Circulating Nrf2, Glutathione, and Malondialdehyde Correlate with Disease Severity in Duchenne Muscular Dystrophy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Procedures
2.3. Measurements
2.3.1. Circulating Markers of Oxidative Stress: Antioxidant Response
2.3.2. Circulating Markers of Oxidative Stress: Oxidative Damage
2.3.3. Muscle Injury Markers
2.3.4. Anthropometric Parameters
2.3.5. Metabolic Indicators
2.3.6. Physical Activity
2.3.7. Frequency of Antioxidant Food Consumption
2.4. Statistical Analyses
3. Results
3.1. Characteristics of Participants
3.2. Oxidative Stress in Ambulatory and Non-Ambulatory Patients
3.3. Correlation of Circulating OS with Age and Muscle Injury Markers
3.4. Correlation of Circulating OS with Anthropometric Parameters, Metabolic Indicators, Physical Activity Parameters, and Frequency of AFC
3.5. Predictors of Circulating Levels of OS Markers in DMD Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Cruz, M.; Almeida-Becerril, T.; Atilano-Miguel, S.; Cárdenas-Conejo, A.; Bernabe-García, M. Natural History of Serum Enzyme Levels in Duchenne Muscular Dystrophy and Implications for Clinical Practice. Am. J. Phys. Med. Rehabil. 2020, 99, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Mah, J.K.; Korngut, L.; Dykeman, J.; Day, L.; Pringsheim, T.; Jette, N. A Systematic Review and Meta-Analysis on the Epidemiology of Duchenne and Becker Muscular Dystrophy. Neuromuscul. Disord. 2014, 24, 482–491. [Google Scholar] [CrossRef] [PubMed]
- Guiraud, S.; Aartsma-Rus, A.; Vieira, N.M.; Davies, K.E.; van Ommen, G.J.B.; Kunkel, L.M. The Pathogenesis and Therapy of Muscular Dystrophies. Annu. Rev. Genom. Hum. Genet. 2015, 16, 281–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, D.G.; Whitehead, N.P.; Froehner, S.C. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol. Rev. 2016, 96, 253–305. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Guzmán, O.D.R.; Rodríguez-Cruz, M.; Escobar Cedillo, R.E. Systemic Inflammation in Duchenne Muscular Dystrophy: Association with Muscle Function and Nutritional Status. Biomed. Res. Int. 2015, 2015, 891972. [Google Scholar] [CrossRef] [Green Version]
- Kourakis, S.; Timpani, C.A.; de Haan, J.B.; Gueven, N.; Fischer, D.; Rybalka, E. Targeting Nrf2 for the Treatment of Duchenne Muscular Dystrophy. Redox Biol. 2021, 38, 101803. [Google Scholar] [CrossRef]
- Betteridge, D.J. What is oxidative stress? Metabolism 2000, 49, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Rando, T.A.; Disatnik, M.H.; Yu, Y.; Franco, A. Muscle Cells from Mdx Mice Have an Increased Susceptibility to Oxidative Stress. Neuromuscul. Disord. 1998, 8, 14–21. [Google Scholar] [CrossRef]
- Tebay, L.E.; Robertson, H.; Durant, S.T.; Vitale, S.R.; Penning, T.M.; Dinkova-Kostova, A.T.; Hayes, J.D. Mechanisms of Activation of the Transcription Factor Nrf2 by Redox Stressors, Nutrient Cues, and Energy Status and the Pathways through Which It Attenuates Degenerative Disease. Free Radic. Biol. Med. 2015, 88, 108–146. [Google Scholar] [CrossRef] [Green Version]
- Petrillo, S.; Pelosi, L.; Piemonte, F.; Travaglini, L.; Forcina, L.; Catteruccia, M.; Petrini, S.; Verardo, M.; D’Amico, A.; Musarò, A.; et al. Oxidative Stress in Duchenne Muscular Dystrophy: Focus on the NRF2 Redox Pathway. Hum. Mol. Genet. 2017, 26, 2781–2790. [Google Scholar] [CrossRef]
- Almeida-Becerril, T.; Rodríguez-Cruz, M.; Sánchez-González, J.R.; Villaldama-Soriano, M.A.; Atilano-Miguel, S.; Villa-Morales, J.; Cárdenas-Conejo, A.; Cárdenas-Vázquez, R. Circulating markers of oxidative stress are associated with a muscle injury in patients with muscular dystrophy Duchenne. Brain Dev. 2021, 43, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Burns, D.P.; Drummond, S.E.; Bolger, D.; Coiscaud, A.; Murphy, K.H.; Edge, D.; O’Halloran, K.D. N-Acetylcysteine Decreases Fibrosis and Increases Force-Generating Capacity of Mdx Diaphragm. Antioxidants 2019, 8, 581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosso, S.; Perrone, S.; Longini, M.; Bruno, C.; Minetti, C.; Gazzolo, D.; Balestri, P.; Buonocore, G. Isoprostanes in Dystrophinopathy: Evidence of Increased Oxidative Stress. Brain Dev. 2008, 30, 391–395. [Google Scholar] [CrossRef]
- Hunter, M.I.; Mohamed, J.B. Plasma Antioxidants and Lipid Peroxidation Products in Duchenne Muscular Dystrophy. Clin. Chim. Acta 1986, 155, 123–131. [Google Scholar] [CrossRef]
- Mechler, F.; Imre, S.; Dioszeghy, P. Lipid Peroxidation and Superoxide Dismutase Activity in Muscle and Erythrocytes in Duchenne Muscular Dystrophy. J. Neurol. Sci. 1984, 63, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Al-Mshhdani, B.A.; Grounds, M.D.; Arthur, P.G.; Terrill, J.R. A Blood Biomarker for Duchenne Muscular Dystrophy Shows That Oxidation State of Albumin Correlates with Protein Oxidation and Damage in Mdx Muscle. Antioxidants 2021, 10, 1241. [Google Scholar] [CrossRef] [PubMed]
- Carraro, E.; Schilirò, T.; Biorci, F.; Romanazzi, V.; Degan, R.; Buonocore, D.; Verri, M.; Dossena, M.; Bonetta, S.; Gilli, G. Physical Activity, Lifestyle Factors and Oxidative Stress in Middle Age Healthy Subjects. Int. J. Environ. Res. Public Health 2018, 15, 1152. [Google Scholar] [CrossRef] [Green Version]
- Almeida-Becerril, T.; Rodríguez-Cruz, M.; Hernández-Cruz, S.Y.; Ruiz-Cruz, E.D.; Mendoza, C.; Cárdenas-Conejo, A.; Escobar-Cedillo, R.E.; Ávila-Moreno, F.; Aquino-Jarquin, G. Natural history of circulating miRNAs in Duchenne disease: Association with muscle injury and metabolic parameters. Acta Neurol. Scand. 2022, 146, 512–524. [Google Scholar] [CrossRef]
- Vignos, P.J.; Archibald, K.C. Maintenance of Ambulation in Childhood Muscular Dystrophy. J. Chronic Dis. 1960, 12, 273–290. [Google Scholar] [CrossRef]
- Palisano, R.; Rosenbaum, P.; Walter, S.; Russell, D.; Wood, E.; Galuppi, B. Development and Reliability of a System to Classify Gross Motor Function in Children with Cerebral Palsy. Dev. Med. Child Neurol. 1997, 39, 214–223. [Google Scholar] [CrossRef]
- Brooke, M.H.; Griggs, R.C.; Mendell, J.R.; Fenichel, G.M.; Shumate, J.B.; Pellegrino, R.J. Clinical Trial in Duchenne Dystrophy. I. The Design of the Protocol. Muscle Nerve 1981, 4, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Compston, A. Aids to the investigation of peripheral nerve injuries. Medical Research Council: Nerve Injuries Research Committee. His Majesty’s Stationery Office: 1942; pp. 48 (iii) and 74 figures and 7 diagrams; with aids to the examination of the peripheral nervous system. By Michael O’Brien for the Guarantors of Brain. Saunders Elsevier: 2010; pp. [8] 64 and 94 Figures. Brain 2010, 133, 2838–2844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hata, Y.; Nakajima, K. Application of Friedewald’s LDL-Cholesterol Estimation Formula to Serum Lipids in the Japanese Population. Jpn. Circ. J. 1986, 50, 1191–1200. [Google Scholar] [CrossRef]
- Kowalski, K.C.; Crocker, P.R.; Donen, R.M. The Physical Activity Questionnaire for Older Children (PAQ-C) and Adolescents (PAQ-A) Manual; University of Saskatchewan: Saskatoon, SK, Canada, 2004; pp. 5–10. [Google Scholar]
- ENSANUT. Available online: https://ensanut.insp.mx/ (accessed on 26 July 2022).
- Zotor, F.; Sheehy, T.; Lupu, M.; Kolahdooz, F.; Corriveau, A.; Sharma, S. Frequency of Consumption of Foods and Beverages by Inuvialuit Adults in Northwest Territories, Arctic Canada. Int. J. Food Sci. Nutr. 2012, 63, 782–789. [Google Scholar] [CrossRef]
- Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bøhn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; et al. The Total Antioxidant Content of More than 3100 Foods, Beverages, Spices, Herbs and Supplements Used Worldwide. Nutr. J. 2010, 9, 3. [Google Scholar] [CrossRef]
- Leiden Muscular Dystrophy Pages. Available online: https://www.dmd.nl/ (accessed on 17 May 2022).
- Sireesh, D.; Dhamodharan, U.; Ezhilarasi, K.; Vijay, V.; Ramkumar, K.M. Association of NF-E2 Related Factor 2 (Nrf2) and inflammatory cytokines in recent onset Type 2 Diabetes Mellitus. Sci. Rep. 2018, 8, 5126. [Google Scholar] [CrossRef] [Green Version]
- Itoh, K.; Chiba, T.; Takahashi, S.; Ishii, T.; Igarashi, K.; Katoh, Y.; Oyake, T.; Hayashi, N.; Satoh, K.; Hatayama, I.; et al. An Nrf2/Small Maf Heterodimer Mediates the Induction of Phase II Detoxifying Enzyme Genes through Antioxidant Response Elements. Biochem. Biophys. Res. Commun. 1997, 236, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Orman, A.; Kahraman, A.; Çakar, H.; Ellidokuz, H.; Serteser, M. Plasma Malondialdehyde and Erythrocyte Glutathione Levels in Workers with Cement Dust-Exposure Silicosis. Toxicology 2005, 207, 15–20. [Google Scholar] [CrossRef]
- Kasperczyk, A.; Słowińska-Łożyńska, L.; Dobrakowski, M.; Zalejska-Fiolka, J.; Kasperczyk, S. The Effect of Lead-Induced Oxidative Stress on Blood Viscosity and Rheological Properties of Erythrocytes in Lead Exposed Humans. Clin. Hemorheol. Microcirc. 2014, 56, 187–195. [Google Scholar] [CrossRef]
- Shraideh, Z.; Badran, D.; Hunaiti, A.; Battah, A. Association between Occupational Lead Exposure and Plasma Levels of Selected Oxidative Stress Related Parameters in Jordanian Automobile Workers. Int. J. Occup. Med. Environ. Health 2018, 31, 517–525. [Google Scholar] [CrossRef]
- Tualeka, A.R.; Martiana, T.; Ahsan, A.; Russeng, S.S.; Meidikayanti, W. Association between Malondialdehyde and Glutathione (L-Gamma-Glutamyl-Cysteinyl-Glycine/GSH) Levels on Workers Exposed to Benzene in Indonesia. Open Access Maced. J. Med. Sci. 2019, 7, 1198–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ambulatory n = 22 | Non-Ambulatory n = 6 | p-Value | |
---|---|---|---|
Age (year) | 7.2 ± 2.4 | 13.2 ± 1.3 | <0.001 |
Muscle injury markers | |||
Vignos scale (score) | 3 (2, 4) | 9 (9, 9) | <0.001 |
GMFCS scale (score) | 2 (1, 2) | 5 (4, 5) | <0.001 |
Brooke scale (score) | 1 (1, 3) | 3 (2, 4) | <0.001 |
MRC muscle strength (%) | 91 (75, 100) † | 71 (43, 77) ¶ | <0.001 |
CPK (U/L) | 14,148 ± 6537 | 5842 ± 1601 | <0.001 |
AST (U/L) | 203 ± 67 | 98 ± 19 | <0.001 |
ALT (U/L) | 253 (84, 650) | 67 (58, 138) | <0.001 |
Anthropometric parameters | |||
Height (cm) | 113.92 ± 14.49 | 149.48 ± 14.09 | <0.001 |
Body weight (kg) | 19.13 (11.70, 48.80) | 39.20 (22.20, 53.40) | 0.004 |
BMI (percentile) | 24 (1, 97) | 6 (1, 77) | 0.157 |
Metabolic indicators | |||
Glucose (mg/dL) | 85 ± 7 | 87 ± 9 | 0.573 |
Triglycerides (mg/dL) | 134 (56, 326) | 120 (80, 290) | 0.758 |
Total cholesterol (mg/dL) | 155 (124, 264) | 116 (108, 155) | 0.002 |
VLDL-C (mg/dL) | 27 (11, 65) | 24 (16, 58) | 0.758 |
Physical activity parameters | |||
Paq-C (score) | 2.44 ± 0.82 ‡ | 1.46 ± 0.31 | 0.008 |
Physical therapy (s/w) | 7 (0, 7) | 1 (0, 2) | 0.112 |
Frequency of AFC | |||
Vegetables | 0.11 ± 0.08 ‡ | 0.12 ± 0.09 | 0.901 |
Fruits | 0.07 (0, 0.28) ‡ | 0.12 (0.07, 0.58) | 0.201 |
Legumes | 0.05 (0, 0.68) ‡ | 0.03 (0.01, 0.05) | 0.297 |
Cereals and tubers | 0.23 ± 0.20 ‡ | 0.38 ± 0.18 | 0.102 |
Animal and vegetable fats | 0.05 (0, 0.48) ‡ | 0.06 (0.05, 0.33) | 0.175 |
Sugars and confectionery | 0.07 (0, 0.89) ‡ | 0.07 (0, 0.22) | 0.554 |
Beverages | 0.24 (0, 0.72) ‡ | 0.43 (0.02, 1) | 0.342 |
Antioxidants Markers | Oxidative Damage Markers | |||
---|---|---|---|---|
Nrf2 (pg/mL) (N = 28) | Glutathione (µM) (N = 25) | MDA (µM) (N = 28) | P. Carb. (nmol/mL) (N = 28) | |
Anthropometric parameters | ||||
Height (cm) | −0.396 * | −0.156 | 0.324 | 0.011 |
Body weight (kg) | −0.355 | −0.216 | 0.328 | −0.028 |
BMI (percentile) | −0.014 | −0.242 | 0.182 | −0.286 |
Metabolic indicators | ||||
Glucose (mg/dL) | 0.136 | −0.051 | 0.258 | 0.038 |
Triglycerides (mg/dL) | −0.026 | −0.020 | −0.060 | 0.168 |
Total cholesterol (mg/dL) | 0.183 | 0.136 | −0.269 | −0.078 |
VLDL-C (mg/dL) | −0.026 | −0.020 | −0.060 | 0.168 |
Physical activity parameters | ||||
Paq-C (score) † | 0.154 | 0.112 | −0.283 | 0.041 |
Physical therapy (s/w) | −0.017 | 0.087 | −0.070 | −0.264 |
Frequency of AFC † | ||||
Vegetables | −0.002 | 0.068 | 0.033 | 0.119 |
Fruits | 0.128 | −0.157 | 0.292 | −0.095 |
Legumes | −0.071 | 0.136 | 0.092 | −0.240 |
Cereals and tubers | −0.215 | −0.134 | 0.465 * | −0.065 |
Animal and vegetable fats | −0.324 | −0.348 | 0.165 | −0.083 |
Sugars and confectionery | −0.171 | −0.045 | −0.055 | 0.071 |
Beverages | −0.043 | −0.080 | −0.142 | 0.137 |
Markers | Nrf2 | Glutathione † | MDA | P. carb. |
---|---|---|---|---|
Nrf2 | / | / | / | / |
Glutathione † | rho = 0.121 p = 0.282 | / | / | / |
MDA | rho = −0.242 p = 0.108 | rho = −0.399 p = 0.024 | / | / |
P. carb. | rho = −0.057 p = 0.356 | rho = −0.109 p = 0.302 | rho = −0.241 p = 0.109 | / |
Predictors | β Coefficient | Standard Error | T | p-Value |
---|---|---|---|---|
Model 1: Nrf2 R2 = 0.248, p = 0.011 | ||||
Age (years) | −258.589 | 97.201 | −2.660 | 0.014 |
GMFCS scale (score) | 363.948 | 281.133 | 1.295 | 0.208 |
Brooke scale (score) | 74.802 | 275.685 | 0.271 | 0.788 |
Model 2: Glutathione R2 = 0.094, p < 0.001 | ||||
Brooke scale (score) | −7.927 × 10−5 | 0.001 | −0.126 | 0.901 |
ALT (U/L) | 2.986 × 10−6 | 4.042 × 10−6 | 0.739 | 0.468 |
MDA (µM) | −0.001 | 0.001 | −0.881 | 0.388 |
Model 3: MDA R2 = 0.235, p = 0.334 | ||||
Vignos scale (score) | 0.089 | 0.123 | 0.724 | 0.478 |
Brooke scale (score) | 0.084 | 0.372 | 0.224 | 0.825 |
Glutathione (µM) | −73.826 | 78.881 | −0.936 | 0.362 |
Cereals and tubers | 0.652 | 1.122 | 0.581 | 0.569 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida-Becerril, T.; Rodríguez-Cruz, M.; Villa-Morales, J.; Sánchez-Mendoza, C.R.; Galeazzi-Aguilar, J.E. Circulating Nrf2, Glutathione, and Malondialdehyde Correlate with Disease Severity in Duchenne Muscular Dystrophy. Antioxidants 2023, 12, 871. https://doi.org/10.3390/antiox12040871
Almeida-Becerril T, Rodríguez-Cruz M, Villa-Morales J, Sánchez-Mendoza CR, Galeazzi-Aguilar JE. Circulating Nrf2, Glutathione, and Malondialdehyde Correlate with Disease Severity in Duchenne Muscular Dystrophy. Antioxidants. 2023; 12(4):871. https://doi.org/10.3390/antiox12040871
Chicago/Turabian StyleAlmeida-Becerril, Tomas, Maricela Rodríguez-Cruz, Judith Villa-Morales, Christian Ricardo Sánchez-Mendoza, and Jose Emilio Galeazzi-Aguilar. 2023. "Circulating Nrf2, Glutathione, and Malondialdehyde Correlate with Disease Severity in Duchenne Muscular Dystrophy" Antioxidants 12, no. 4: 871. https://doi.org/10.3390/antiox12040871
APA StyleAlmeida-Becerril, T., Rodríguez-Cruz, M., Villa-Morales, J., Sánchez-Mendoza, C. R., & Galeazzi-Aguilar, J. E. (2023). Circulating Nrf2, Glutathione, and Malondialdehyde Correlate with Disease Severity in Duchenne Muscular Dystrophy. Antioxidants, 12(4), 871. https://doi.org/10.3390/antiox12040871