Lactate Mediates High-Intensity Interval Training—Induced Promotion of Hippocampal Mitochondrial Function through the GPR81-ERK1/2 Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. HIIT Paradigm and Blood Lactate Detection
2.3. Adeno-Associated Virus (AAV) Treatment
2.4. Transmission Electron Microscopy
2.5. Neuro-2A Cell Culture
2.6. Cell Treatment
2.7. JC-1 Staining
2.8. ATP Detection
2.9. RNA Extraction and Reverse Transcription-Quantitative PCR (RT-qPCR)
2.10. Western Blot Analysis
2.11. Statistical Analysis
3. Results
3.1. Knockdown of Hippocampal GPR81 Leads to a Reduction in the Number of Mitochondria in Mice
3.2. Knockdown of Hippocampal GPR81 Reduces HIIT-Induced Promotion of OXPHOS and Increases in ATP Levels in Mice
3.3. Knockdown of Hippocampal GPR81 Prevents HIIT from Inducing the Expression of Genes and Proteins Expression Related to Mitochondrial Biogenesis
3.4. Knockdown of Hippocampal GPR81 Impairs HIIT-Induced Expression of Genes and Proteins Related to Mitochondrial Fusion
3.5. Knockdown of Hippocampal GPR81 Impairs HIIT-Induced Expression of Proteins Related to Synaptic Plasticity
3.6. Knockdown of Hippocampal GPR81 Inhibits HIIT-Induced ERK1/2 Phosphorylation in Mice
3.7. Inhibition of ERK1/2 Phosphorylation Impairs L-Lactate- or GPR81 Agonist-Induced Increases in MMP in Neuro-2A Cells
3.8. Inhibition of ERK1/2 Phosphorylation Impairs L-Lactate- or GPR81 Agonist-Induced Promotion of OXPHOS and ATP Production in Neuro-2A Cells
3.9. Inhibition of ERK1/2 Phosphorylation Impairs L-Lactate- or GPR81 Agonist-Induced Promotion of Mitochondrial Biogenesis in Neuro-2A Cells
3.10. Inhibition of ERK1/2 Phosphorylation Impairs L-Lactate- or GPR81 Agonist-Induced Promotion of Mitochondrial Fusion in Neuro-2A Cells
3.11. Inhibition of ERK1/2 Phosphorylation Impairs L-Lactate- or GPR81 Agonist-Induced Promotion of Synaptic Plasticity in Neuro-2A Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harris, J.J.; Jolivet, R.; Attwell, D. Synaptic energy use and supply. Neuron 2012, 75, 762–777. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Wegener, G.; Madsen, T.M.; Nyengaard, J.R. Mitochondrial plasticity of the hippocampus in a genetic rat model of depression after antidepressant treatment. Synapse 2013, 67, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Shields, L.Y.; Kim, H.; Zhu, L.; Haddad, D.; Berthet, A.; Pathak, D.; Lam, M.; Ponnusamy, R.; Diaz-Ramirez, L.G.; Gill, T.M.; et al. Dynamin-related protein 1 is required for normal mitochondrial bioenergetic and synaptic function in CA1 hippocampal neurons. Cell Death Dis. 2015, 6, e1725. [Google Scholar] [CrossRef] [PubMed]
- Mattson, M.P.; Gleichmann, M.; Cheng, A. Mitochondria in neuroplasticity and neurological disorders. Neuron 2008, 60, 748–766. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, J.R.; Bortolanza, M.; Ferrari, G.D.; Lanfredi, G.P.; do Nascimento, G.C.; Azzolini, A.; Del Bel, E.; de Campos, A.C.; Faca, V.M.; Vulczak, A.; et al. One-Week High-Intensity Interval Training Increases Hippocampal Plasticity and Mitochondrial Content without Changes in Redox State. Antioxidants 2020, 9, 445. [Google Scholar] [CrossRef] [PubMed]
- Li, F.H.; Li, T.; Ai, J.Y.; Sun, L.; Min, Z.; Duan, R.; Zhu, L.; Liu, Y.Y.; Liu, T.C. Beneficial Autophagic Activities, Mitochondrial Function, and Metabolic Phenotype Adaptations Promoted by High-Intensity Interval Training in a Rat Model. Front. Physiol. 2018, 9, 571. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liang, F.; Ding, X.; Yan, Q.; Zhao, Y.; Zhang, X.; Bai, Y.; Huang, T.; Xu, B. Interval and continuous exercise overcome memory deficits related to beta-Amyloid accumulation through modulating mitochondrial dynamics. Behav. Brain Res. 2019, 376, 112171. [Google Scholar] [CrossRef]
- Schon, E.A.; Przedborski, S. Mitochondria: The next (neurode)generation. Neuron 2011, 70, 1033–1053. [Google Scholar] [CrossRef]
- Diaz, F.; Moraes, C.T. Mitochondrial biogenesis and turnover. Cell Calcium 2008, 44, 24–35. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, H. Translational regulation of mitochondrial biogenesis. Biochem. Soc. Trans. 2016, 44, 1717–1724. [Google Scholar] [CrossRef]
- Wu, Z.; Puigserver, P.; Andersson, U.; Zhang, C.; Adelmant, G.; Mootha, V.; Troy, A.; Cinti, S.; Lowell, B.; Scarpulla, R.C.; et al. Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1. Cell 1999, 98, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Scarpulla, R.C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev. 2008, 88, 611–638. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Ghochani, M.; McCaffery, J.M.; Frey, T.G.; Chan, D.C. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol. Biol. Cell 2009, 20, 3525–3532. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Cai, M.; Shang, Q.; Li, Z.; Feng, Y.; Liu, B.; Xue, X.; Lou, S. Elevated Lactate by High-Intensity Interval Training Regulates the Hippocampal BDNF Expression and the Mitochondrial Quality Control System. Front. Physiol. 2021, 12, 629914. [Google Scholar] [CrossRef] [PubMed]
- Quistorff, B.; Secher, N.H.; Van Lieshout, J.J. Lactate fuels the human brain during exercise. Faseb J. 2008, 22, 3443–3449. [Google Scholar] [CrossRef] [PubMed]
- Morland, C.; Andersson, K.A.; Haugen, O.P.; Hadzic, A.; Kleppa, L.; Gille, A.; Rinholm, J.E.; Palibrk, V.; Diget, E.H.; Kennedy, L.H.; et al. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat. Commun. 2017, 8, 15557. [Google Scholar] [CrossRef]
- Coxon, J.P.; Cash, R.F.H.; Hendrikse, J.J.; Rogasch, N.C.; Stavrinos, E.; Suo, C.; Yücel, M. GABA concentration in sensorimotor cortex following high-intensity exercise and relationship to lactate levels. J. Physiol. 2018, 596, 691–702. [Google Scholar] [CrossRef]
- El Hayek, L.; Khalifeh, M.; Zibara, V.; Abi Assaad, R.; Emmanuel, N.; Karnib, N.; El-Ghandour, R.; Nasrallah, P.; Bilen, M.; Ibrahim, P.; et al. Lactate Mediates the Effects of Exercise on Learning and Memory through SIRT1-Dependent Activation of Hippocampal Brain-Derived Neurotrophic Factor (BDNF). J. Neurosci. 2019, 39, 2369–2382. [Google Scholar] [CrossRef]
- Lambertus, M.; Overberg, L.T.; Andersson, K.A.; Hjelden, M.S.; Hadzic, A.; Haugen, O.P.; Storm-Mathisen, J.; Bergersen, L.H.; Geiseler, S.; Morland, C. L-lactate induces neurogenesis in the mouse ventricular-subventricular zone via the lactate receptor HCA1. Acta Physiol. 2020, 231, e13587. [Google Scholar] [CrossRef]
- Sun, J.; Ye, X.; Xie, M.; Ye, J. Induction of triglyceride accumulation and mitochondrial maintenance in muscle cells by lactate. Sci. Rep. 2016, 6, 33732. [Google Scholar] [CrossRef]
- Tauffenberger, A.; Fiumelli, H.; Almustafa, S.; Magistretti, P.J. Lactate and pyruvate promote oxidative stress resistance through hormetic ROS signaling. Cell Death Dis. 2019, 10, 653. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.Q.; Ren, N.; Jin, L.; Cheng, K.; Kash, S.; Chen, R.; Wright, S.D.; Taggart, A.K.; Waters, M.G. Role of GPR81 in lactate-mediated reduction of adipose lipolysis. Biochem. Biophys. Res. Commun. 2008, 377, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wu, J.; Zhu, J.; Kuei, C.; Yu, J.; Shelton, J.; Sutton, S.W.; Li, X.; Yun, S.J.; Mirzadegan, T.; et al. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J. Biol. Chem. 2009, 284, 2811–2822. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Zhu, J.; Ren, J.; Tong, Y.; Wang, L.; Ma, S.; Wang, J. Lactate increases tumor malignancy by promoting tumor small extracellular vesicles production via the GPR81-cAMP-PKA-HIF-1alpha axis. Front. Oncol. 2022, 12, 1036543. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yuan, S.; Jian, Y.; Lei, Y.; Hu, Z.; Yang, Q.; Yan, X.; Zheng, L.; Li, J.; Liu, W. Aerobic exercise regulates GPR81 signal pathway and mediates complement- microglia axis homeostasis on synaptic protection in the early stage of Alzheimer’s disease. Life Sci. 2023, 331, 122042. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, M.; Zhang, K.; Li, Y.; Xu, M.; Tang, S.; Qu, X.; Li, C. Lactate enhanced the effect of parathyroid hormone on osteoblast differentiation via GPR81-PKC-Akt signaling. Biochem. Biophys. Res. Commun. 2018, 503, 737–743. [Google Scholar] [CrossRef]
- Ohno, Y.; Nakatani, M.; Ito, T.; Matsui, Y.; Ando, K.; Suda, Y.; Ohashi, K.; Yokoyama, S.; Goto, K. Activation of Lactate Receptor Positively Regulates Skeletal Muscle Mass in Mice. Physiol. Res. 2023, 72, 465–473. [Google Scholar] [CrossRef]
- Ohno, Y.; Oyama, A.; Kaneko, H.; Egawa, T.; Yokoyama, S.; Sugiura, T.; Ohira, Y.; Yoshioka, T.; Goto, K. Lactate increases myotube diameter via activation of MEK/ERK pathway in C2C12 cells. Acta Physiol. 2018, 223, e13042. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, F.; Zhan, L.; Lin, W.; Liang, C.; Pang, Y.; Zhang, J.; Mu, Z. Exercise Regulates the Lactate Receptor HCAR1 and ERK1/2-PI3K/Akt Pathways to Promote Cerebral Angiogenesis. Iran. J. Public Health 2022, 51, 2298–2307. [Google Scholar] [CrossRef]
- Sun, W.; Liu, M.; Li, Y.; Hu, X.; Chen, G.; Zhang, F. Xanthorrhizol inhibits mitochondrial damage, oxidative stress and inflammation in LPS-induced MLE-12 cells by regulating MAPK pathway. Tissue Cell 2023, 84, 102170. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Y.; Wu, Q.; Ding, Q.; Fan, W. Sirtuin-1 protects hair follicle stem cells from TNFalpha-mediated inflammatory stress via activating the MAPK-ERK-Mfn2 pathway. Life Sci. 2018, 212, 213–224. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, J.; Li, X.; Liu, Z.; Han, Y.; Xu, X.; Li, X.; Tang, Y.; Liu, Y.; Yu, T.; et al. Sirt3 modulate renal ischemia-reperfusion injury through enhancing mitochondrial fusion and activating the ERK-OPA1 signaling pathway. J. Cell Physiol. 2019, 234, 23495–23506. [Google Scholar] [CrossRef]
- Dong, L.; Lin, T.; Li, W.; Hong, Y.; Ren, X.; Ke, Y.; Zhang, X.; Li, X. Antioxidative effects of polypyrimidine tract-binding protein-associated splicing factor against pathological retinal angiogenesis through promotion of mitochondrial function. J. Mol. Med. 2021, 99, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Jonas, E.A. Mitochondria: Powerhouses of presynaptic plasticity. J. Physiol. 2021, 599, 1363–1364. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xiong, G.J.; Huang, N.; Sheng, Z.H. The cross-talk of energy sensing and mitochondrial anchoring sustains synaptic efficacy by maintaining presynaptic metabolism. Nat. Metab. 2020, 2, 1077–1095. [Google Scholar] [CrossRef] [PubMed]
- Khodagholi, F.; Zareh Shahamati, S.; Maleki Chamgordani, M.; Mousavi, M.A.; Moslemi, M.; Salehpour, M.; Rafiei, S.; Foolad, F. Interval aerobic training improves bioenergetics state and mitochondrial dynamics of different brain regions in restraint stressed rats. Mol. Biol. Rep. 2021, 48, 2071–2082. [Google Scholar] [CrossRef] [PubMed]
- Park, S.S.; Park, H.S.; Kim, C.J.; Baek, S.S.; Kim, T.W. Exercise attenuates maternal separation-induced mood disorder-like behaviors by enhancing mitochondrial functions and neuroplasticity in the dorsal raphe. Behav. Brain Res. 2019, 372, 112049. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Park, H.S.; Park, S.S.; Kim, C.J.; Kim, D.H.; Kim, T.W. Physical exercise ameliorates psychiatric disorders and cognitive dysfunctions by hippocampal mitochondrial function and neuroplasticity in post-traumatic stress disorder. Exp. Neurol. 2019, 322, 113043. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Yan, Q.W.; Xia, J.; Zhang, X.L.; Li, B.X.; Yin, L.Y.; Xu, B. Treadmill Exercise Attenuates Abeta-Induced Mitochondrial Dysfunction and Enhances Mitophagy Activity in APP/PS1 Transgenic Mice. Neurochem. Res. 2020, 45, 1202–1214. [Google Scholar] [CrossRef]
- Park, J.; Kim, J.; Mikami, T. Exercise-Induced Lactate Release Mediates Mitochondrial Biogenesis in the Hippocampus of Mice via Monocarboxylate Transporters. Front. Physiol. 2021, 12, 736905. [Google Scholar] [CrossRef]
- Sun, Z.; Han, Y.; Song, S.; Chen, T.; Han, Y.; Liu, Y. Activation of GPR81 by lactate inhibits oscillatory shear stress-induced endothelial inflammation by activating the expression of KLF2. IUBMB Life 2019, 71, 2010–2019. [Google Scholar] [CrossRef] [PubMed]
- Errea, A.; Cayet, D.; Marchetti, P.; Tang, C.; Kluza, J.; Offermanns, S.; Sirard, J.C.; Rumbo, M. Lactate Inhibits the Pro-Inflammatory Response and Metabolic Reprogramming in Murine Macrophages in a GPR81-Independent Manner. PLoS ONE 2016, 11, e0163694. [Google Scholar] [CrossRef]
- Hoque, R.; Farooq, A.; Ghani, A.; Gorelick, F.; Mehal, W.Z. Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology 2014, 146, 1763–1774. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Xu, J.; Fan, M.; Tu, F.; Wang, X.; Ha, T.; Williams, D.L.; Li, C. Lactate Suppresses Macrophage Pro-Inflammatory Response to LPS Stimulation by Inhibition of YAP and NF-kappaB Activation via GPR81-Mediated Signaling. Front. Immunol. 2020, 11, 587913. [Google Scholar] [CrossRef] [PubMed]
- Rooney, K.; Trayhurn, P. Lactate and the GPR81 receptor in metabolic regulation: Implications for adipose tissue function and fatty acid utilisation by muscle during exercise. Br. J. Nutr. 2011, 106, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Tunaru, S.; Tang, C.; Muller, M.; Gille, A.; Sassmann, A.; Hanson, J.; Offermanns, S. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab. 2010, 11, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Dai, Y.; Yan, Y.; Zheng, X.; Zhang, H.; Li, H.; Chen, W. The lactate receptor GPR81 mediates hepatic lipid metabolism and the therapeutic effect of metformin on experimental NAFLDs. Eur. J. Pharmacol. 2022, 924, 174959. [Google Scholar] [CrossRef]
- Longhitano, L.; Vicario, N.; Tibullo, D.; Giallongo, C.; Broggi, G.; Caltabiano, R.; Barbagallo, G.M.V.; Altieri, R.; Baghini, M.; Di Rosa, M.; et al. Lactate Induces the Expressions of MCT1 and HCAR1 to Promote Tumor Growth and Progression in Glioblastoma. Front. Oncol. 2022, 12, 871798. [Google Scholar] [CrossRef]
- Vohra, R.; Aldana, B.I.; Waagepetersen, H.; Bergersen, L.H.; Kolko, M. Dual Properties of Lactate in Müller Cells: The Effect of GPR81 Activation. Investig. Ophthalmol. Vis. Sci. 2019, 60, 999–1008. [Google Scholar] [CrossRef]
- Roland, C.L.; Arumugam, T.; Deng, D.; Liu, S.H.; Philip, B.; Gomez, S.; Burns, W.R.; Ramachandran, V.; Wang, H.; Cruz-Monserrate, Z.; et al. Cell surface lactate receptor GPR81 is crucial for cancer cell survival. Cancer Res. 2014, 74, 5301–5310. [Google Scholar] [CrossRef]
- Yang, L.; Gilbertsen, A.; Xia, H.; Benyumov, A.; Smith, K.; Herrera, J.; Racila, E.; Bitterman, P.B.; Henke, C.A. Hypoxia enhances IPF mesenchymal progenitor cell fibrogenicity via the lactate/GPR81/HIF1alpha pathway. JCI Insight 2023, 8, e163820. [Google Scholar] [CrossRef] [PubMed]
- Vardjan, N.; Chowdhury, H.H.; Horvat, A.; Velebit, J.; Malnar, M.; Muhic, M.; Kreft, M.; Krivec, S.G.; Bobnar, S.T.; Mis, K.; et al. Enhancement of Astroglial Aerobic Glycolysis by Extracellular Lactate-Mediated Increase in cAMP. Front. Mol. Neurosci. 2018, 11, 148. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Li, J.; Li, L.; Sun, Y.; Zhang, X.; Xue, Y.; Lv, J.; Gao, Y.; Li, S.; Yan, W.; et al. L-lactate preconditioning promotes plasticity-related proteins expression and reduces neurological deficits by potentiating GPR81 signaling in rat traumatic brain injury model. Brain Res. 2020, 1746, 146945. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, P.; Madaan, A.; Rivera, J.C.; Charfi, I.; Habelrih, T.; Hou, X.; Nezhady, M.; Lodygensky, G.; Pineyro, G.; Muanza, T.; et al. Neuronal GPR81 regulates developmental brain angiogenesis and promotes brain recovery after a hypoxic ischemic insult. J. Cereb. Blood Flow Metab. 2022, 42, 1294–1308. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, L.; Glesaaen, E.R.; Palibrk, V.; Pannone, M.; Wang, W.; Al-Jabri, A.; Suganthan, R.; Meyer, N.; Austbo, M.L.; Lin, X.; et al. Lactate receptor HCAR1 regulates neurogenesis and microglia activation after neonatal hypoxia-ischemia. eLife 2022, 11, e76451. [Google Scholar] [CrossRef]
- de Castro Abrantes, H.; Briquet, M.; Schmuziger, C.; Restivo, L.; Puyal, J.; Rosenberg, N.; Rocher, A.B.; Offermanns, S.; Chatton, J.Y. The Lactate Receptor HCAR1 Modulates Neuronal Network Activity through the Activation of Galpha and Gbetagamma Subunits. J. Neurosci. 2019, 39, 4422–4433. [Google Scholar] [CrossRef] [PubMed]
- Akter, M.; Ma, H.; Hasan, M.; Karim, A.; Zhu, X.; Zhang, L.; Li, Y. Exogenous L-lactate administration in rat hippocampus increases expression of key regulators of mitochondrial biogenesis and antioxidant defense. Front. Mol. Neurosci. 2023, 16, 1117146. [Google Scholar] [CrossRef]
- Mukherjee, S.; Yun, J.W. Prednisone stimulates white adipocyte browning via β3-AR/p38 MAPK/ERK signaling pathway. Life Sci. 2022, 288, 120204. [Google Scholar] [CrossRef]
- Yang, J.; Ruchti, E.; Petit, J.M.; Jourdain, P.; Grenningloh, G.; Allaman, I.; Magistretti, P.J. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc. Natl. Acad. Sci. USA 2014, 111, 12228–12233. [Google Scholar] [CrossRef]
- Cai, X.; Ng, C.P.; Jones, O.; Fung, T.S.; Ryu, K.W.; Li, D.; Thompson, C.B. Lactate activates the mitochondrial electron transport chain independently of its metabolism. Mol. Cell 2023, 83, 3904–3920.e7. [Google Scholar] [CrossRef]
Week | Warm-Up Speed (m/min) | Warm-Up Duration (min) | Training Speed (m/min) | Stimuli Duration (min) | Recovery Speed (m/min) | Recovery Duration (min) | Number of Bots | Session Duration (min) |
---|---|---|---|---|---|---|---|---|
1 | 10 | 10 | 22–23 | 4 | 10 | 2 | 10 | 60 |
2 | 10 | 10 | 22–23 | 4 | 10 | 2 | 10 | 60 |
3 | 10 | 10 | 26.5–28.5 | 4 | 12–14.5 | 2 | 10 | 60 |
4 | 10 | 10 | 26.5–28.5 | 4 | 12–14.5 | 2 | 10 | 60 |
5 | 10 | 10 | 30–33 | 4 | 12–15 | 2 | 10 | 60 |
6 | 10 | 10 | 30–33 | 4 | 12–15 | 2 | 10 | 60 |
Genes | Primer | Sequence (5′-3′) | Accession Number |
---|---|---|---|
NDUFS8 | Forward | AGTGGCGGCAACGTACAAG | NM_144870 |
Reverse | TCGAAAGAGGTAACTTAGGGTCA | ||
SDHb | Forward | AATTTGCCATTTACCGATGGGA | NM_023374 |
Reverse | AGCATCCAACACCATAGGTCC | ||
Uqcrc1 | Forward | ACGCAAGTGCTACTTCGCA | NM_025407 |
Reverse | CAGCGTCAATCCACACTCCC | ||
COX5b | Forward | TCTAGTCCCGTCCATCAGCAAC | NM_009942 |
Reverse | GCAGCCAAAACCAGATGACAGT | ||
Atp5a1 | Forward | TCTCCATGCCTCTAACACTCG | NM_007505 |
Reverse | CCAGGTCAACAGACGTGTCAG | ||
PGC-1α | Forward | TTCATCTGAGTATGGAGTCGCT | NM_008904 |
Reverse | GGGGGTGAAACCACTTTTGTAA | ||
NRF1 | Forward | GTGGGACAGCAAGCGATTGTA | NM_001164230 |
Reverse | TTGTACTTTCGCACCACATTCT | ||
TFAM | Forward | CAAAGGATGATTCGGCTCAGG | NM_009360 |
Reverse | TCGACGGATGAGATCACTTCG | ||
OPA1 | Forward | TGGAAAATGGTTCGAGAGTCAG | NM_001199177 |
Reverse | CATTCCGTCTCTAGGTTAAAGCG | ||
MFN2 | Forward | TGACCTGAATTGTGACAAGCTG | NM_133201 |
Reverse | AGACTGACTGCCGTATCTGGT | ||
GAPDH | Forward | AGGTCGGTGTGAACGGATTTG | NM_008084 |
Reverse | TGTAGACCATGTAGTTGAGGTCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, Q.; Bian, X.; Zhu, L.; Liu, J.; Wu, M.; Lou, S. Lactate Mediates High-Intensity Interval Training—Induced Promotion of Hippocampal Mitochondrial Function through the GPR81-ERK1/2 Pathway. Antioxidants 2023, 12, 2087. https://doi.org/10.3390/antiox12122087
Shang Q, Bian X, Zhu L, Liu J, Wu M, Lou S. Lactate Mediates High-Intensity Interval Training—Induced Promotion of Hippocampal Mitochondrial Function through the GPR81-ERK1/2 Pathway. Antioxidants. 2023; 12(12):2087. https://doi.org/10.3390/antiox12122087
Chicago/Turabian StyleShang, Qinghui, Xuepeng Bian, Lutao Zhu, Jun Liu, Min Wu, and Shujie Lou. 2023. "Lactate Mediates High-Intensity Interval Training—Induced Promotion of Hippocampal Mitochondrial Function through the GPR81-ERK1/2 Pathway" Antioxidants 12, no. 12: 2087. https://doi.org/10.3390/antiox12122087
APA StyleShang, Q., Bian, X., Zhu, L., Liu, J., Wu, M., & Lou, S. (2023). Lactate Mediates High-Intensity Interval Training—Induced Promotion of Hippocampal Mitochondrial Function through the GPR81-ERK1/2 Pathway. Antioxidants, 12(12), 2087. https://doi.org/10.3390/antiox12122087