ. Sci. 2022, 127, 91–101. [Google Scholar] [CrossRef]
- Sevcikova, M.; Modra, H.; Slaninova, A.; Svobodova, Z. Metals as a cause of oxidative stress in fish: A review. Vet. Med. 2011, 56, 537–546. [Google Scholar] [CrossRef]
- Dong, J.; Li, C.; Dai, D.; Zhang, M.; Gao, Y.; Li, X.; Li, M.; Zhang, J.; Wang, X.; Zhou, C. Protective effects of astaxanthin from Haematococcus pluvialis on the survival and oxidative stress of zebrafish embryos induced by microcystin-LR. J. Appl. Psychol. 2021, 33, 2261–2271. [Google Scholar] [CrossRef]
- González, E.A.; Carty, D.R.; Tran, F.D.; Cole, A.M.; Lein, P.J. Developmental exposure to silver nanoparticles at environmentally relevant concentrations alters swimming behavior in zebrafish (Danio rerio). Environ. Toxicol. Chem. 2018, 37, 3018–3024. [Google Scholar] [CrossRef]
- Sarasamma, S.; Audira, G.; Samikannu, P.; Juniardi, S.; Siregar, P.; Hao, E.; Chen, J.-R.; Hsiao, C.-D. Behavioral impairments and oxidative stress in the brain, muscle, and gill caused by chronic exposure of C(70) nanoparticles on adult zebrafish. Int. J. Mol. Sci. 2019, 20, 5795. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, V.I. Contaminant-induced oxidative stress in fish: A mechanistic approach. Fish Physiol. Biochem. 2015, 42, 711–747. [Google Scholar] [CrossRef] [PubMed]
- Border, S.E.; DeOliveira, G.M.; Janeski, H.M.; Piefke, T.J.; Brown, T.J.; Dijkstra, P.D. Social rank, color morph, and social network metrics predict oxidative stress in a cichlid fish. Behav. Ecol. 2019, 30, 490–499. [Google Scholar] [CrossRef]
- Jia, H.R.; Zhu, Y.X.; Duan, Q.Y.; Chen, Z.; Wu, F.G. Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications. J. Control. Release 2019, 311, 301–318. [Google Scholar] [CrossRef]
- Kanungo, J.; Cuevas, E.; Ali, S.F.; Paule, M.G. Zebrafish model in drug safety assessment. Curr. Pharm. Des. 2014, 20, 5416–5429. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, C.; Wu, X.; Han, Z.; Zhang, S.; Chen, K.; Qiu, X. Exposure to amitriptyline induces persistent gut damages and dysbiosis of the gut microbiota in zebrafish (Danio rerio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 260, 109417. [Google Scholar] [CrossRef]
- Wu, M.; Qiu, X.; Chen, C.; Chen, K.; Li, M.; Xu, H.; Wu, X.; Shimasaki, Y.; Oshima, Y. Short-term and persistent impacts of sublethal exposure to diazepam on behavioral traits and brain GABA levels in juvenile zebrafish (Danio rerio). Sci. Total Environ. 2020, 740, 140392. [Google Scholar] [CrossRef]
- Fitzgerald, J.A.; Könemann, S.; Krümpelmann, L.; Županič, A.; Vom Berg, C. Approaches to test the neurotoxicity of environmental contaminants in the zebrafish model: From behavior to molecular mechanisms. Environ. Toxicol. Chem. 2020, 40, 989–1006. [Google Scholar] [CrossRef]
- Sun, M.; Cao, Y.; Sun, Q.; Ren, X.; Hu, J.; Sun, Z.; Duan, J. Exposure to polydopamine nanoparticles induces neurotoxicity in the developing zebrafish. NanoImpact 2021, 24, 100353. [Google Scholar] [CrossRef]
- Bai, C.; Tang, M. Toxicological study of metal and metal oxide nanoparticles in zebrafish. J. Appl. Toxicol. 2020, 40, 37–63. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Q.; Liu, D.; Liu, T.; Xing, L. Neurotoxicity of nanoparticles: Insight from studies in zebrafish. Ecotoxicol. Environ. Saf. 2022, 242, 113896. [Google Scholar] [CrossRef] [PubMed]
- Taheri, M.; Bernardo, I.D.; Lowe, A.; Nisbet, D.R.; Tsuzuki, T. Green full conversion of ZnO nanopowders to well-dispersed zeolitic imidazolate framework-8 (ZIF-8) nanopowders via a stoichiometric mechanochemical reaction for fast dye adsorption. Cryst. Growth Des. 2020, 20, 2761–2773. [Google Scholar] [CrossRef]
- Qiu, X.; Liu, L.; Xu, W.; Chen, C.; Li, M.; Shi, Y.; Wu, X.; Chen, K.; Wang, C. Zeolitic imidazolate framework-8 nanoparticles exhibit more severe toxicity to the embryo/larvae of zebrafish (Danio rerio) when co-exposed with cetylpyridinium chloride. Antioxidants 2022, 11, 945. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.H.; Rong, X.S.; Chen, C.; Wu, M.; Takai, Y.; Qiu, X.C.; Wang, C.C.; Shimasaki, Y.; Oshima, Y. Effects of ZIF-8 nanoparticles on the survival, development, and locomotor activity of early-life-stages of zebrafish (Danio rerio). J. Fac. Agric. Kyushu Univ. 2021, 66, 211–216. [Google Scholar] [CrossRef]
- OECD. Test No. 203: Fish, Acute Toxicity Test. In OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- Qiu, X.; Nomichi, S.; Chen, K.; Honda, M.; Kang, I.J.; Shimasaki, Y.; Oshima, Y. Short-term and persistent impacts on behaviors related to locomotion, anxiety, and startle responses of Japanese medaka (Oryzias latipes) induced by acute, sublethal exposure to chlorpyrifos. Aquat. Toxicol. 2017, 192, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Li, L.; Chen, C.; Tengbe, M.S.; Chen, K.; Shi, Y.; Wu, X.; Qiu, X. Impacts of cetylpyridinium chloride on the behavior and brain neurotransmitter levels of juvenile and adult zebrafish (Danio rerio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 259, 109393. [Google Scholar] [CrossRef] [PubMed]
- Wallace, C.K.; Bright, L.A.; Marx, J.O.; Andersen, R.P.; Mullins, M.C.; Carty, A.J. Effectiveness of rapid cooling as a method of euthanasia for young zebrafish (Danio rerio). J. Am. Assoc. Lab. Anim. Sci. 2018, 57, 58–63. [Google Scholar]
- Marchant-Forde, J.N. The science of animal behavior and welfare: Challenges, opportunities, and global perspective. Front. Vet. Sci. 2015, 2, 16. [Google Scholar] [CrossRef]
- Qiu, X.; Chen, C.; Shi, Y.; Chen, K.; Li, M.; Xu, H.; Wu, X.; Takai, Y.; Shimasaki, Y.; Oshima, Y. Persistent impact of amitriptyline on the behavior, brain neurotransmitter, and transcriptional profile of zebrafish (Danio rerio). Aquat. Toxicol. 2022, 245, 106129. [Google Scholar] [CrossRef]
- Chen, K.; Wu, M.; Chen, C.; Xu, H.; Wu, X.; Qiu, X. Impacts of chronic exposure to sublethal diazepam on behavioral traits of female and male zebrafish (Danio rerio). Ecotoxicol. Environ. Saf. 2021, 208, 111747. [Google Scholar] [CrossRef]
- Qiu, X.; Matsuyama, Y.; Furuse, M.; Shimasaki, Y.; Oshima, Y. Effects of Chattonella antiqua on the swimming behavior and brain monoamine metabolism of juvenile yellowtail (Seriola quinqueradiata). Mar. Pollut. Bull. 2020, 152, 110896. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.A.; Kozal, J.S.; Jayasundara, N.; Massarsky, A.; Trevisan, R.; Geitner, N.; Wiesner, M.; Levin, E.D.; Di Giulio, R.T. Uptake, tissue distribution, and toxicity of polystyrene nanoparticles in developing zebrafish (Danio rerio). Aquat. Toxicol. 2017, 194, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Al-Ansari, D.E.; Al-Badr, M.; Zakaria, Z.Z.; Mohamed, N.A.; Nasrallah, G.K.; Yalcin, H.C.; Abou-Saleh, H. Evaluation of Metal-Organic Framework MIL-89 nanoparticles toxicity on embryonic zebrafish development. Toxicol. Rep. 2022, 9, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Passos, M.; Pinheiro, I.; Vieira, A.; Martins, J.C.; Campos, A.; Espiña, B. (Eco)toxicity assessment of commercial engineered nanomaterials for plastic industry in zebrafish. Toxicol. Lett. 2018, 295, S206. [Google Scholar] [CrossRef]
- Lacave, J.M.; Retuerto, A.; Vicario-Parés, U.; Gilliland, D.; Oron, M.; Cajaraville, M.P.; Orbea, A. Effects of metal-bearing nanoparticles (Ag, Au, CdS, ZnO, SiO2) on developing zebrafish embryos. Nanotechnology 2016, 27, 325102. [Google Scholar] [CrossRef]
- Asmonaite, G.; Boyer, S.; Souza, K.B.; Wassmur, B.; Sturve, J. Behavioural toxicity assessment of silver ions and nanoparticles on zebrafish using a locomotion profiling approach. Aquat. Toxicol. 2016, 173, 143–153. [Google Scholar] [CrossRef]
- Edith, D.; Grace Emily, O. Engineered nanoparticles in aquatic systems: Toxicity and mechanism of toxicity in fish. Emerg. Contam. 2023, 9, 100212. [Google Scholar] [CrossRef]
- Johari, S.A.; Sarkheil, M.; Veisi, S. Cytotoxicity, oxidative stress, and apoptosis in human embryonic kidney (HEK293) and colon cancer (SW480) cell lines exposed to nanoscale zeolitic imidazolate framework 8 (ZIF-8). Environ. Sci. Pollut. Res. 2021, 28, 56772–56781. [Google Scholar] [CrossRef]
- Colwill, R.M.; Creton, R. Locomotor behaviors in zebrafish (Danio rerio) larvae. Behav. Processes 2011, 86, 222–229. [Google Scholar] [CrossRef]
- Drapeau, P.; Saint-Amant, L.; Buss, R.R.; Chong, M.; McDearmid, J.R.; Brustein, E. Development of the locomotor network in zebrafish. Prog. Neurobiol. 2002, 68, 85–111. [Google Scholar] [CrossRef]
- Zhou, T.; Weis, J. Swimming behavior and predator avoidance in three populations of Fundulus heteroclitus larvae after embryonic and/or larval exposure to methylmercury. Aquat. Toxicol. 1998, 43, 131–148. [Google Scholar] [CrossRef]
- Tang, Z.H.; Huang, Q.; Wu, H.; Kuang, L.; Fu, S.J. The behavioral response of prey fish to predators: The role of predator size. PeerJ 2017, 5, e3222. [Google Scholar] [CrossRef] [PubMed]
- Engström-Öst, J.; Lehtiniemi, M. Threat-sensitive predator avoidance by pike larvae. J. Fish Biol. 2004, 65, 251–261. [Google Scholar] [CrossRef]
- Zacarias, R.; Namiki, S.; Card, G.M.; Vasconcelos, M.L.; Moita, M.A. Speed dependent descending control of freezing behavior in Drosophila melanogaster. Nat. Commun. 2018, 9, 3697. [Google Scholar] [CrossRef] [PubMed]
- Bedore, C.N.; Kajiura, S.M.; Johnsen, S. Freezing behaviour facilitates bioelectric crypsis in cuttlefish faced with predation risk. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151886. [Google Scholar] [CrossRef]
- Ganguly, R.; Singh, A.K.; Kumar, R.; Gupta, A.; Pandey, A.K.; Pandey, A.K. Nanoparticles as modulators of oxidative stress. In Nanotechnology in Modern Animal Biotechnology; Maurya, P.K., Singh, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Elia, A.C.; Burioli, E.; Magara, G.; Pastorino, P.; Caldaroni, B.; Menconi, V.; Dörr, A.J.M.; Colombero, G.; Abete, M.C.; Prearo, M. Oxidative stress ecology on Pacific oyster Crassostrea gigas from lagoon and offshore Italian sites. Sci. Total Environ. 2020, 739, 139886. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, C.; Li, M.; Liu, L.; Dong, K.; Chen, K.; Qiu, X. Oral exposure to tributyltin induced behavioral abnormality and oxidative stress in the eyes and brains of juvenile Japanese medaka (Oryzias latipes). Antioxidants 2021, 10, 1647. [Google Scholar] [CrossRef]
- Saddick, S.; Afifi, M.; Abu Zinada, O.A. Effect of Zinc nanoparticles on oxidative stress-related genes and antioxidant enzymes activity in the brain of Oreochromis niloticus and Tilapia zillii. Saudi J. Biol. Sci. 2017, 24, 1672–1678. [Google Scholar] [CrossRef]
- Afifi, M.; Saddick, S.; Abu Zinada, O.A. Toxicity of silver nanoparticles on the brain of Oreochromis niloticus and Tilapia zillii. Saudi. J. Biol. Sci. 2016, 23, 754–760. [Google Scholar] [CrossRef]
- Shaw, B.J.; Handy, R.D. Physiological effects of nanoparticles on fish: A comparison of nanometals versus metal ions. Environ. Int. 2011, 37, 1083–1097. [Google Scholar] [CrossRef]
- Guichardant, M.; Lagarde, M. Analysis of biomarkers from lipid peroxidation: A comparative study. Eur. J. Lipid Sci. Technol. 2009, 111, 75–82. [Google Scholar] [CrossRef]
- Gu, X.; Allyn, M.; Swindle-Reilly, K.; Palmer, A.F. ZIF-8 metal organic framework nanoparticle loaded with tense quaternary state polymerized bovine hemoglobin: Potential red blood cell substitute with antioxidant properties. Nanoscale 2023, 15, 8832–8844. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Huang, G.; Liu, H.; Sang, C.; Liu, X.; Chen, T. Highly bioactive zeolitic imidazolate framework-8-capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke. Sci. Adv. 2020, 6, eaay9751. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-H.; Lin, C.-C.; Meng, P.-J. Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio). J. Hazard. Mater. 2014, 277, 134–140. [Google Scholar] [CrossRef] [PubMed]
Normal Behaviors | Post-Stimulation Behaviors | Oxidative Stress Biomarkers | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ASV | DHM | DMM | DLM | ASV | DHM | DMM | DLM | SOD | CAT | GST | MDA | |
ZIF-8 NPs (df = 2) | 37.7 ** | 32.3 ** | 77.3 ** | 56.7 ** | 49.0 ** | 31.2 ** | 52.4 ** | 54.1 ** | 45.6 ** | 38.3 ** | 59.0 ** | 0.87 |
FG (df = 1) | 14.7 ** | 20.1 ** | 2.45 | 11.1 ** | 9.45 * | 4.50 * | 6.96 ** | 6.75 ** | 181.2 ** | 125.3 ** | 216.2 ** | 45.8 ** |
Interaction (df = 2) | 9.13 * | 9.2 * | 7.89 * | 9.53 ** | 5.84 | 2.14 | 3.65 | 3.84 | 14.9 ** | 4.25 | 7.89 ** | 27.4 ** |
Behavioral Trait before Stimulation | Post-Stimulation Behavioral Traits | |||||||
---|---|---|---|---|---|---|---|---|
ASV | DHM | DMM | DLM | ASV | DHM | DMM | DLM | |
SOD | 0.770 ** | 0.808 ** | 0.420 | −0.808 ** | 0.680 ** | 0.657 ** | 0.624 ** | −0.663 ** |
CAT | 0.557 * | 0.587 * | 0.486 * | −0.660 ** | 0.712 ** | 0.650 ** | 0.746 ** | −0.748 ** |
GST | 0.261 | 0.380 | 0.075 | −0.287 | 0.565 * | 0.474 | 0.652 ** | −0.579 ** |
MDA | 0.051 | 0.030 | 0.253 | −0.144 | −0.133 | −0.200 | −0.052 | 0.142 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, L.; Wang, S.; Chen, C.; Qiu, X.; Wang, C.-C. ZIF-8 Nanoparticles Induce Behavior Abnormality and Brain Oxidative Stress in Adult Zebrafish (Danio rerio). Antioxidants 2023, 12, 1345. https://doi.org/10.3390/antiox12071345
Jin L, Wang S, Chen C, Qiu X, Wang C-C. ZIF-8 Nanoparticles Induce Behavior Abnormality and Brain Oxidative Stress in Adult Zebrafish (Danio rerio). Antioxidants. 2023; 12(7):1345. https://doi.org/10.3390/antiox12071345
Chicago/Turabian StyleJin, Liang, Sijing Wang, Chen Chen, Xuchun Qiu, and Chong-Chen Wang. 2023. "ZIF-8 Nanoparticles Induce Behavior Abnormality and Brain Oxidative Stress in Adult Zebrafish (Danio rerio)" Antioxidants 12, no. 7: 1345. https://doi.org/10.3390/antiox12071345
APA StyleJin, L., Wang, S., Chen, C., Qiu, X., & Wang, C.-C. (2023). ZIF-8 Nanoparticles Induce Behavior Abnormality and Brain Oxidative Stress in Adult Zebrafish (Danio rerio). Antioxidants, 12(7), 1345. https://doi.org/10.3390/antiox12071345