The Arsenal of Leptospira Species against Oxidants
Abstract
1. Introduction
2. Reactive Oxygen Species: What, When and How?
2.1. Endogenous Sources of ROS in Bacteria
2.2. Exogenous Sources of ROS Encountered by Bacteria
3. Are Leptospira Exposed to ROS in Their Different Ecological Niches?
4. Defenses against ROS
4.1. Catalase and Peroxidases
4.2. Low Molecular Weight (LMW) Thiol Redox Buffers
4.3. Superoxide Dismutase and Reductase
5. Regulation of the Oxidative Stress Response
5.1. OxyR
5.2. PerR
5.3. OhrR
5.4. SoxRS
5.5. Regulation of Oxidative Stress Defenses in Leptospira
6. Concluding Remarks and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Picardeau, M. Virulence of the Zoonotic Agent of Leptospirosis: Still Terra Incognita? Nat. Rev. Microbiol. 2017, 15, 297. [Google Scholar] [CrossRef]
- Haake, D.A.; Levett, P.N. Leptospirosis in Humans. Curr. Top. Microbiol. Immunol. 2015, 387, 65–97. [Google Scholar] [CrossRef]
- Costa, F.; Hagan, J.E.; Calcagno, J.; Kane, M.; Torgerson, P.; Martinez-Silveira, M.S.; Stein, C.; Abela-Ridder, B.; Ko, A.I. Global Morbidity and Mortality of Leptospirosis: A Systematic Review. PLoS Negl. Trop. Dis. 2015, 9, e0003898. [Google Scholar] [CrossRef] [PubMed]
- McBride, A.J.; Athanazio, D.A.; Reis, M.G.; Ko, A.I. Leptospirosis. Curr. Opin. Infect. Dis. 2005, 18, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Pappas, G.; Papadimitriou, P.; Siozopoulou, V.; Christou, L.; Akritidis, N. The Globalization of Leptospirosis: Worldwide Incidence Trends. Int. J. Infect. Dis. 2008, 12, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.L.; Smythe, L.D.; Craig, S.B.; Weinstein, P. Climate Change, Flooding, Urbanisation and Leptospirosis: Fuelling the Fire? Trans. R. Soc. Trop. Med. Hyg. 2010, 104, 631–638. [Google Scholar] [CrossRef]
- Pijnacker, R.; Goris, M.G.A.; te Wierik, M.J.M.; Broens, E.M.; van der Giessen, J.W.B.; de Rosa, M.; Wagenaar, J.A.; Hartskeerl, R.A.; Notermans, D.W.; Maassen, K.; et al. Marked Increase in Leptospirosis Infections in Humans and Dogs in the Netherlands, 2014. Eurosurveillance 2016, 21, 30211. [Google Scholar] [CrossRef]
- Pappas, C.J.; Picardeau, M. Control of Gene Expression in Leptospira Spp. by Transcription Activator-Like Effectors Demonstrates a Potential Role for LigA and LigB in Leptospira Interrogans Virulence. Appl. Environ. Microbiol. 2015, 81, 7888–7892. [Google Scholar] [CrossRef]
- Fernandes, L.G.V.; Hornsby, R.L.; Nascimento, A.L.T.O.; Nally, J.E. Genetic Manipulation of Pathogenic Leptospira: CRISPR Interference (CRISPRi)-Mediated Gene Silencing and Rapid Mutant Recovery at 37 °C. Sci. Rep. 2021, 11, 1768. [Google Scholar] [CrossRef]
- Fernandes, L.G.V.; Nascimento, A.L.T.O. A Novel Breakthrough in Leptospira Spp. Mutagenesis: Knockout by Combination of CRISPR/Cas9 and Non-Homologous End-Joining Systems. Front. Microbiol. 2022, 13, 915382. [Google Scholar] [CrossRef]
- Imlay, J.A. The Molecular Mechanisms and Physiological Consequences of Oxidative Stress: Lessons from a Model Bacterium. Nat. Rev. Microbiol. 2013, 11, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Imlay, J.A. Where in the World Do Bacteria Experience Oxidative Stress? Environ. Microbiol. 2019, 21, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Khademian, M.; Imlay, J.A. How Microbes Evolved to Tolerate Oxygen. Trends Microbiol. 2021, 29, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Lyons, T.W.; Reinhard, C.T.; Planavsky, N.J. The Rise of Oxygen in Earth’s Early Ocean and Atmosphere. Nature 2014, 506, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Farr, S.B.; D’Ari, R.; Touati, D. Oxygen-Dependent Mutagenesis in Escherichia coli Lacking Superoxide Dismutase. Proc. Natl. Acad. Sci. USA 1986, 83, 8268–8272. [Google Scholar] [CrossRef]
- Park, S.; You, X.; Imlay, J.A. Substantial DNA Damage from Submicromolar Intracellular Hydrogen Peroxide Detected in Hpx- Mutants of Escherichia coli. Proc. Natl. Acad. Sci. USA 2005, 102, 9317–9322. [Google Scholar] [CrossRef]
- Evans, M.D.; Dizdaroglu, M.; Cooke, M.S. Oxidative DNA Damage and Disease: Induction, Repair and Significance. Mutat. Res. 2004, 567, 1–61. [Google Scholar] [CrossRef]
- Zhong, J.; Xiao, C.; Gu, W.; Du, G.; Sun, X.; He, Q.-Y.; Zhang, G. Transfer RNAs Mediate the Rapid Adaptation of Escherichia coli to Oxidative Stress. PLoS Genet. 2015, 11, e1005302. [Google Scholar] [CrossRef]
- Seixas, A.F.; Quendera, A.P.; Sousa, J.P.; Silva, A.F.Q.; Arraiano, C.M.; Andrade, J.M. Bacterial Response to Oxidative Stress and RNA Oxidation. Front. Genet. 2021, 12, 821535. [Google Scholar] [CrossRef]
- Stadtman, E.R.; Levine, R.L. Free Radical-Mediated Oxidation of Free Amino Acids and Amino Acid Residues in Proteins. Amino Acids 2003, 25, 207–218. [Google Scholar] [CrossRef]
- Davies, M.J. The Oxidative Environment and Protein Damage. Biochim. Biophys. Acta BBA Proteins Proteom. 2005, 1703, 93–109. [Google Scholar] [CrossRef] [PubMed]
- Ezraty, B.; Gennaris, A.; Barras, F.; Collet, J.-F. Oxidative Stress, Protein Damage and Repair in Bacteria. Nat. Rev. Microbiol. 2017, 15, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Anjem, A.; Imlay, J.A. Mononuclear Iron Enzymes Are Primary Targets of Hydrogen Peroxide Stress. J. Biol. Chem. 2012, 287, 15544–15556. [Google Scholar] [CrossRef] [PubMed]
- Gardner, P.R.; Fridovich, I. Superoxide Sensitivity of the Escherichia coli Aconitase. J. Biol. Chem. 1991, 266, 19328–19333. [Google Scholar] [CrossRef]
- Flint, D.H.; Tuminello, J.F.; Emptage, M.H. The Inactivation of Fe-S Cluster Containing Hydro-Lyases by Superoxide. J. Biol. Chem. 1993, 268, 22369–22376. [Google Scholar] [CrossRef]
- Messner, K.R.; Imlay, J.A. The Identification of Primary Sites of Superoxide and Hydrogen Peroxide Formation in the Aerobic Respiratory Chain and Sulfite Reductase Complex of Escherichia coli. J. Biol. Chem. 1999, 274, 10119–10128. [Google Scholar] [CrossRef]
- Seaver, L.C.; Imlay, J.A. Are Respiratory Enzymes the Primary Sources of Intracellular Hydrogen Peroxide? J. Biol. Chem. 2004, 279, 48742–48750. [Google Scholar] [CrossRef]
- Seaver, L.C.; Imlay, J.A. Hydrogen Peroxide Fluxes and Compartmentalization inside Growing Escherichia coli. J. Bacteriol. 2001, 183, 7182–7189. [Google Scholar] [CrossRef]
- Cooper, W.J.; Zika, R.G. Photochemical Formation of Hydrogen Peroxide in Surface and Ground Waters Exposed to Sunlight. Science 1983, 220, 711–712. [Google Scholar] [CrossRef]
- Carr, R.J.; Bilton, R.F.; Atkinson, T. Toxicity of Paraquat to Microorganisms. Appl. Environ. Microbiol. 1986, 52, 1112–1116. [Google Scholar] [CrossRef]
- Fang, F.C. Antimicrobial Reactive Oxygen and Nitrogen Species: Concepts and Controversies. Nat. Rev. Microbiol. 2004, 2, 820–832. [Google Scholar] [CrossRef] [PubMed]
- Herb, M.; Schramm, M. Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants 2021, 10, 313. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.T.; Green, E.R.; Mecsas, J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front. Cell. Infect. Microbiol. 2017, 7, 373. [Google Scholar] [CrossRef] [PubMed]
- Aranda-Rivera, A.K.; Cruz-Gregorio, A.; Arancibia-Hernández, Y.L.; Hernández-Cruz, E.Y.; Pedraza-Chaverri, J. RONS and Oxidative Stress: An Overview of Basic Concepts. Oxygen 2022, 2, 437–478. [Google Scholar] [CrossRef]
- Shlyonsky, V.; Boom, A.; Mies, F. Hydrogen Peroxide and Sodium Transport in the Lung and Kidney. BioMed Res. Int. 2016, 2016, 9512807. [Google Scholar] [CrossRef]
- Gill, P.S.; Wilcox, C.S. NADPH Oxidases in the Kidney. Antioxid. Redox Signal. 2006, 8, 1597–1607. [Google Scholar] [CrossRef]
- Halliwell, B.; Clement, M.V.; Long, L.H. Hydrogen Peroxide in the Human Body. FEBS Lett. 2000, 486, 10–13. [Google Scholar] [CrossRef]
- Varma, S.D.; Devamanoharan, P.S. Excretion of Hydrogen Peroxide in Human Urine. Free. Radic. Res. Commun. 1990, 8, 73–78. [Google Scholar] [CrossRef]
- Long, L.H.; Evans, P.J.; Halliwell, B. Hydrogen Peroxide in Human Urine: Implications for Antioxidant Defense and Redox Regulation. Biochem. Biophys. Res. Commun. 1999, 262, 605–609. [Google Scholar] [CrossRef]
- Murphy, M.P. How Mitochondria Produce Reactive Oxygen Species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef]
- Shekhova, E. Mitochondrial Reactive Oxygen Species as Major Effectors of Antimicrobial Immunity. PLoS Pathog. 2020, 16, e1008470. [Google Scholar] [CrossRef] [PubMed]
- Slauch, J.M. How Does the Oxidative Burst of Macrophages Kill Bacteria? Still an Open Question. Mol. Microbiol. 2011, 80, 580–583. [Google Scholar] [CrossRef]
- Winterbourn, C.C.; Hampton, M.B.; Livesey, J.H.; Kettle, A.J. Modeling the Reactions of Superoxide and Myeloperoxidase in the Neutrophil Phagosome: Implications for Microbial Killing. J. Biol. Chem. 2006, 281, 39860–39869. [Google Scholar] [CrossRef]
- Satou, K.; Shimoji, M.; Tamotsu, H.; Juan, A.; Ashimine, N.; Shinzato, M.; Toma, C.; Nohara, T.; Shiroma, A.; Nakano, K.; et al. Complete Genome Sequences of Low-Passage Virulent and High-Passage Avirulent Variants of Pathogenic Leptospira Interrogans Serovar Manilae Strain UP-MMC-NIID, Originally Isolated from a Patient with Severe Leptospirosis, Determined Using PacBio Single-Molecule Real-Time Technology. Genome Announc. 2015, 3, e00882-15. [Google Scholar] [CrossRef] [PubMed]
- Barragan, V.A.; Mejia, M.E.; Trávez, A.; Zapata, S.; Hartskeerl, R.A.; Haake, D.A.; Trueba, G.A. Interactions of Leptospira with Environmental Bacteria from Surface Water. Curr. Microbiol. 2011, 62, 1802–1806. [Google Scholar] [CrossRef] [PubMed]
- Thibeaux, R.; Geroult, S.; Benezech, C.; Chabaud, S.; Soupé-Gilbert, M.-E.; Girault, D.; Bierque, E.; Goarant, C. Seeking the Environmental Source of Leptospirosis Reveals Durable Bacterial Viability in River Soils. PLoS Negl. Trop. Dis. 2017, 11, e0005414. [Google Scholar] [CrossRef]
- Casanovas-Massana, A.; Pedra, G.G.; Wunder, E.A.; Diggle, P.J.; Begon, M.; Ko, A.I. Quantification of Leptospira Interrogans Survival in Soil and Water Microcosms. Appl. Environ. Microbiol. 2018, 84, e00507-18. [Google Scholar] [CrossRef]
- Bierque, E.; Thibeaux, R.; Girault, D.; Soupé-Gilbert, M.-E.; Goarant, C. A Systematic Review of Leptospira in Water and Soil Environments. PLoS ONE 2020, 15, e0227055. [Google Scholar] [CrossRef]
- Kok, G.L. Measurements of Hydrogen Peroxide in Rainwater. Atmos. Environ. 1980, 14, 653–656. [Google Scholar] [CrossRef]
- Petigara, B.R.; Blough, N.V.; Mignerey, A.C. Mechanisms of Hydrogen Peroxide Decomposition in Soils. Environ. Sci. Technol. 2002, 36, 639–645. [Google Scholar] [CrossRef]
- Lall, C.; Vinod Kumar, K.; Raj, R.V.; Vedhagiri, K.; Sunish, I.P.; Vijayachari, P. Correlation Between Physicochemical Properties of Soil and Presence of Leptospira. Ecohealth 2018, 15, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Trueba, G.; Zapata, S.; Madrid, K.; Cullen, P.; Haake, D. Cell Aggregation: A Mechanism of Pathogenic Leptospira to Survive in Fresh Water. Int. Microbiol. 2004, 7, 35–40. [Google Scholar] [PubMed]
- Kumar, K.V.; Lall, C.; Raj, R.V.; Vedhagiri, K.; Vijayachari, P. Molecular Detection of Pathogenic Leptospiral Protein Encoding Gene (LipL32) in Environmental Aquatic Biofilms. Lett. Appl. Microbiol. 2016, 62, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Jagannathan, L.; Cuddapah, S.; Costa, M. Oxidative Stress under Ambient and Physiological Oxygen Tension in Tissue Culture. Curr. Pharm. Rep. 2016, 2, 64–72. [Google Scholar] [CrossRef]
- Maciel, E.A.P.; Athanazio, D.A.; Reis, E.A.G.; Cunha, F.Q.; Queiroz, A.; Almeida, D.; McBride, A.J.A.; Ko, A.I.; Reis, M.G. High Serum Nitric Oxide Levels in Patients with Severe Leptospirosis. Acta Trop. 2006, 100, 256–260. [Google Scholar] [CrossRef]
- Araújo, A.M.; Reis, E.A.G.; Athanazio, D.A.; Ribeiro, G.S.; Hagan, J.E.; Araujo, G.C.; Damião, A.O.; Couto, N.S.; Ko, A.I.; Noronha-Dutra, A.; et al. Oxidative Stress Markers Correlate with Renal Dysfunction and Thrombocytopenia in Severe Leptospirosis. Am. J. Trop. Med. Hyg. 2014, 90, 719–723. [Google Scholar] [CrossRef][Green Version]
- Erdogan, H.M.; Karapehlivan, M.; Citil, M.; Atakisi, O.; Uzlu, E.; Unver, A. Serum Sialic Acid and Oxidative Stress Parameters Changes in Cattle with Leptospirosis. Vet. Res. Commun. 2008, 32, 333–339. [Google Scholar] [CrossRef]
- Niroomandi, E.; Maleki, S.; Abdollahpour, G.; Zakian, A.; Ahmadvand, H. The Effect of Natural Infection with Different Leptospira Interrogans Serovars on Oxidative Stress Biomarkers and Acute-Phase Responses in Horses and Cattle. Vet. Clin. Pathol. 2022, 51, 84–92. [Google Scholar] [CrossRef]
- Raffray, L.; Giry, C.; Vandroux, D.; Kuli, B.; Randrianjohany, A.; Pequin, A.-M.; Renou, F.; Jaffar-Bandjee, M.-C.; Gasque, P. Major Neutrophilia Observed in Acute Phase of Human Leptospirosis Is Not Associated with Increased Expression of Granulocyte Cell Activation Markers. PLoS ONE 2016, 11, e0165716. [Google Scholar] [CrossRef]
- Scharrig, E.; Carestia, A.; Ferrer, M.F.; Cédola, M.; Pretre, G.; Drut, R.; Picardeau, M.; Schattner, M.; Gómez, R.M. Neutrophil Extracellular Traps Are Involved in the Innate Immune Response to Infection with Leptospira. PLoS Negl. Trop. Dis. 2015, 9, e0003927. [Google Scholar] [CrossRef]
- Scharrig, E.; Drut, R.; Gómez, R.M. First Observation of Neutrophil Extracellular Traps in Human Leptospirosis. Case Rep. Clin. Pathol. 2017, 4, 10–13. [Google Scholar] [CrossRef][Green Version]
- Charo, N.; Scharrig, E.; Ferrer, M.F.; Sanjuan, N.; Silva, E.A.C.; Schattner, M.; Gómez, R.M. Leptospira Species Promote a Pro-Inflammatory Phenotype in Human Neutrophils. Cell. Microbiol. 2019, 21, e12990. [Google Scholar] [CrossRef]
- Cinco, M.; Banfi, E.; Soranzo, M.R. Studies on the Interaction between Macrophages and Leptospires. J. Gen. Microbiol. 1981, 124, 409–413. [Google Scholar] [CrossRef]
- McGrath, H.; Adler, B.; Vinh, T.; Faine, S. Phagocytosis of Virulent and Avirulent Leptospires by Guinea-Pig and Human Polymorphonuclear Leukocytes in Vitro. Pathology 1984, 16, 243–249. [Google Scholar] [CrossRef]
- Isogai, E.; Kitagawa, H.; Isogai, H.; Kurebayashi, Y.; Ito, N. Phagocytosis as a Defense Mechanism against Infection with Leptospiras. Zent. Bakteriol. Mikrobiol. Hyg. A 1986, 261, 65–74. [Google Scholar] [CrossRef]
- Toma, C.; Okura, N.; Takayama, C.; Suzuki, T. Characteristic Features of Intracellular Pathogenic Leptospira in Infected Murine Macrophages. Cell. Microbiol. 2011, 13, 1783–1792. [Google Scholar] [CrossRef]
- Santecchia, I.; Bonhomme, D.; Papadopoulos, S.; Escoll, P.; Giraud-Gatineau, A.; Moya-Nilges, M.; Vernel-Pauillac, F.; Boneca, I.G.; Werts, C. Alive Pathogenic and Saprophytic Leptospires Enter and Exit Human and Mouse Macrophages with No Intracellular Replication. Front. Cell. Infect. Microbiol. 2022, 12, 936931. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.-L.; Dong, H.-Y.; Li, Y.; Ojcius, D.M.; Li, S.-J.; Yan, J. Bid-Induced Release of AIF/EndoG from Mitochondria Causes Apoptosis of Macrophages during Infection with Leptospira Interrogans. Front. Cell. Infect. Microbiol. 2017, 7, 471. [Google Scholar] [CrossRef]
- Li, S.; Wang, M.; Ojcius, D.M.; Zhou, B.; Hu, W.; Liu, Y.; Ma, Q.; Tang, G.; Wang, D.; Yan, J. Leptospira Interrogans Infection Leads to IL-1β and IL-18 Secretion from a Human Macrophage Cell Line through Reactive Oxygen Species and Cathepsin B Mediated-NLRP3 Inflammasome Activation. Microbes Infect. 2018, 20, 254–260, Corrigendum in Microbes Infect. 2021, 23, 104756. https://doi.org/10.1016/j.micinf.2020.09.002. [Google Scholar] [CrossRef] [PubMed]
- Eshghi, A.; Lourdault, K.; Murray, G.L.; Bartpho, T.; Sermswan, R.W.; Picardeau, M.; Adler, B.; Snarr, B.; Zuerner, R.L.; Cameron, C.E. Leptospira Interrogans Catalase Is Required for Resistance to H2O2 and for Virulence. Infect. Immun. 2012, 80, 3892. [Google Scholar] [CrossRef] [PubMed]
- Zámocký, M.; Koller, F. Understanding the Structure and Function of Catalases: Clues from Molecular Evolution and In Vitro Mutagenesis. Prog. Biophys. Mol. Biol. 1999, 72, 19–66. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Eddy, S.R. Accelerated Profile HMM Searches. PLoS Comput. Biol. 2011, 7, e1002195. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing Large Minimum Evolution Trees with Profiles Instead of a Distance Matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- Altenhoff, A.M.; Levy, J.; Zarowiecki, M.; Tomiczek, B.; Vesztrocy, A.W.; Dalquen, D.A.; Müller, S.; Telford, M.J.; Glover, N.M.; Dylus, D.; et al. OMA Standalone: Orthology Inference among Public and Custom Genomes and Transcriptomes. Genome Res. 2019, 29, 1152–1163. [Google Scholar] [CrossRef]
- Yu, G.; Lam, T.T.-Y.; Zhu, H.; Guan, Y. Two Methods for Mapping and Visualizing Associated Data on Phylogeny Using Ggtree. Mol. Biol. Evol. 2018, 35, 3041–3043. [Google Scholar] [CrossRef]
- Faine, S. Catalase Activity in Pathogenic Leptospira. J. Gen. Microbiol. 1960, 22, 1–9. [Google Scholar] [CrossRef]
- Rao, P.J.; Larson, A.D.; Cox, C.D. Catalase Activity in Leptospira. J. Bacteriol. 1964, 88, 1045–1048. [Google Scholar] [CrossRef]
- Zavala-Alvarado, C.; Sismeiro, O.; Legendre, R.; Varet, H.; Bussotti, G.; Bayram, J.; Huete, S.G.; Rey, G.; Coppée, J.-Y.; Picardeau, M.; et al. The Transcriptional Response of Pathogenic Leptospira to Peroxide Reveals New Defenses against Infection-Related Oxidative Stress. PLoS Pathog. 2020, 16, e1008904. [Google Scholar] [CrossRef]
- Lo, M.; Bulach, D.M.; Powell, D.R.; Haake, D.A.; Matsunaga, J.; Paustian, M.L.; Zuerner, R.L.; Adler, B. Effects of Temperature on Gene Expression Patterns in Leptospira Interrogans Serovar Lai as Assessed by Whole-Genome Microarrays. Infect. Immun. 2006, 74, 5848–5859. [Google Scholar] [CrossRef]
- Lo, M.; Cordwell, S.J.; Bulach, D.M.; Adler, B. Comparative Transcriptional and Translational Analysis of Leptospiral Outer Membrane Protein Expression in Response to Temperature. PLoS Negl. Trop. Dis. 2009, 3, e560. [Google Scholar] [CrossRef] [PubMed]
- Caimano, M.J.; Sivasankaran, S.K.; Allard, A.; Hurley, D.; Hokamp, K.; Grassmann, A.A.; Hinton, J.C.D.; Nally, J.E. A Model System for Studying the Transcriptomic and Physiological Changes Associated with Mammalian Host-Adaptation by Leptospira Interrogans Serovar Copenhageni. PLoS Pathog. 2014, 10, e1004004. [Google Scholar] [CrossRef] [PubMed]
- Nally, J.E.; Grassmann, A.A.; Planchon, S.; Sergeant, K.; Renaut, J.; Seshu, J.; McBride, A.J.; Caimano, M.J. Pathogenic Leptospires Modulate Protein Expression and Post-Translational Modifications in Response to Mammalian Host Signals. Front. Cell. Infect. Microbiol. 2017, 7, 362. [Google Scholar] [CrossRef]
- Howell, M.L.; Alsabbagh, E.; Ma, J.F.; Ochsner, U.A.; Klotz, M.G.; Beveridge, T.J.; Blumenthal, K.M.; Niederhoffer, E.C.; Morris, R.E.; Needham, D.; et al. AnkB, a Periplasmic Ankyrin-like Protein in Pseudomonas Aeruginosa, Is Required for Optimal Catalase B (KatB) Activity and Resistance to Hydrogen Peroxide. J. Bacteriol. 2000, 182, 4545–4556. [Google Scholar] [CrossRef]
- Flint, A.; Stintzi, A. Cj1386, an Atypical Hemin-Binding Protein, Mediates Hemin Trafficking to KatA in Campylobacter Jejuni. J. Bacteriol. 2015, 197, 1002–1011. [Google Scholar] [CrossRef]
- Pan, X.; Xu, S.; Wu, J.; Duan, Y.; Zheng, Z.; Wang, J.; Song, X.; Zhou, M. Ankyrin-Like Protein AnkB Interacts with CatB, Affects Catalase Activity, and Enhances Resistance of Xanthomonas Oryzae Pv. Oryzae and Xanthomonas Oryzae Pv. Oryzicola to Phenazine-1-Carboxylic Acid. Appl. Environ. Microbiol. 2018, 84, e02145-17. [Google Scholar] [CrossRef]
- Corin, R.E.; Boggs, E.; Cox, C.D. Enzymatic Degradation of H2O2 by Leptospira. Infect. Immun. 1978, 22, 672–675. [Google Scholar] [CrossRef]
- Nóbrega, C.S.; Pauleta, S.R. Chapter Seven—Reduction of Hydrogen Peroxide in Gram-Negative Bacteria—Bacterial Peroxidases. In Advances in Microbial Physiology; Poole, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 74, pp. 415–464. ISBN 0065-2911. [Google Scholar]
- Arias, D.G.; Reinoso, A.; Sasoni, N.; Hartman, M.D.; Iglesias, A.A.; Guerrero, S.A. Kinetic and Structural Characterization of a Typical Two-Cysteine Peroxiredoxin from Leptospira Interrogans Exhibiting Redox Sensitivity. Free. Radic. Biol. Med. 2014, 77, 30–40. [Google Scholar] [CrossRef]
- Cha, M.K.; Kim, H.K.; Kim, I.H. Thioredoxin-Linked “Thiol Peroxidase” from Periplasmic Space of Escherichia coli. J. Biol. Chem. 1995, 270, 28635–28641. [Google Scholar] [CrossRef]
- Jeong, W.; Cha, M.K.; Kim, I.H. Thioredoxin-Dependent Hydroperoxide Peroxidase Activity of Bacterioferritin Comigratory Protein (BCP) as a New Member of the Thiol-Specific Antioxidant Protein (TSA)/Alkyl Hydroperoxide Peroxidase C (AhpC) Family. J. Biol. Chem. 2000, 275, 2924–2930. [Google Scholar] [CrossRef] [PubMed]
- Atack, J.M.; Harvey, P.; Jones, M.A.; Kelly, D.J. The Campylobacter Jejuni Thiol Peroxidases Tpx and Bcp Both Contribute to Aerotolerance and Peroxide-Mediated Stress Resistance but Have Distinct Substrate Specificities. J. Bacteriol. 2008, 190, 5279–5290. [Google Scholar] [CrossRef] [PubMed]
- Arenas, F.A.; Díaz, W.A.; Leal, C.A.; Pérez-Donoso, J.M.; Imlay, J.A.; Vásquez, C.C. The Escherichia coli BtuE Gene, Encodes a Glutathione Peroxidase That Is Induced under Oxidative Stress Conditions. Biochem. Biophys. Res. Commun. 2010, 398, 690–694. [Google Scholar] [CrossRef]
- Moore, T.D.; Sparling, P.F. Interruption of the GpxA Gene Increases the Sensitivity of Neisseria Meningitidis to Paraquat. J. Bacteriol. 1996, 178, 4301–4305. [Google Scholar] [CrossRef] [PubMed][Green Version]
- King, K.Y.; Horenstein, J.A.; Caparon, M.G. Aerotolerance and Peroxide Resistance in Peroxidase and PerR Mutants of Streptococcus Pyogenes. J. Bacteriol. 2000, 182, 5290–5299. [Google Scholar] [CrossRef]
- Comtois, S.L.; Gidley, M.D.; Kelly, D.J. Role of the Thioredoxin System and the Thiol-Peroxidases Tpx and Bcp in Mediating Resistance to Oxidative and Nitrosative Stress in Helicobacter Pylori. Microbiology 2003, 149, 121–129. [Google Scholar] [CrossRef]
- Arenas, F.A.; Covarrubias, P.C.; Sandoval, J.M.; Pérez-Donoso, J.M.; Imlay, J.A.; Vásquez, C.C. The Escherichia coli BtuE Protein Functions as a Resistance Determinant against Reactive Oxygen Species. PLoS ONE 2011, 6, e15979. [Google Scholar] [CrossRef]
- Johnson, N.A.; McKenzie, R.M.E.; Fletcher, H.M. The Bcp Gene in the Bcp-RecA-VimA-VimE-VimF Operon Is Important in Oxidative Stress Resistance in Porphyromonas Gingivalis W83. Mol. Oral. Microbiol. 2011, 26, 62–77. [Google Scholar] [CrossRef]
- Mishra, S.; Imlay, J. Why Do Bacteria Use so Many Enzymes to Scavenge Hydrogen Peroxide? Arch. Biochem. Biophys. 2012, 525, 145–160. [Google Scholar] [CrossRef]
- Atack, J.M.; Kelly, D.J. Structure, Mechanism and Physiological Roles of Bacterial Cytochrome c Peroxidases. Adv. Microb. Physiol. 2007, 52, 73–106. [Google Scholar] [CrossRef]
- Khademian, M.; Imlay, J.A. Escherichia coli Cytochrome c Peroxidase Is a Respiratory Oxidase That Enables the Use of Hydrogen Peroxide as a Terminal Electron Acceptor. Proc. Natl. Acad. Sci. USA 2017, 114, E6922–E6931. [Google Scholar] [CrossRef] [PubMed]
- Fahey, R.C. Glutathione Analogs in Prokaryotes. Biochim. Biophys. Acta 2013, 1830, 3182–3198. [Google Scholar] [CrossRef]
- Ulrich, K.; Jakob, U. The Role of Thiols in Antioxidant Systems. Free. Radic. Biol. Med. 2019, 140, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Sasoni, N.; Ferrero, D.M.L.; Guerrero, S.A.; Iglesias, A.A.; Arias, D.G. First Evidence of Glutathione Metabolism in Leptospira Interrogans. Free. Radic. Biol. Med. 2019, 143, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Sasoni, N.; Hartman, M.D.; García-Effron, G.; Guerrero, S.A.; Iglesias, A.A.; Arias, D.G. Functional Characterization of Monothiol and Dithiol Glutaredoxins from Leptospira Interrogans. Biochimie 2022, 197, 144–159. [Google Scholar] [CrossRef]
- Case, A.J. On the Origin of Superoxide Dismutase: An Evolutionary Perspective of Superoxide-Mediated Redox Signaling. Antioxidants 2017, 6, 82. [Google Scholar] [CrossRef]
- Sheng, Y.; Abreu, I.A.; Cabelli, D.E.; Maroney, M.J.; Miller, A.-F.; Teixeira, M.; Valentine, J.S. Superoxide Dismutases and Superoxide Reductases. Chem. Rev. 2014, 114, 3854–3918. [Google Scholar] [CrossRef]
- Rodrigues, J.V.; Abreu, I.A.; Saraiva, L.M.; Teixeira, M. Rubredoxin Acts as an Electron Donor for Neelaredoxin in Archaeoglobus Fulgidus. Biochem. Biophys. Res. Commun. 2005, 329, 1300–1305. [Google Scholar] [CrossRef]
- Coulter, E.D.; Kurtz, D.M.J. A Role for Rubredoxin in Oxidative Stress Protection in Desulfovibrio Vulgaris: Catalytic Electron Transfer to Rubrerythrin and Two-Iron Superoxide Reductase. Arch. Biochem. Biophys. 2001, 394, 76–86. [Google Scholar] [CrossRef]
- Fouts, D.E.; Matthias, M.A.; Adhikarla, H.; Adler, B.; Amorim-Santos, L.; Berg, D.E.; Bulach, D.; Buschiazzo, A.; Chang, Y.-F.; Galloway, R.L.; et al. What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira. PLoS Negl. Trop. Dis. 2016, 10, e0004403. [Google Scholar] [CrossRef]
- Austin, F.E.; Barbieri, J.T.; Corin, R.E.; Grigas, K.E.; Cox, C.D. Distribution of Superoxide Dismutase, Catalase, and Peroxidase Activities among Treponema Pallidum and Other Spirochetes. Infect. Immun. 1981, 33, 372–379. [Google Scholar] [CrossRef]
- Jovanović, T.; Ascenso, C.; Hazlett, K.R.; Sikkink, R.; Krebs, C.; Litwiller, R.; Benson, L.M.; Moura, I.; Moura, J.J.; Radolf, J.D.; et al. Neelaredoxin, an Iron-Binding Protein from the Syphilis Spirochete, Treponema Pallidum, Is a Superoxide Reductase. J. Biol. Chem. 2000, 275, 28439–28448. [Google Scholar] [CrossRef] [PubMed]
- Esteve-Gassent, M.D.; Elliott, N.L.; Seshu, J. SodA Is Essential for Virulence of Borrelia Burgdorferi in the Murine Model of Lyme Disease. Mol. Microbiol. 2009, 71, 594–612. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, J.D.; Clark, H.M.; McIlvin, M.; Vazquez, C.; Palmere, S.L.; Grab, D.J.; Seshu, J.; Hart, P.J.; Saito, M.; Culotta, V.C. A Manganese-Rich Environment Supports Superoxide Dismutase Activity in a Lyme Disease Pathogen, Borrelia Burgdorferi. J. Biol. Chem. 2013, 288, 8468–8478. [Google Scholar] [CrossRef]
- Götz, F.; Sedewitz, B.; Elstner, E.F. Oxygen Utilization by Lactobacillus Plantarum. I. Oxygen Consuming Reactions. Arch. Microbiol. 1980, 125, 209–214. [Google Scholar] [CrossRef]
- Archibald, F.S.; Fridovich, I. Manganese and Defenses against Oxygen Toxicity in Lactobacillus Plantarum. J. Bacteriol. 1981, 145, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.-J.; Srikhanta, Y.; McEwan, A.G.; Jennings, M.P. Accumulation of Manganese in Neisseria Gonorrhoeae Correlates with Resistance to Oxidative Killing by Superoxide Anion and Is Independent of Superoxide Dismutase Activity. Mol. Microbiol. 2001, 40, 1175–1186. [Google Scholar] [CrossRef]
- Zheng, M.; Aslund, F.; Storz, G. Activation of the OxyR Transcription Factor by Reversible Disulfide Bond Formation. Science 1998, 279, 1718–1721. [Google Scholar] [CrossRef]
- Aslund, F.; Zheng, M.; Beckwith, J.; Storz, G. Regulation of the OxyR Transcription Factor by Hydrogen Peroxide and the Cellular Thiol-Disulfide Status. Proc. Natl. Acad. Sci. USA 1999, 96, 6161–6165. [Google Scholar] [CrossRef]
- Choi, H.-J.; Kim, S.-J.; Mukhopadhyay, P.; Cho, S.; Woo, J.-R.; Storz, G.; Ryu, S.-E. Structural Basis of the Redox Switch in the OxyR Transcription Factor. Cell 2001, 105, 103–113. [Google Scholar] [CrossRef]
- Chiang, S.M.; Schellhorn, H.E. Regulators of Oxidative Stress Response Genes in Escherichia coli and Their Functional Conservation in Bacteria. Arch. Biochem. Biophys. 2012, 525, 161–169. [Google Scholar] [CrossRef]
- Imlay, J.A. Transcription Factors That Defend Bacteria Against Reactive Oxygen Species. Annu. Rev. Microbiol. 2015, 69, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Minh, P.N.L.; Dötsch, A.; Hildebrand, F.; Panmanee, W.; Elfarash, A.; Schulz, S.; Plaisance, S.; Charlier, D.; Hassett, D.; et al. Global Regulation of Gene Expression by OxyR in an Important Human Opportunistic Pathogen. Nucleic Acids Res. 2012, 40, 4320–4333. [Google Scholar] [CrossRef] [PubMed]
- Christman, M.F.; Morgan, R.W.; Jacobson, F.S.; Ames, B.N. Positive Control of a Regulon for Defenses against Oxidative Stress and Some Heat-Shock Proteins in Salmonella Typhimurium. Cell 1985, 41, 753–762. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.T.; Demple, B. Overproduction of Peroxide-Scavenging Enzymes in Escherichia coli Suppresses Spontaneous Mutagenesis and Sensitivity to Redox-Cycling Agents in OxyR-Mutants. EMBO J. 1988, 7, 2611–2617. [Google Scholar] [CrossRef]
- Bsat, N.; Chen, L.; Helmann, J.D. Mutation of the Bacillus Subtilis Alkyl Hydroperoxide Reductase (AhpCF) Operon Reveals Compensatory Interactions among Hydrogen Peroxide Stress Genes. J. Bacteriol. 1996, 178, 6579–6586. [Google Scholar] [CrossRef] [PubMed]
- Bsat, N.; Herbig, A.; Casillas-Martinez, L.; Setlow, P.; Helmann, J.D. Bacillus Subtilis Contains Multiple Fur Homologues: Identification of the Iron Uptake (Fur) and Peroxide Regulon (PerR) Repressors. Mol. Microbiol. 1998, 29, 189–198. [Google Scholar] [CrossRef]
- Herbig, A.F.; Helmann, J.D. Roles of Metal Ions and Hydrogen Peroxide in Modulating the Interaction of the Bacillus Subtilis PerR Peroxide Regulon Repressor with Operator DNA. Mol. Microbiol. 2001, 41, 849–859. [Google Scholar] [CrossRef]
- Traoré, D.A.K.; El Ghazouani, A.; Ilango, S.; Dupuy, J.; Jacquamet, L.; Ferrer, J.-L.; Caux-Thang, C.; Duarte, V.; Latour, J.-M. Crystal Structure of the Apo-PerR-Zn Protein from Bacillus Subtilis. Mol. Microbiol. 2006, 61, 1211–1219. [Google Scholar] [CrossRef]
- Jacquamet, L.; Traoré, D.A.K.; Ferrer, J.-L.; Proux, O.; Testemale, D.; Hazemann, J.-L.; Nazarenko, E.; El Ghazouani, A.; Caux-Thang, C.; Duarte, V.; et al. Structural Characterization of the Active Form of PerR: Insights into the Metal-Induced Activation of PerR and Fur Proteins for DNA Binding. Mol. Microbiol. 2009, 73, 20–31. [Google Scholar] [CrossRef]
- Lee, J.-W.; Helmann, J.D. The PerR Transcription Factor Senses H2O2 by Metal-Catalysed Histidine Oxidation. Nature 2006, 440, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Traoré, D.A.K.; El Ghazouani, A.; Jacquamet, L.; Borel, F.; Ferrer, J.-L.; Lascoux, D.; Ravanat, J.-L.; Jaquinod, M.; Blondin, G.; Caux-Thang, C.; et al. Structural and Functional Characterization of 2-Oxo-Histidine in Oxidized PerR Protein. Nat. Chem. Biol. 2009, 5, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Ahn, B.-E.; Baker, T.A. Oxidization without Substrate Unfolding Triggers Proteolysis of the Peroxide-Sensor, PerR. Proc. Natl. Acad. Sci. USA 2016, 113, E23–E31. [Google Scholar] [CrossRef]
- Chen, L.; Keramati, L.; Helmann, J.D. Coordinate Regulation of Bacillus Subtilis Peroxide Stress Genes by Hydrogen Peroxide and Metal Ions. Proc. Natl. Acad. Sci. USA 1995, 92, 8190–8194. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, M.J.; Ma, Z.; Fuangthong, M.; Helmann, J.D. Derepression of the Bacillus Subtilis PerR Peroxide Stress Response Leads to Iron Deficiency. J. Bacteriol. 2012, 194, 1226–1235. [Google Scholar] [CrossRef] [PubMed]
- van Vliet, A.H.; Baillon, M.L.; Penn, C.W.; Ketley, J.M. Campylobacter Jejuni Contains Two Fur Homologs: Characterization of Iron-Responsive Regulation of Peroxide Stress Defense Genes by the PerR Repressor. J. Bacteriol. 1999, 181, 6371–6376. [Google Scholar] [CrossRef]
- Brenot, A.; King, K.Y.; Caparon, M.G. The PerR Regulon in Peroxide Resistance and Virulence of Streptococcus Pyogenes. Mol. Microbiol. 2005, 55, 221–234. [Google Scholar] [CrossRef]
- Ji, C.-J.; Kim, J.-H.; Won, Y.-B.; Lee, Y.-E.; Choi, T.-W.; Ju, S.-Y.; Youn, H.; Helmann, J.D.; Lee, J.-W. Staphylococcus Aureus PerR Is a Hypersensitive Hydrogen Peroxide Sensor Using Iron-Mediated Histidine Oxidation. J. Biol. Chem. 2015, 290, 20374–20386. [Google Scholar] [CrossRef]
- Morikawa, K.; Ohniwa, R.L.; Kim, J.; Maruyama, A.; Ohta, T.; Takeyasu, K. Bacterial Nucleoid Dynamics: Oxidative Stress Response in Staphylococcus Aureus. Genes Cells 2006, 11, 409–423. [Google Scholar] [CrossRef]
- Faulkner, M.J.; Helmann, J.D. Peroxide Stress Elicits Adaptive Changes in Bacterial Metal Ion Homeostasis. Antioxid. Redox Signal. 2011, 15, 175–189. [Google Scholar] [CrossRef]
- Fuangthong, M.; Atichartpongkul, S.; Mongkolsuk, S.; Helmann, J.D. OhrR Is a Repressor of OhrA, a Key Organic Hydroperoxide Resistance Determinant in Bacillus Subtilis. J. Bacteriol. 2001, 183, 4134–4141. [Google Scholar] [CrossRef] [PubMed]
- Fuangthong, M.; Helmann, J.D. The OhrR Repressor Senses Organic Hydroperoxides by Reversible Formation of a Cysteine-Sulfenic Acid Derivative. Proc. Natl. Acad. Sci. USA 2002, 99, 6690–6695. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-W.; Soonsanga, S.; Helmann, J.D. A Complex Thiolate Switch Regulates the Bacillus Subtilis Organic Peroxide Sensor OhrR. Proc. Natl. Acad. Sci. USA 2007, 104, 8743–8748. [Google Scholar] [CrossRef] [PubMed]
- Soonsanga, S.; Lee, J.-W.; Helmann, J.D. Oxidant-Dependent Switching between Reversible and Sacrificial Oxidation Pathways for Bacillus Subtilis OhrR. Mol. Microbiol. 2008, 68, 978–986. [Google Scholar] [CrossRef]
- Panmanee, W.; Vattanaviboon, P.; Poole, L.B.; Mongkolsuk, S. Novel Organic Hydroperoxide-Sensing and Responding Mechanisms for OhrR, a Major Bacterial Sensor and Regulator of Organic Hydroperoxide Stress. J. Bacteriol. 2006, 188, 1389–1395. [Google Scholar] [CrossRef]
- Sukchawalit, R.; Loprasert, S.; Atichartpongkul, S.; Mongkolsuk, S. Complex Regulation of the Organic Hydroperoxide Resistance Gene (Ohr) from Xanthomonas Involves OhrR, a Novel Organic Peroxide-Inducible Negative Regulator, and Posttranscriptional Modifications. J. Bacteriol. 2001, 183, 4405–4412. [Google Scholar] [CrossRef]
- Da Silva Neto, J.F.; Negretto, C.C.; Netto, L.E.S. Analysis of the Organic Hydroperoxide Response of Chromobacterium Violaceum Reveals That OhrR Is a Cys-Based Redox Sensor Regulated by Thioredoxin. PLoS ONE 2012, 7, e47090. [Google Scholar] [CrossRef]
- Previato-Mello, M.; Meireles, D.D.A.; Netto, L.E.S.; da Silva Neto, J.F. Global Transcriptional Response to Organic Hydroperoxide and the Role of OhrR in the Control of Virulence Traits in Chromobacterium Violaceum. Infect. Immun. 2017, 85, e00017-17. [Google Scholar] [CrossRef]
- Caswell, C.C.; Baumgartner, J.E.; Martin, D.W.; Roop, R.M. Characterization of the Organic Hydroperoxide Resistance System of Brucella Abortus 2308. J. Bacteriol. 2012, 194, 5065–5072. [Google Scholar] [CrossRef][Green Version]
- Li, N.; Luo, Q.; Jiang, Y.; Wu, G.; Gao, H. Managing Oxidative Stresses in Shewanella Oneidensis: Intertwined Roles of the OxyR and OhrR Regulons. Environ. Microbiol. 2014, 16, 1821–1834. [Google Scholar] [CrossRef]
- Saikolappan, S.; Das, K.; Dhandayuthapani, S. Inactivation of the Organic Hydroperoxide Stress Resistance Regulator OhrR Enhances Resistance to Oxidative Stress and Isoniazid in Mycobacterium Smegmatis. J. Bacteriol. 2015, 197, 51–62. [Google Scholar] [CrossRef]
- Pande, A.; Veale, T.C.; Grove, A. Gene Regulation by Redox-Sensitive Burkholderia Thailandensis OhrR and Its Role in Bacterial Killing of Caenorhabditis Elegans. Infect. Immun. 2018, 86, e00322-18. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-J.; Shu, H.-Y.; Lin, G.-H. Regulation of Tert-Butyl Hydroperoxide Resistance by Chromosomal OhrR in A. Baumannii ATCC 19606. Microorganisms 2021, 9, 629. [Google Scholar] [CrossRef]
- Hidalgo, E.; Demple, B. An Iron-Sulfur Center Essential for Transcriptional Activation by the Redox-Sensing SoxR Protein. EMBO J. 1994, 13, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Imlay, J.A. The SoxRS Response of Escherichia coli Is Directly Activated by Redox-Cycling Drugs Rather than by Superoxide. Mol. Microbiol. 2011, 79, 1136–1150. [Google Scholar] [CrossRef] [PubMed]
- Koo, M.-S.; Lee, J.-H.; Rah, S.-Y.; Yeo, W.-S.; Lee, J.-W.; Lee, K.-L.; Koh, Y.-S.; Kang, S.-O.; Roe, J.-H. A Reducing System of the Superoxide Sensor SoxR in Escherichia coli. EMBO J. 2003, 22, 2614–2622. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.T.; Monach, P.; Chou, J.H.; Josephy, P.D.; Demple, B. Positive Control of a Global Antioxidant Defense Regulon Activated by Superoxide-Generating Agents in Escherichia coli. Proc. Natl. Acad. Sci. USA 1990, 87, 6181–6185. [Google Scholar] [CrossRef]
- Tsaneva, I.R.; Weiss, B. SoxR, a Locus Governing a Superoxide Response Regulon in Escherichia coli K-12. J. Bacteriol. 1990, 172, 4197–4205. [Google Scholar] [CrossRef]
- Wu, J.; Weiss, B. Two-Stage Induction of the SoxRS (Superoxide Response) Regulon of Escherichia coli. J. Bacteriol. 1992, 174, 3915–3920. [Google Scholar] [CrossRef]
- Blanchard, J.L.; Wholey, W.-Y.; Conlon, E.M.; Pomposiello, P.J. Rapid Changes in Gene Expression Dynamics in Response to Superoxide Reveal SoxRS-Dependent and Independent Transcriptional Networks. PLoS ONE 2007, 2, e1186. [Google Scholar] [CrossRef]
- Pomposiello, P.J.; Koutsolioutsou, A.; Carrasco, D.; Demple, B. SoxRS-Regulated Expression and Genetic Analysis of the YggX Gene of Escherichia coli. J. Bacteriol. 2003, 185, 6624–6632. [Google Scholar] [CrossRef] [PubMed]
- Griffith, K.L.; Shah, I.M.; Wolf, R.E. Proteolytic Degradation of Escherichia coli Transcription Activators SoxS and MarA as the Mechanism for Reversing the Induction of the Superoxide (SoxRS) and Multiple Antibiotic Resistance (Mar) Regulons. Mol. Microbiol. 2004, 51, 1801–1816. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, L.E.P.; Teal, T.K.; Price-Whelan, A.; Newman, D.K. Redox-Active Antibiotics Control Gene Expression and Community Behavior in Divergent Bacteria. Science 2008, 321, 1203–1206. [Google Scholar] [CrossRef]
- Lo, M.; Murray, G.L.; Khoo, C.A.; Haake, D.A.; Zuerner, R.L.; Adler, B. Transcriptional Response of Leptospira Interrogans to Iron Limitation and Characterization of a PerR Homolog. Infect. Immun. 2010, 78, 4850–4859. [Google Scholar] [CrossRef]
- Zavala-Alvarado, C.; Huete, S.G.; Vincent, A.T.; Sismeiro, O.; Legendre, R.; Varet, H.; Bussotti, G.; Lorioux, C.; Lechat, P.; Coppée, J.-Y.; et al. The Oxidative Stress Response of Pathogenic Leptospira Is Controlled by Two Peroxide Stress Regulators Which Putatively Cooperate in Controlling Virulence. PLoS Pathog. 2021, 17, e1009087. [Google Scholar] [CrossRef]
- Grassmann, A.A.; Zavala-Alvarado, C.; Bettin, E.B.; Picardeau, M.; Benaroudj, N.; Caimano, M.J. The FUR-like Regulators PerRA and PerRB Integrate a Complex Regulatory Network That Promotes Mammalian Host-Adaptation and Virulence of Leptospira Interrogans. PLoS Pathog. 2021, 17, e1009078. [Google Scholar] [CrossRef]
- Kebouchi, M.; Saul, F.; Taher, R.; Landier, A.; Beaudeau, B.; Dubrac, S.; Weber, P.; Haouz, A.; Picardeau, M.; Benaroudj, N. Structure and Function of the Leptospira Interrogans Peroxide Stress Regulator (PerR), an Atypical PerR Devoid of a Structural Metal-Binding Site. J. Biol. Chem. 2018, 293, 497–509. [Google Scholar] [CrossRef]
- Fernandes, L.G.V.; Guaman, L.P.; Vasconcellos, S.A.; Heinemann, M.B.; Picardeau, M.; Nascimento, A.L.T.O. Gene Silencing Based on RNA-Guided Catalytically Inactive Cas9 (DCas9): A New Tool for Genetic Engineering in Leptospira. Sci. Rep. 2019, 9, 1839. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huete, S.G.; Benaroudj, N. The Arsenal of Leptospira Species against Oxidants. Antioxidants 2023, 12, 1273. https://doi.org/10.3390/antiox12061273
Huete SG, Benaroudj N. The Arsenal of Leptospira Species against Oxidants. Antioxidants. 2023; 12(6):1273. https://doi.org/10.3390/antiox12061273
Chicago/Turabian StyleHuete, Samuel G., and Nadia Benaroudj. 2023. "The Arsenal of Leptospira Species against Oxidants" Antioxidants 12, no. 6: 1273. https://doi.org/10.3390/antiox12061273
APA StyleHuete, S. G., & Benaroudj, N. (2023). The Arsenal of Leptospira Species against Oxidants. Antioxidants, 12(6), 1273. https://doi.org/10.3390/antiox12061273