Dimethyl Fumarate Protects Retinal Pigment Epithelium from Blue Light-Induced Oxidative Damage via the Nrf2 Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture, Primary Cell Preparation, and BL Exposure
2.2. Lactate Dehydrogenase (LDH) Assay, WST-8 Assay, and ROS Measurement
2.3. Cell Morphology and TUNEL Staining
2.4. RNA Isolation and Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
2.5. Western Blotting
2.6. Measurement of Inflammatory Cytokines
2.7. Outcomes and Statistical Analysis
3. Results
3.1. Cell Death Rate Is Increased by BL Intensity Level and Irradiation Time
3.2. BL Causes RPE Cell Death, Decreases Cell Viability, and Increases ROS in RPE Cells and DMF Protects RPE Cells from BL
3.3. BL Exposure Induced Morphological Change in ARPE-19 Cell-Associated Apoptosis That DMF Prevented
3.4. BL Exposure Increased NRF2 Expression in ARPE-19 Cells and Promoted NRF2 Expression in the Nucleus
3.5. BL Exposure and DMF Altered Cytokines Expression in ARPE-19 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klein, R.; Klein, B.E. The prevalence of age-related eye diseases and visual impairment in aging: Current estimates. Investig. Ophthalmol. Vis. Sci. 2013, 54, orsf5–orsf13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, F.; Kaneko, H.; Hayashi, Y.; Takayama, K.; Hwang, S.J.; Nishizawa, Y.; Kimoto, R.; Nagasaka, Y.; Tsunekawa, T.; Matsuura, T.; et al. Malondialdehyde induces autophagy dysfunction and VEGF secretion in the retinal pigment epithelium in age-related macular degeneration. Free Radic. Biol. Med. 2016, 94, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Miyake, M.; Saito, M.; Yamashiro, K.; Sekiryu, T.; Yoshimura, N. Complement factor H R1210C among Japanese patients with age-related macular degeneration. Jpn. J. Ophthalmol. 2015, 59, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Kaneko, H.; Nagasaka, Y.; Ijima, R.; Nakamura, K.; Nagaya, M.; Takayama, K.; Kajiyama, H.; Senga, T.; Tanaka, H.; et al. Plasma-activated medium suppresses choroidal neovascularization in mice: A new therapeutic concept for age-related macular degeneration. Sci. Rep. 2015, 5, 7705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, A.; Baffi, J.Z.; Kleinman, M.E.; Cho, W.G.; Nozaki, M.; Yamada, K.; Kaneko, H.; Albuquerque, R.J.; Dridi, S.; Saito, K.; et al. CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature 2009, 460, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Ijima, R.; Kaneko, H.; Ye, F.; Nagasaka, Y.; Takayama, K.; Kataoka, K.; Kachi, S.; Iwase, T.; Terasaki, H. Interleukin-18 induces retinal pigment epithelium degeneration in mice. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6673–6678. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, H.; Ye, F.; Ijima, R.; Kachi, S.; Kato, S.; Nagaya, M.; Higuchi, A.; Terasaki, H. Histamine H 4 receptor as a new therapeutic target for choroidal neovascularization in age-related macular degeneration. Br. J. Pharmacol. 2014, 171, 3754–3763. [Google Scholar] [CrossRef] [Green Version]
- Matsui, A.; Kaneko, H.; Kachi, S.; Ye, F.; Hwang, S.-J.; Takayama, K.; Nagasaka, Y.; Sugita, T.; Terasaki, H. Expression of vascular endothelial growth factor by retinal pigment epithelial cells induced by amyloid-β is depressed by an endoplasmic reticulum stress inhibitor. Ophthalmic Res. 2016, 55, 37–44. [Google Scholar] [CrossRef]
- Clemons, T.E.; Milton, R.C.; Klein, R.; Seddon, J.M.; Ferris, F.L., 3rd. Risk factors for the incidence of Advanced Age-Related Macular Degeneration in the Age-Related Eye Disease Study (AREDS) AREDS report no. 19. Ophthalmology 2005, 112, 533–539. [Google Scholar]
- Klein, R.; Peto, T.; Bird, A.; Vannewkirk, M.R. The epidemiology of age-related macular degeneration. Am. J. Ophthalmol. 2004, 137, 486–495. [Google Scholar] [CrossRef]
- Vingerling, J.R.; Dielemans, I.; Bots, M.L.; Hofman, A.; Grobbee, D.E.; de Jong, P.T. Age-related macular degeneration is associated with atherosclerosis. The Rotterdam Study. Am. J. Epidemiol. 1995, 142, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Kiser, A.K.; Deschler, E.K.; Dagnelie, G. Visual function and performance with blue-light blocking filters in age-related macular degeneration. Clin. Exp. Ophthalmol. 2008, 36, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, A.E.; Bentham, G.C.; Agnew, M.; Young, I.S.; Augood, C.; Chakravarthy, U.; de Jong, P.T.; Rahu, M.; Seland, J.; Soubrane, G. Sunlight exposure, antioxidants, and age-related macular degeneration. Arch. Ophthalmol. 2008, 126, 1396–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margrain, T.H.; Boulton, M.; Marshall, J.; Sliney, D.H. Do blue light filters confer protection against age-related macular degeneration? Prog. Retin. Eye Res. 2004, 23, 523–531. [Google Scholar] [CrossRef]
- Taylor, H.R.; Munoz, B.; West, S.; Bressler, N.M.; Bressler, S.B.; Rosenthal, F.S. Visible light and risk of age-related macular degeneration. Trans. Am. Ophthalmol. Soc. 1990, 88, 163. [Google Scholar]
- Kernt, M.; Walch, A.; Neubauer, A.S.; Hirneiss, C.; Haritoglou, C.; Ulbig, M.W.; Kampik, A. Filtering blue light reduces light-induced oxidative stress, senescence and accumulation of extracellular matrix proteins in human retinal pigment epithelium cells. Clin. Exp. Ophthalmol. 2012, 40, e87–e97. [Google Scholar] [CrossRef]
- King, A.; Gottlieb, E.; Brooks, D.G.; Murphy, M.P.; Dunaief, J.L. Mitochondria-derived Reactive Oxygen Species Mediate Blue Light-induced Death of Retinal Pigment Epithelial Cells¶. Photochem. Photobiol. 2004, 79, 470–475. [Google Scholar] [CrossRef]
- Wielgus, A.; Collier, R.; Martin, E.; Lih, F.; Tomer, K.; Chignell, C.; Roberts, J. Blue light induced A2E oxidation in rat eyes–experimental animal model of dry AMD. Photochem. Photobiol. Sci. 2010, 9, 1505–1512. [Google Scholar] [CrossRef]
- Takayama, K.; Kaneko, H.; Kataoka, K.; Hattori, K.; Ra, E.; Tsunekawa, T.; Fukukita, H.; Haga, F.; Ito, Y.; Terasaki, H. Comparison between 1-year outcomes of aflibercept with and without photodynamic therapy for polypoidal choroidal vasculopathy: Retrospective observation study. PLoS ONE 2017, 12, e0176100. [Google Scholar] [CrossRef] [Green Version]
- Takayama, K.; Kaneko, H.; Ito, Y.; Kataoka, K.; Iwase, T.; Yasuma, T.; Matsuura, T.; Tsunekawa, T.; Shimizu, H.; Suzumura, A. Novel classification of early-stage systemic hypertensive changes in human retina based on OCTA measurement of choriocapillaris. Sci. Rep. 2018, 8, 15163. [Google Scholar] [CrossRef] [Green Version]
- Takayama, K.; Kaneko, H.; Kataoka, K.; Kimoto, R.; Hwang, S.J.; Ye, F.; Nagasaka, Y.; Tsunekawa, T.; Matsuura, T.; Nonobe, N.; et al. Nuclear Factor (Erythroid-Derived)-Related Factor 2-Associated Retinal Pigment Epithelial Cell Protection under Blue Light-Induced Oxidative Stress. Oxidative Med. Cell. Longev. 2016, 2016, 8694641. [Google Scholar] [CrossRef] [PubMed]
- Klettner, A. Oxidative stress induced cellular signaling in RPE cells. Front. Biosci. 2012, 4, 392–411. [Google Scholar] [CrossRef] [PubMed]
- Howden, R. Nrf2 and cardiovascular defense. Oxidative Med. Cell. Longev. 2013, 2013, 104308. [Google Scholar] [CrossRef] [Green Version]
- Gupte, A.A.; Lyon, C.J.; Hsueh, W.A. Nuclear factor (erythroid-derived 2)-like-2 factor (Nrf2), a key regulator of the antioxidant response to protect against atherosclerosis and nonalcoholic steatohepatitis. Curr. Diabetes Rep. 2013, 13, 362–371. [Google Scholar] [CrossRef]
- Sachdeva, M.M.; Cano, M.; Handa, J.T. Nrf2 signaling is impaired in the aging RPE given an oxidative insult. Exp. Eye Res. 2014, 119, 111–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, P.M.; Cheng, K.C.; Huang, J.Y.; Wang, S.Y.; Lin, Y.N.; Tseng, Y.T.; Hsieh, C.W.; Wung, B.S. Sulforaphane inhibits blue light-induced inflammation and apoptosis by upregulating the SIRT1/PGC-1α/Nrf2 pathway and autophagy in retinal pigment epithelial cells. Toxicol. Appl. Pharmacol. 2021, 421, 115545. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Yang, C.M.; Yang, C.H. Protective Effect of Astaxanthin on Blue Light Light-Emitting Diode-Induced Retinal Cell Damage via Free Radical Scavenging and Activation of PI3K/Akt/Nrf2 Pathway in 661W Cell Model. Mar. Drugs 2020, 18, 387. [Google Scholar] [CrossRef]
- Chen, W.J.; Wu, C.; Xu, Z.; Kuse, Y.; Hara, H.; Duh, E.J. Nrf2 protects photoreceptor cells from photo-oxidative stress induced by blue light. Exp. Eye Res. 2017, 154, 151–158. [Google Scholar] [CrossRef]
- Angst, J.; Oppenheim, Y.; Keller, R. Disulfirampsychose bei der Psoriasis-Behandlung. Dermatology 1959, 119, 238–240. [Google Scholar] [CrossRef]
- Ghoreschi, K.; Brück, J.; Kellerer, C.; Deng, C.; Peng, H.; Rothfuss, O.; Hussain, R.Z.; Gocke, A.R.; Respa, A.; Glocova, I.; et al. Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J. Exp. Med. 2011, 208, 2291–2303. [Google Scholar] [CrossRef]
- Treumer, F.; Zhu, K.; Gläser, R.; Mrowietz, U. Dimethylfumarate is a potent inducer of apoptosis in human T cells. J. Investig. Dermatol. 2003, 121, 1383–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Jong, R.; Bezemer, A.C.; Zomerdijk, T.P.; van de Pouw-Kraan, T.; Ottenhoff, T.H.; Nibbering, P.H. Selective stimulation of T helper 2 cytokine responses by the anti-psoriasis agent monomethylfumarate. Eur. J. Immunol. 1996, 26, 2067–2074. [Google Scholar] [CrossRef] [PubMed]
- Wallbrecht, K.; Drick, N.; Hund, A.C.; Schön, M.P. Downregulation of endothelial adhesion molecules by dimethylfumarate, but not monomethylfumarate, and impairment of dynamic lymphocyte-endothelial cell interactions. Exp. Dermatol. 2011, 20, 980–985. [Google Scholar] [CrossRef]
- Gerdes, S.; Shakery, K.; Mrowietz, U. Dimethylfumarate inhibits nuclear binding of nuclear factor kappaB but not of nuclear factor of activated T cells and CCAAT/enhancer binding protein beta in activated human T cells. Br. J. Dermatol. 2007, 156, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Meissner, M.; Doll, M.; Hrgovic, I.; Reichenbach, G.; König, V.; Hailemariam-Jahn, T.; Gille, J.; Kaufmann, R. Suppression of VEGFR2 expression in human endothelial cells by dimethylfumarate treatment: Evidence for anti-angiogenic action. J. Investig. Dermatol. 2011, 131, 1356–1364. [Google Scholar] [CrossRef] [Green Version]
- Meissner, M.; Valesky, E.M.; Kippenberger, S.; Kaufmann, R. Dimethyl fumarate—Only an anti-psoriatic medication? J. Der Dtsch. Dermatol. Ges. = J. Ger. Soc. Dermatol. JDDG 2012, 10, 793–801. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, G.; Zhang, J.; Ting, S.M.; Gonzales, N.; Aronowski, J. Dimethyl Fumarate Protects Brain From Damage Produced by Intracerebral Hemorrhage by Mechanism Involving Nrf2. Stroke 2015, 46, 1923–1928. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhao, S.; Fu, Y.; Yan, L.; Feng, Y.; Chen, Y.; Wu, Y.; Deng, Y.; Zhang, G.; Chen, Z.; et al. Computational repositioning of dimethyl fumarate for treating alcoholic liver disease. Cell Death Dis. 2020, 11, 641. [Google Scholar] [CrossRef]
- Kreuter, A.; Knierim, C.; Stücker, M.; Pawlak, F.; Rotterdam, S.; Altmeyer, P.; Gambichler, T. Fumaric acid esters in necrobiosis lipoidica: Results of a prospective noncontrolled study. Br. J. Dermatol. 2005, 153, 802–807. [Google Scholar] [CrossRef]
- Breuer, K.; Gutzmer, R.; Völker, B.; Kapp, A.; Werfel, T. Therapy of noninfectious granulomatous skin diseases with fumaric acid esters. Br. J. Dermatol. 2005, 152, 1290–1295. [Google Scholar] [CrossRef]
- Bomprezzi, R. Dimethyl fumarate in the treatment of relapsing–remitting multiple sclerosis: An overview. Ther. Adv. Neurol. Disord. 2015, 8, 20–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burness, C.B.; Deeks, E.D. Dimethyl fumarate: A review of its use in patients with relapsing-remitting multiple sclerosis. CNS Drugs 2014, 28, 373–387. [Google Scholar] [CrossRef]
- Linker, R.A.; Haghikia, A. Dimethyl fumarate in multiple sclerosis: Latest developments, evidence and place in therapy. Ther. Adv. Chronic Dis. 2016, 7, 198–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linker, R.A.; Gold, R. Dimethyl fumarate for treatment of multiple sclerosis: Mechanism of action, effectiveness, and side effects. Curr. Neurol. Neurosci. Rep. 2013, 13, 394. [Google Scholar] [CrossRef]
- Mills, E.A.; Ogrodnik, M.A.; Plave, A.; Mao-Draayer, Y. Emerging understanding of the mechanism of action for dimethyl fumarate in the treatment of multiple sclerosis. Front. Neurol. 2018, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Karasawa, Y.; Ishikawa, S.; Taguchi, M.; Muraoka, T.; Ito, M.; Takeuchi, M. Potential Phototoxicity of Indocyanine Green in Retinal Pigment Epithelial Cells after Angiography under Ambient Illumination. Oxidative Med. Cell. Longev. 2018, 2018, 6065285. [Google Scholar] [CrossRef]
- Glickman, R.D. Phototoxicity to the retina: Mechanisms of damage. Int. J. Toxicol. 2002, 21, 473–490. [Google Scholar] [CrossRef]
- Zhao, M.; Bai, Y.; Xie, W.; Shi, X.; Li, F.; Yang, F.; Sun, Y.; Huang, L.; Li, X. Interleukin-1β level is increased in vitreous of patients with neovascular age-related macular degeneration (nAMD) and polypoidal choroidal vasculopathy (PCV). PLoS ONE 2015, 10, e0125150. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, H.; Yamada, K.; Suzumura, A.; Kataoka, K.; Takayama, K.; Sugimoto, M.; Terasaki, H.; Kaneko, H. Caveolin-1 Promotes Cellular Senescence in Exchange for Blocking Subretinal Fibrosis in Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2020, 61, 21. [Google Scholar] [CrossRef]
- Kaneko, H.; Takayama, K.; Asami, T.; Ito, Y.; Tsunekawa, T.; Iwase, T.; Funahashi, Y.; Ueno, S.; Nonobe, N.; Yasuda, S.; et al. Cytokine profiling in the sub-silicone oil fluid after vitrectomy surgeries for refractory retinal diseases. Sci. Rep. 2017, 7, 2640. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Maugeri, G.; Bucolo, C.; Drago, F.; Rossi, S.; Di Rosa, M.; Imbesi, R.; D’Agata, V.; Giunta, S. Attenuation of high glucose-induced damage in RPE cells through p38 MAPK signaling pathway inhibition. Front. Pharmacol. 2021, 12, 684680. [Google Scholar] [CrossRef] [PubMed]
- Foresti, R.; Bucolo, C.; Platania, C.M.B.; Drago, F.; Dubois-Randé, J.-L.; Motterlini, R. Nrf2 activators modulate oxidative stress responses and bioenergetic profiles of human retinal epithelial cells cultured in normal or high glucose conditions. Pharmacol. Res. 2015, 99, 296–307. [Google Scholar] [CrossRef]
- Manai, F.; Amadio, M. Dimethyl Fumarate Triggers the Antioxidant Defense System in Human Retinal Endothelial Cells through Nrf2 Activation. Antioxidants 2022, 11, 1924. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, H.; Dridi, S.; Tarallo, V.; Gelfand, B.D.; Fowler, B.J.; Cho, W.G.; Kleinman, M.E.; Ponicsan, S.L.; Hauswirth, W.W.; Chiodo, V.A. DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 2011, 471, 325. [Google Scholar] [CrossRef] [Green Version]
- Ijima, R.; Kaneko, H.; Ye, F.; Takayama, K.; Nagasaka, Y.; Kataoka, K.; Funahashi, Y.; Iwase, T.; Kachi, S.; Kato, S. Suppression of Laser-Induced Choroidal Neovascularization by the Oral Medicine Targeting Histamine Receptor H4 in Mice. Transl. Vis. Sci. Technol. 2015, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Bao, S.; Du, Y.; Jiang, Z.; Wuliji, A.O.; Ren, X.; Zhang, C.; Chu, H.; Kong, L.; Ma, H. Antioxidant effects of Lycium barbarum polysaccharides on photoreceptor degeneration in the light-exposed mouse retina. Biomed. Pharmacother. 2018, 103, 829–837. [Google Scholar] [CrossRef]
IL-1β | IL-1ra | IL-2 | IL-4 | IL-5 | IL-6 | IL-7 | IL-8 | IL-9 | ||
BL (−) | DMF (−) | 0.24 ± 0.14 | 26.92 ± 15.78 | 5.68 ± 5.93 | 1.22 ± 1.12 | 26.87 ± 6.29 | 33.53 ± 15.60 | 6.08 ± 3.26 | 78.35 ± 70.11 | 4.49 ± 3.18 |
DMF 10 μM | 0.21 ± 0.12 | 32.23 ± 18.11 | 3.72 ± 4.05 | 1.03 ± 0.98 | 18.44 ± 6.85 | 41.80 ± 24.36 | 5.89 ± 3.88 | 78.17 ± 50.25 | 4.86 ± 1.95 | |
DMF 100 μM | 0.28 ± 0.15 | 18.55 ± 6.64 | 3.44 ± 3.17 | 0.95 ± 0.84 | 16.08 ± 6.80 | 44.86 ± 23.41 | 4.31 ± 3.83 | 66.05 ± 20.30 | 3.66 ± 2.10 | |
BL (+) | DMF (−) | 1.63 ± 1.28 | 380.72 ± 338.94 | 17.50 ± 6.04 | 4.46 ± 1.36 | 33.39 ± 10.21 | 37.99 ± 17.74 | 12.29 ± 4.33 | 72.13 ± 34.84 | 10.78 ± 2.05 |
DMF 10 μM | 1.62 ± 1.31 | 385.48 ± 367.52 | 15.93 ± 5.21 | 4.45 ± 1.40 | 29.20 ± 5.22 | 27.21 ± 10.96 | 6.69 ± 2.98 | 53.13 ± 22.07 | 8.67 ± 0.44 | |
DMF 100 μM | 2.00 ± 1.33 | 472.98 ± 342.23 | 14.86 ± 5.54 | 4.91 ± 1.56 | 25.59 ± 7.80 | 17.86 ± 5.18 | 4.57 ± 4.52 | 56.31 ± 28.77 | 8.55 ± 1.19 | |
IL-10 | IL-12(p70) | IL-13 | IL-15 | IL-17 | Eotaxin | FGF | G-CSF | GM-CSF | ||
BL (−) | DMF (−) | 0.06 ± 0.11 | 1.17 ± 0.42 | 0.95 ± 0.08 | 60.55 ± 71.66 | 5.05 ± 5.46 | 3.70 ± 1.88 | 62.50 ± 74.22 | 60.96 ± 43.60 | 4.36 ± 1.08 |
DMF 10 μM | 0.07 ± 0.10 | 0.82 ± 0.46 | 0.44 ± 0.31 | 43.00 ± 60.80 | 4.35 ± 4.43 | 3.65 ± 1.93 | 45.67 ± 57.60 | 55.81 ± 32.90 | 2.46 ± 1.50 | |
DMF 100 μM | 0.12 ± 0.23 | 1.00 ± 0.49 | 0.57 ± 0.54 | 24.53 ± 27.17 | 3.88 ± 3.94 | 3.44 ± 1.35 | 66.04 ± 59.46 | 56.96 ± 22.13 | 3.02 ± 1.57 | |
BL (+) | DMF (−) | 6.06 ± 9.09 | 2.82 ± 3.46 | 2.45 ± 2.12 | 124.97 ± 95.23 | 28.21 ± 5.84 | 5.97 ± 1.75 | 484.28 ± 167.33 | 108.66 ± 80.76 | 4.67 ± 2.36 |
DMF 10 μM | 3.38 ± 2.47 | 1.40 ± 1.13 | 1.77 ± 2.12 | 111.28 ± 82.12 | 24.85 ± 6.67 | 5.57 ± 1.34 | 524.37 ± 193.48 | 97.09 ± 72.19 | 4.11 ± 1.73 | |
DMF 100 μM | 1.72 ± 0.57 | 0.99 ± 0.13 | 1.40 ± 1.66 | 80.73 ± 60.96 | 25.65 ± 8.43 | 4.83 ± 1.40 | 553.46 ± 156.48 | 86.78 ± 69.68 | 3.04 ± 1.57 | |
IFMγ | IP-10 | MCP-1 | MIP-1α | MIP-1β | PDGF-bb | RANTES | TNFα | VEGF | ||
BL (−) | DMF (−) | 205.72 ± 204.71 | 52.84 ± 31.23 | 1205.78 ± 676.81 | 0.36 ± 0.19 | 2.52 ± 1.93 | 60.08 ± 32.90 | 2.36 ± 0.73 | 45.02 ± 46.59 | 663.92 ± 97.96 |
DMF 10 μM | 209.86 ± 167.70 | 51.41 ± 27.03 | 1273.79 ± 629.60 | 0.31 ± 0.10 | 3.08 ± 1.18 | 49.44 ± 25.67 | 2.56 ± 0.91 | 40.37 ± 34.27 | 612.72 ± 48.93 | |
DMF 100 μM | 84.21 ± 54.92 | 52.84 ± 26.46 | 747.09 ± 110.96 | 0.29 ± 0.10 | 1.92 ± 1.02 | 75.90 ± 44.63 | 2.90 ± 0.99 | 36.71 ± 37.35 | 487.48 ± 276.12 | |
BL (+) | DMF (−) | 100.81 ± 67.91 | 97.09 ± 13.72 | 661.41 ± 393.39 | 0.65 ± 0.14 | 4.89 ± 0.73 | 70.24 ± 36.67 | 9.20 ± 6.44 | 119.53 ± 27.45 | 919.70 ± 509.56 |
DMF 10 μM | 72.39 ± 39.10 | 87.09 ± 13.89 | 555.43 ± 248.22 | 0.61 ± 0.16 | 4.03 ± 0.76 | 77.70 ± 26.97 | 6.50 ± 2.72 | 108.57 ± 18.98 | 832.50 ± 503.70 | |
DMF 100 μM | 32.40 ± 11.02 | 87.43 ± 16.21 | 277.02 ± 102.51 | 0.64 ± 0.12 | 4.11 ± 0.75 | 70.92 ± 21.07 | 6.85 ± 3.63 | 102.93 ± 30.99 | 995.55 ± 99.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, H.; Takayama, K.; Yamada, K.; Suzumura, A.; Sato, T.; Nishio, Y.; Ito, M.; Ushida, H.; Nishiguchi, K.M.; Takeuchi, M.; et al. Dimethyl Fumarate Protects Retinal Pigment Epithelium from Blue Light-Induced Oxidative Damage via the Nrf2 Pathway. Antioxidants 2023, 12, 45. https://doi.org/10.3390/antiox12010045
Shimizu H, Takayama K, Yamada K, Suzumura A, Sato T, Nishio Y, Ito M, Ushida H, Nishiguchi KM, Takeuchi M, et al. Dimethyl Fumarate Protects Retinal Pigment Epithelium from Blue Light-Induced Oxidative Damage via the Nrf2 Pathway. Antioxidants. 2023; 12(1):45. https://doi.org/10.3390/antiox12010045
Chicago/Turabian StyleShimizu, Hideyuki, Kei Takayama, Kazuhisa Yamada, Ayana Suzumura, Tomohito Sato, Yoshiaki Nishio, Masataka Ito, Hiroaki Ushida, Koji M Nishiguchi, Masaru Takeuchi, and et al. 2023. "Dimethyl Fumarate Protects Retinal Pigment Epithelium from Blue Light-Induced Oxidative Damage via the Nrf2 Pathway" Antioxidants 12, no. 1: 45. https://doi.org/10.3390/antiox12010045
APA StyleShimizu, H., Takayama, K., Yamada, K., Suzumura, A., Sato, T., Nishio, Y., Ito, M., Ushida, H., Nishiguchi, K. M., Takeuchi, M., & Kaneko, H. (2023). Dimethyl Fumarate Protects Retinal Pigment Epithelium from Blue Light-Induced Oxidative Damage via the Nrf2 Pathway. Antioxidants, 12(1), 45. https://doi.org/10.3390/antiox12010045