Adherence to Mediterranean Diet: Any Association with NAFLD?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Study
- Impaired renal function (estimated glomerular filtration rate ≥ 90 mL/min/1.73 m2 calculated according to Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) [12];
- Chronic liver diseases, viral hepatitis patients, hemochromatosis, hepatic malignancy;
- Presence of type 2 diabetes (T2DM) (according to the criteria of the American Diabetes Association (ADA) as follows: basal blood glucose ≥ 126 mg/dL on two occasions, or glycated haemoglobin (HbA1c) ≥ 6.5% (≥48 mmoL/moL) on two occasions, or both at the same time) [13]. Furthermore, participants on antidiabetic medication were considered to have T2DM;
- Clinical atherosclerosis (coronary artery disease, peripheral vascular disease);
- User of antibiotics or probiotics within two months of recruitment;
- Specific nutritional regimens, including vegan or vegetarian diets;
- Vitamin/mineral or antioxidant supplementation;
- Alcohol abuse according to the Diagnostic and Statistical Manual of Mental Disorders (DSM) V diagnostic criteria [14].
2.2. Anthropometric Measurements
2.3. Adherence to Mediterranean Diet
2.4. Physical Activity and Smoking Habits
2.5. Assay Methods
2.6. Non-Alcoholic Fatty Liver Disease
2.7. Cardio-Metabolic Indices
2.8. Power Size Justification
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; Paik, J.M.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 77, 1335–1347. [Google Scholar] [CrossRef] [PubMed]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef]
- Juanola, O.; Martinez-Lopez, S.; Frances, R.; Gomez-Hurtado, I. Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors. Int. J. Environ. Res. Public Health 2021, 18, 5227. [Google Scholar] [CrossRef]
- Schattenberg, J.M.; Allen, A.M.; Jarvis, H.; Zelber-Sagi, S.; Cusi, K.; Dillon, J.F.; Caussy, C.; Francque, S.M.; Younossi, Z.; Alkhouri, N.; et al. A multistakeholder approach to innovations in NAFLD care. Commun. Med. 2023, 3, 1. [Google Scholar] [CrossRef]
- Promrat, K.; Kleiner, D.E.; Niemeier, H.M.; Jackvony, E.; Kearns, M.; Wands, J.R.; Fava, J.L.; Wing, R.R. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 2010, 51, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Kontogianni, M.D.; Tileli, N.; Margariti, A.; Georgoulis, M.; Deutsch, M.; Tiniakos, D.; Fragopoulou, E.; Zafiropoulou, R.; Manios, Y.; Papatheodoridis, G. Adherence to the Mediterranean diet is associated with the severity of non-alcoholic fatty liver disease. Clin. Nutr. 2014, 33, 678–683. [Google Scholar] [CrossRef]
- Aller, R.; Izaola, O.; de la Fuente, B.; De Luis Roman, D.A. Mediterranean Diet Is Associated with Liver Histology in Patients with Non Alcoholic Fatty Liver Disease. Nutr. Hosp. 2015, 32, 2518–2524. [Google Scholar] [CrossRef]
- Baratta, F.; Pastori, D.; Polimeni, L.; Bucci, T.; Ceci, F.; Calabrese, C.; Ernesti, I.; Pannitteri, G.; Violi, F.; Angelico, F.; et al. Adherence to Mediterranean Diet and Non-Alcoholic Fatty Liver Disease: Effect on Insulin Resistance. Am. J. Gastroenterol. 2017, 112, 1832–1839. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Verde, L.; Sulu, C.; Katsiki, N.; Hassapidou, M.; Frias-Toral, E.; Cucalon, G.; Pazderska, A.; Yumuk, V.D.; Colao, A.; et al. Mediterranean Diet and Obesity-related Disorders: What is the Evidence? Curr. Obes. Rep. 2022, 11, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes, A. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S15–S33. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5™, 5th ed.; American Psychiatric Publishing, Inc.: Washington, DC, USA, 2013. [Google Scholar]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef] [Green Version]
- National Cholesterol Education Program. ATP III Guidelines At-A-Glance Quick Desk Reference. Available online: https://www.nhlbi.nih.gov/files/docs/guidelines/atglance.pdf (accessed on 1 January 2022).
- Martinez-Gonzalez, M.A.; Garcia-Arellano, A.; Toledo, E.; Salas-Salvado, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schroder, H.; Aros, F.; Gomez-Gracia, E.; et al. A 14-item Mediterranean diet assessment tool and obesity indexes among high-risk subjects: The PREDIMED trial. PLoS ONE 2012, 7, e43134. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Muscogiuri, G.; de Alteriis, G.; Porcelli, T.; Vetrani, C.; Verde, L.; Aprano, S.; Fonderico, F.; Troncone, G.; Colao, A.; et al. Adherence to the Mediterranean Diet as a Modifiable Risk Factor for Thyroid Nodular Disease and Thyroid Cancer: Results From a Pilot Study. Front. Nutr. 2022, 9, 944200. [Google Scholar] [CrossRef]
- Verde, L.; Dalamaga, M.; Capo, X.; Annunziata, G.; Hassapidou, M.; Docimo, A.; Savastano, S.; Colao, A.; Muscogiuri, G.; Barrea, L. The Antioxidant Potential of the Mediterranean Diet as a Predictor of Weight Loss after a Very Low-Calorie Ketogenic Diet (VLCKD) in Women with Overweight and Obesity. Antioxidants 2022, 12, 18. [Google Scholar] [CrossRef]
- Barrea, L.; Di Somma, C.; Macchia, P.E.; Falco, A.; Savanelli, M.C.; Orio, F.; Colao, A.; Savastano, S. Influence of nutrition on somatotropic axis: Milk consumption in adult individuals with moderate-severe obesity. Clin. Nutr. 2017, 36, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Muscogiuri, G.; Di Somma, C.; Annunziata, G.; Megna, M.; Falco, A.; Balato, A.; Colao, A.; Savastano, S. Coffee consumption, metabolic syndrome and clinical severity of psoriasis: Good or bad stuff? Arch. Toxicol. 2018, 92, 1831–1845. [Google Scholar] [CrossRef]
- Barrea, L.; Tarantino, G.; Somma, C.D.; Muscogiuri, G.; Macchia, P.E.; Falco, A.; Colao, A.; Savastano, S. Adherence to the Mediterranean Diet and Circulating Levels of Sirtuin 4 in Obese Patients: A Novel Association. Oxidative Med. Cell. Longev. 2017, 2017, 6101254. [Google Scholar] [CrossRef] [Green Version]
- Muscogiuri, G.; Barrea, L.; Di Somma, C.; Altieri, B.; Vecchiarini, M.; Orio, F.; Spinosa, T.; Colao, A.; Savastano, S. Patient empowerment and the Mediterranean diet as a possible tool to tackle prediabetes associated with overweight or obesity: A pilot study. Hormones 2019, 18, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, M.C.; Giordano, C. Visceral adiposity index: An indicator of adipose tissue dysfunction. Int. J. Endocrinol. 2014, 2014, 730827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, M.C.; Giordano, C.; Pitrone, M.; Galluzzo, A. Cut-off points of the visceral adiposity index (VAI) identifying a visceral adipose dysfunction associated with cardiometabolic risk in a Caucasian Sicilian population. Lipids Health Dis. 2011, 10, 183. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Della Corte, C.; Mosca, A.; Vania, A.; Alterio, A.; Iasevoli, S.; Nobili, V. Good adherence to the Mediterranean diet reduces the risk for NASH and diabetes in pediatric patients with obesity: The results of an Italian Study. Nutrition 2017, 39–40, 8–14. [Google Scholar] [CrossRef]
- Trovato, F.M.; Martines, G.F.; Brischetto, D.; Trovato, G.; Catalano, D. Neglected features of lifestyle: Their relevance in non-alcoholic fatty liver disease. World J. Hepatol. 2016, 8, 1459–1465. [Google Scholar] [CrossRef]
- Trovato, F.M.; Catalano, D.; Martines, G.F.; Pace, P.; Trovato, G.M. Mediterranean diet and non-alcoholic fatty liver disease: The need of extended and comprehensive interventions. Clin. Nutr. 2015, 34, 86–88. [Google Scholar] [CrossRef]
- Pinto, X.; Fanlo-Maresma, M.; Corbella, E.; Corbella, X.; Mitjavila, M.T.; Moreno, J.J.; Casas, R.; Estruch, R.; Corella, D.; Bullo, M.; et al. A Mediterranean Diet Rich in Extra-Virgin Olive Oil Is Associated with a Reduced Prevalence of Nonalcoholic Fatty Liver Disease in Older Individuals at High Cardiovascular Risk. J. Nutr. 2019, 149, 1920–1929. [Google Scholar] [CrossRef]
- Ryan, M.C.; Itsiopoulos, C.; Thodis, T.; Ward, G.; Trost, N.; Hofferberth, S.; O’Dea, K.; Desmond, P.V.; Johnson, N.A.; Wilson, A.M. The Mediterranean diet improves hepatic steatosis and insulin sensitivity in individuals with non-alcoholic fatty liver disease. J. Hepatol. 2013, 59, 138–143. [Google Scholar] [CrossRef]
- Nani, A.; Murtaza, B.; Sayed Khan, A.; Khan, N.A.; Hichami, A. Antioxidant and Anti-Inflammatory Potential of Polyphenols Contained in Mediterranean Diet in Obesity: Molecular Mechanisms. Molecules 2021, 26, 985. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Ramiro, I.; Vauzour, D.; Minihane, A.M. Polyphenols and non-alcoholic fatty liver disease: Impact and mechanisms. Proc. Nutr. Soc. 2016, 75, 47–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van De Wier, B.; Koek, G.H.; Bast, A.; Haenen, G.R. The potential of flavonoids in the treatment of non-alcoholic fatty liver disease. Crit. Rev. Food Sci. Nutr. 2017, 57, 834–855. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhao, X.; Ran, L.; Wan, J.; Wang, X.; Qin, Y.; Shu, F.; Gao, Y.; Yuan, L.; Zhang, Q.; et al. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Dig. Liver Dis. 2015, 47, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Faghihzadeh, F.; Adibi, P.; Rafiei, R.; Hekmatdoost, A. Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fatty liver disease. Nutr. Res. 2014, 34, 837–843. [Google Scholar] [CrossRef]
- Hasegawa, T.; Yoneda, M.; Nakamura, K.; Makino, I.; Terano, A. Plasma transforming growth factor-beta1 level and efficacy of alpha-tocopherol in patients with non-alcoholic steatohepatitis: A pilot study. Aliment. Pharmacol. Ther. 2001, 15, 1667–1672. [Google Scholar] [CrossRef]
- Potter, J.J.; Liu, X.; Koteish, A.; Mezey, E. 1,25-dihydroxyvitamin D3 and its nuclear receptor repress human alpha1 (I) collagen expression and type I collagen formation. Liver Int. 2013, 33, 677–686. [Google Scholar] [CrossRef] [Green Version]
- Valdecantos, M.P.; Perez-Matute, P.; Quintero, P.; Martinez, J.A. Vitamin C, resveratrol and lipoic acid actions on isolated rat liver mitochondria: All antioxidants but different. Redox Rep. 2010, 15, 207–216. [Google Scholar] [CrossRef]
- Bahcecioglu, I.H.; Kuzu, N.; Metin, K.; Ozercan, I.H.; Ustundag, B.; Sahin, K.; Kucuk, O. Lycopene prevents development of steatohepatitis in experimental nonalcoholic steatohepatitis model induced by high-fat diet. Vet. Med. Int. 2010, 2010, 262179. [Google Scholar] [CrossRef] [Green Version]
- Eccel Prates, R.; Beretta, M.V.; Nascimento, F.V.; Bernaud, F.R.; de Almeira, J.C.; Rodrigues, T.C. Saturated fatty acid intake decreases serum adiponectin levels in subjects with type 1 diabetes. Diabetes Res. Clin. Pract. 2016, 116, 205–211. [Google Scholar] [CrossRef]
- Paniagua, J.A.; de la Sacristana, A.G.; Sanchez, E.; Romero, I.; Vidal-Puig, A.; Berral, F.J.; Escribano, A.; Moyano, M.J.; Perez-Martinez, P.; Lopez-Miranda, J.; et al. A MUFA-rich diet improves posprandial glucose, lipid and GLP-1 responses in insulin-resistant subjects. J. Am. Coll. Nutr. 2007, 26, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Mouzaki, M.; Comelli, E.M.; Arendt, B.M.; Bonengel, J.; Fung, S.K.; Fischer, S.E.; McGilvray, I.D.; Allard, J.P. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 2013, 58, 120–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, V.W.; Tse, C.H.; Lam, T.T.; Wong, G.L.; Chim, A.M.; Chu, W.C.; Yeung, D.K.; Law, P.T.; Kwan, H.S.; Yu, J.; et al. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis--a longitudinal study. PLoS ONE 2013, 8, e62885. [Google Scholar] [CrossRef] [Green Version]
- Queipo-Ortuno, M.I.; Boto-Ordonez, M.; Murri, M.; Gomez-Zumaquero, J.M.; Clemente-Postigo, M.; Estruch, R.; Cardona Diaz, F.; Andres-Lacueva, C.; Tinahones, F.J. Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am. J. Clin. Nutr. 2012, 95, 1323–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watt, M.J.; Miotto, P.M.; De Nardo, W.; Montgomery, M.K. The Liver as an Endocrine Organ-Linking NAFLD and Insulin Resistance. Endocr. Rev. 2019, 40, 1367–1393. [Google Scholar] [CrossRef] [PubMed]
- Vogelberg, K.H.; Gries, F.A.; Moschinski, D. Hepatic production of VLDL-triglycerides. Dependence of portal substrate and insulin concentration. Horm. Metab. Res. 1980, 12, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, K.L.; Smith, C.I.; Schwarzenberg, S.J.; Jessurun, J.; Boldt, M.D.; Parks, E.J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Investig. 2005, 115, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
Parameters | N = 336 Mean ± SD or N (%) |
---|---|
Sex | |
Male | 126 (37.5) |
Female | 210 (62.5) |
Age (years) | 35.87 ± 10.37 |
Lifestyle habits | |
Physical activity | |
Yes | 171 (50.9) |
No | 165 (49.1) |
Smoking | |
Yes | 171 (50.9) |
No | 165 (49.1) |
Anthropometric measurements | |
BMI (kg/m2) | 31.18 ± 9.66 |
Normal weight | 145 (43.2) |
Over-weight | 45 (13.4) |
Obesity I | 38 (11.3) |
Obesity II | 40 (11.9) |
Obesity III | 68 (20.2) |
WC (cm) | 101.81 ± 22.79 |
* <cut off | 149 (44.3) |
* >cut off | 187 (55.7) |
Metabolic parameters | |
Fasting plasma glucose (mg/dL) | 91.79 ± 20.45 |
Fasting plasma insulin (μU/mL) | 11.12 ± 13.65 |
Total cholesterol (mg/dL) | 173.11 ± 41.54 |
LDL cholesterol (mg/dL) | 97.46 ± 43.05 |
HDL cholesterol (mg/dL) | 52.56 ± 13.02 |
TG (mg/dL) | 117.24 ± 51.02 |
AST (U/L) | 25.88 ± 14.03 |
ALT (U/L) | 28.68 ± 20.57 |
γGT (U/L) | 30.38 ± 20.91 |
Cardio-metabolic indices | |
HoMA-IR | 2.84 ± 3.85 |
>2.5 | 222 (66.1) |
<2.5 | 114 (33.9) |
VAI | 1.98 ± 1.62 |
** <cut off | 241 (71.7) |
** >cut off | 95 (28.3) |
FLI | 53.77 ± 35.43 |
<60 | 183 (54.5) |
≥60 | 153 (45.6) |
Questions PREDIMED Questionnaire N = 336 | n | % |
---|---|---|
Use of extra-virgin olive oil as main culinary lipid | 280 | 83.3 |
Extra virgin olive oil > 4 tablespoons | 197 | 58.6 |
Vegetables ≥ 2 servings/day | 171 | 50.9 |
Fruits ≥ 3 servings/day | 174 | 51.8 |
Red/processed meats < 1/day | 192 | 57.1 |
Butter, cream, margarine < 1/day | 153 | 45.5 |
Soda drinks < 1/day | 186 | 55.4 |
Wine glasses ≥ 7/week | 155 | 46.1 |
Legumes ≥ 3/week | 181 | 53.9 |
Fish/seafood ≥ 3/week | 180 | 53.6 |
Commercial sweets and confectionery ≤ 2/week | 188 | 56 |
Tree nuts ≥ 3/week | 152 | 45.2 |
Poultry more than red meats | 188 | 56.0 |
Use of sofrito sauce ≥ 2/week | 165 | 49.1 |
PREDIMED categories | ||
Low adherence to MD | 76 | 22.6 |
Average adherence to MD | 152 | 45.2 |
High adherence to MD | 108 | 32.2 |
Parameters (N = 336) | Low Adherence to MD (n = 76) | Average Adherence to MD (n = 152) | High Adherence to MD (n = 108) | p-Value |
---|---|---|---|---|
Age (years) | 36.11 ± 8.81 | 36.42 ± 10.63 | 34.93 ± 11.01 | 0.507 |
Anthropometric measurements | ||||
BMI (kg/m2) | 39.60 ± 10.98 a,b | 31.47 ± 8.19 b | 24.86 ± 4.67 | <0.001 |
WC (cm) | 120.91 ± 26.18 a,b | 101.01 ± 20.35 b | 89.51 ± 12.22 | <0.001 |
* <cut off | 15 (19.7%) | 66 (43.4%) | 68 (63.0%) | χ2 = 33.87, p < 0.001 |
* >cut off | 61 (80.3%) | 86 (56.6%) | 40 (37.0%) | |
Metabolic parameters | ||||
Fasting plasma glucose (mg/dL) | 104.00 ± 21.50 a,b | 91.42 ± 21.10 | 83.73 ± 13.60 | <0.001 |
Fasting plasma insulin (μU/mL) | 19.14 ± 15.57 a,b | 11.77 ± 14.63 b | 4.58 ± 4.70 | <0.001 |
Total cholesterol (mg/dL) | 194.26 ± 44.28 a,b | 175.79 ± 40.09 b | 154.44 ± 32.89 | <0.001 |
LDL cholesterol (mg/dL) | 122.20 ± 46.39 a,b | 99.91 ± 39.46 b | 76.81 ± 35.10 | <0.001 |
HDL cholesterol (mg/dL) | 44.64 ± 14.48 a,b | 52.68 ± 11.67 b | 57.95 ± 13.02 | <0.001 |
TG (mg/dL) | 146.32 ± 66.77 a,b | 116.15 ± 44.74 | 98.30 ± 35.16 | <0.001 |
AST (U/L) | 43.02 ± 17.29 a,b | 25.04 ± 13.03 | 21.33 ± 9.90 | <0.001 |
ALT (U/L) | 36.67 ± 21.24 a,b | 26.58 ± 12.26 | 24.62 ± 26.52 | <0.001 |
γGT (U/L) | 40.03 ± 24.87 a,b | 29.23 ± 17.93 | 25.20 ± 19.67 | <0.001 |
Cardio-metabolic indices | ||||
HoMA-IR | 5.40 ± 5.09 a,b | 2.87 ± 3.67 b | 1.00 ± 1.06 | <0.001 |
>2.5 | 29 (38.2%) | 99 (65.1%) | 94 (87.0%) | χ2 = 47.65, p < 0.001 |
<2.5 | 47 (61.8%) | 53 (34.9%) | 14 (13.0%) | |
VAI | 3.11 ± 2.52 a,b | 1.84 ± 1.15 | 1.37 ± 0.76 | <0.001 |
* <cut off | 36 (47.4%) | 109 (71.7%) | 96 (88.9%) | χ2 = 37.92, p < 0.001 |
** >cut off | 40 (52.6%) | 43 (28.3%) | 12 (11.1%) | |
FLI | 79.56 ± 30.44 a,b | 56.97 ± 34.36 b | 31.10 ± 24.67 | <0.001 |
<cut off | 15 (19.7%) | 75 (49.3%) | 93 (86.1%) | χ2 = 82.18, p < 0.001 |
>cut off | 61 (80.3%) | 77 (50.7%) | 15 (13.9%) |
Parameters | FLI | p-Value | |
---|---|---|---|
<60 (n = 183) | ≥60 (n = 153) | ||
Age (years) | 33.70 ± 8.44 | 38.46 ± 11.80 | <0.001 |
Anthropometric measurements | |||
BMI (kg/m2) | 23.99 ± 2.86 | 39.78 ± 7.68 | <0.001 |
WC (cm) | 85.73 ± 9.83 | 121.05 ± 18.59 | <0.001 |
* <cut off | 132 (72.1%) | 17 (11.1%) | χ2 = 123.26, p < 0.001 |
* >cut off | 51 (27.9%) | 136 (88.9%) | |
Metabolic parameters | |||
Fasting plasma glucose (mg/dL) | 82.78 ± 12.14 | 102.58 ± 23.02 | <0.001 |
Fasting plasma insulin (μU/mL) | 4.01 ± 9.59 | 19.64 ± 12.91 | <0.001 |
Total cholesterol (mg/dL) | 151.56 ± 29.79 | 198.88 ± 38.90 | <0.001 |
LDL cholesterol (mg/dL) | 74.03 ± 30.85 | 125.67 ± 38.55 | <0.001 |
HDL cholesterol (mg/dL) | 58.84 ± 9.19 | 45.04 ± 12.97 | <0.001 |
TG (mg/dL) | 93.48 ± 26.89 | 145.65 ± 58.13 | <0.001 |
AST (U/L) | 20.36 ± 6.36 | 32.48 ± 17.46 | <0.001 |
ALT (U/L) | 21.68 ± 7.00 | 37.06 ± 27.29 | <0.001 |
γGT (U/L) | 23.10 ± 7.77 | 39.08 ± 27.41 | <0.001 |
Cardio-metabolic indices | |||
HoMA-IR | 0.85 ± 2.10 | 5.22 ± 4.11 | <0.001 |
<cut off | 176 (96.2%) | 46 (30.1%) | χ2 = 159.52, p < 0.001 |
>cut off | 7 (3.8%) | 107 (69.9%) | |
VAI | 1.22 ± 0.56 | 2.89 ± 1.97 | <0.001 |
** <cut off | 175 (95.6%) | 66 (43.1%) | χ2=110.64, p < 0.001 |
** >cut off | 8 (4.4%) | 87 (56.9%) | |
FLI | 23.69 ± 14.00 | 89.74 ± 11.83 | <0.001 |
PREDIMED score | 9.97 ± 2.33 | 6.01 ± 2.44 | <0.001 |
Low adherence to MD (n, %) | 15 (8.2%) | 61 (39.9%) | χ2 = 45.97, p < 0.001 |
Average adherence to MD (n, %) | 75 (41.0%) | 77 (50.3%) | χ2 = 2.57, p = 0.109 |
High adherence to MD (n, %) | 93 (50.8%) | 15 (9.8%) | χ2 = 62.41, p < 0.001 |
Parameters | FLI (n = 336) | |||
---|---|---|---|---|
Simple Correlation | After Adjusted for HoMA-IR and VAI | |||
r | p-Value | r | p-Value | |
Age (years) | 0.214 | <0.001 | 0.208 | <0.001 |
Anthropometric measurements | ||||
BMI (kg/m2) | 0.886 | <0.001 | 0.796 | <0.001 |
WC (cm) | 0.879 | <0.001 | 0.740 | <0.001 |
Metabolic parameters | ||||
Fasting plasma glucose (mg/dL) | 0.553 | <0.001 | 0.221 | <0.001 |
Fasting plasma insulin (μU/mL) | 0.641 | <0.001 | 0.169 | 0.002 |
Total cholesterol (mg/dL) | 0.644 | <0.001 | 0.474 | <0.001 |
LDL cholesterol (mg/dL) | 0.675 | <0.001 | 0.500 | <0.001 |
HDL cholesterol (mg/dL) | −0.616 | <0.001 | −0.279 | <0.001 |
TG (mg/dL) | 0.606 | <0.001 | 0.204 | <0.001 |
AST (U/L) | 0.487 | <0.001 | 0.213 | <0.001 |
ALT (U/L) | 0.414 | <0.001 | 0.176 | 0.001 |
γGT (U/L) | 0.427 | <0.001 | 0.165 | 0.002 |
Cardio-metabolic indices | ||||
HoMA-IR | 0.636 | <0.001 | - | - |
VAI | 0.583 | <0.001 | - | - |
PREDIMED score | −0.561 | <0.001 | −0.325 | <0.001 |
Parameters | Multiple Regression Analysis | ||||
---|---|---|---|---|---|
R | R2 | β | t | p-Value | |
Model 1 | |||||
FLI | 0.561 | 0.313 | −0.561 | −12.40 | <0.001 |
Model 2 | |||||
FLI | 0.561 | 0.313 | −0.416 | −7.25 | <0.001 |
HoMA-IR | 0.589 | 0.343 | −0.229 | −3.99 | <0.001 |
Variable excluded: VAI | |||||
Model 3 | |||||
FLI categories | 0.527 | 0.276 | −0.527 | −11.34 | <0.001 |
HoMA-IR categories | 0.541 | 0.288 | −0.166 | −2.59 | 0.010 |
Variable excluded: VAI categories |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrea, L.; Verde, L.; Savastano, S.; Colao, A.; Muscogiuri, G. Adherence to Mediterranean Diet: Any Association with NAFLD? Antioxidants 2023, 12, 1318. https://doi.org/10.3390/antiox12071318
Barrea L, Verde L, Savastano S, Colao A, Muscogiuri G. Adherence to Mediterranean Diet: Any Association with NAFLD? Antioxidants. 2023; 12(7):1318. https://doi.org/10.3390/antiox12071318
Chicago/Turabian StyleBarrea, Luigi, Ludovica Verde, Silvia Savastano, Annamaria Colao, and Giovanna Muscogiuri. 2023. "Adherence to Mediterranean Diet: Any Association with NAFLD?" Antioxidants 12, no. 7: 1318. https://doi.org/10.3390/antiox12071318