Effects of Toxic Heavy Metal Salts on Oxidative Quality Deterioration in Ground Pork Model during Aerobic Display Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Arrangement
2.2. Raw Materials and Chemicals
2.3. Sample Preparation and Simulated Aerobic Display Condition
2.4. Analysis of Ground Pork with Toxic Heavy Metals
2.4.1. pH Value
2.4.2. Instrumental Color
2.4.3. Total Reducing Activity
2.4.4. Peroxide Value (POV)
2.4.5. Thiobarbituric Acid Reactive Substances (TBARS)
2.4.6. Protein Carbonyl Content
2.4.7. Thiol Content
2.5. Statistical Analysis
3. Results
3.1. Changes in pH and Color during Aerobic Display Storage
3.2. Change in Total Reducing Activity during Aerobic Display Storage
3.3. Lipid Oxidation during Aerobic Display Storage
3.4. Protein Oxidation during Aerobic Display Storage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korish, M.A.; Attia, Y.A. Evaluation of heavy metal content in feed, litter, meat, meat products, liver, and table eggs of chickens. Animals 2020, 10, 727. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Darwish, P.K.; Das, A.; Biswas, S. Hazards and safety issues of meat and mat products. In Food Safety and Human Health; Academic Press: Cambridge, MA, USA, 2019; pp. 145–168. [Google Scholar]
- Abou-Arab, A.A.K. Heavy metal contents in Egyptian meat and the role of detergent washing on their levels. Food Chem. Toxicol. 2001, 39, 593–599. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Geng, Z.; Liu, Y.; Guo, L.; Xiao, G. Spatial analysis of heavy metals in meat products in China during 2015–2017. Food Control 2019, 104, 174–180. [Google Scholar] [CrossRef]
- Cifuni, G.F.; Amici, A.; Contó, M.; Viola, P.; Failla, S. Effects of the hunting method on meat quality from fallow deer and wild boar and preliminary studies for predicting lipid oxidation using visible reflectance spectra. Eur. J. Wildl. Res. 2014, 60, 519–526. [Google Scholar] [CrossRef]
- Schuhmann-Irschik, I.; Sager, M.; Paulsen, P.; Tichy, A.; Bauer, F. Release of copper from embedded solid copper bullets into muscle and fat tissues of fallow deer (Dama dama), roe deer (Capreolus capreolus), and wild boar (Sus scrofa) and effect of copper content on oxidative stability of heat-processed meat. Meat Sci. 2015, 108, 21–27. [Google Scholar] [CrossRef]
- Šuran, J.; Prišć, M.; Rašić, D.; Sreboćan, E.; Crnić, A.P. Malondialdehyde and heavy metal concentrations in tissues of wild boar (Sus scrofa L.) from central Croatia. J. Environ. Sci. Health B Pestic. Food Contam. Agric. Wastes 2013, 48, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Min, B.; Ahn, D.U. Mechanism of lipid peroxidation in meat and meat products—A review. Food Sci. Biotechnol. 2005, 14, 152–163. [Google Scholar]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Valko, M.; Rhodes, C.J.; Moncola, J.; Izakovic, M.; Mazura, M. Review: Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem.-Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, S.; Ahn, D.U. Protein oxidation: Basic principles and implications for meat quality. Crit. Rev. Food Sci. Nutr. 2013, 53, 1191–1201. [Google Scholar] [CrossRef]
- USDA Foreign Agricultural Service. China, Peoples Republic of FAIRS Product Specific Maximum Levels of Contaminants in Foods in Global Agriculture Information Network. Released on 14 August 2006, No. CH6064; 2006. Available online: https://apps.fas.usda.gov/gainfiles/200608/146208660.pdf (accessed on 13 January 2022).
- EFSA. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Ham, Y.K.; Song, D.H.; Hwang, Y.J.; Lee, J.H.; Kim, H.W. The mineral composition of pork loins from finishing gilt and cull sow: A comparative study. J. Food Compos. Anal. 2021, 96, 103707. [Google Scholar] [CrossRef]
- AMSA. Meat Color Measurement Guidelines; American Meat Science Association: Champaign, IL, USA, 2012. [Google Scholar]
- Lee, M.; Cassens, R.G.; Fennema, O.R. Effect of metal ions on residual nitrite. J. Food Process. Preserv. 1981, 5, 191–205. [Google Scholar] [CrossRef]
- Kim, H.W.; Miller, D.K.; Yan, F.; Wang, W.; Cheng, H.; Kim, Y.H.B. Probiotic supplementation and fast freezing to improve quality attributes and oxidation stability of frozen chicken breast muscle. LWT Food Sci. Technol. 2017, 75, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Shantha, N.C.; Decker, E.A. Rapid, sensitive, iron-based spectrophotometric methods for determination of peroxide values of food lipids. J. AOAC Int. 1994, 77, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Meth. Enzymol. 1978, 30, 302–310. [Google Scholar]
- Soyer, A.; Özalp, B.; Dalmış, Ü.; Bilgin, V. Effects of freezing temperature and duration of frozen storage on lipid and protein oxidation in chicken meat. Food Chem. 2010, 120, 1025–1030. [Google Scholar] [CrossRef]
- Srinivasan, S.; Xiong, Y.L. Sulfhydryls in antioxidant-washed beef heart surimi. J. Muscle Food. 1997, 8, 251–263. [Google Scholar] [CrossRef]
- Jose, A.; Ray, J.G. Toxic heavy metals in human blood in relation to certain food and environmental samples in Kerala, South India. Environ. Sci. Pollut. Res. 2018, 25, 7946–7953. [Google Scholar] [CrossRef]
- Raghunath, R.; Tripathi, R.M.; Suseela, B.; Bhalke, S.; Shukla, V.K.; Puranik, V.D. Dietary intake of metlas by Mumbai adult population. Sci. Total Environ. 2006, 356, 62–68. [Google Scholar] [CrossRef]
- Sathyamoorthy, K.l.; Sivaruban, T.; Barathy, S. Assessment of heavy metal pollution and contaminants in the cattle meat. J. Ind. Pollut. Control 2016, 32, 350–355. [Google Scholar]
- Tichivangana, J.Z.; Morrissey, P.A. Metmyoglobin and inorganic metals as pro-oxidants in raw and cooked muscle systems. Meat Sci. 1985, 15, 107–116. [Google Scholar] [CrossRef]
- Genchi, G.; Lauria, G.; Catalano, A.; Carocci, A.; Sinicropi, M.S. The double face of metals: The intriguing case of chromium. Appl. Sci. 2021, 11, 638. [Google Scholar] [CrossRef]
- Liu, J.; Qu, W.; Kadiiska, M.B. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol. Appl. Pharmacol. 2009, 238, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Aflanie, I. Effect of heavy metal on malondialdehyde and advanced oxidation protein products concentration: A focus on arsenic, cadmium, and mercury. J. Med. Biol. Eng. 2015, 4, 332–337. [Google Scholar]
- Soladoye, O.P.; Juárez, M.L.; Aalhus, J.L.; Shand, P.; Estévez, M. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Compr. Rev. Food Sci. Food Saf. 2015, 14, 106–122. [Google Scholar] [CrossRef]
- Lund, M.N.; Hviid, M.S.; Caludi-Magnussen, C.; Skibsted, L.H. Effects of dietary soybean oil on lipid and protein oxidation in pork patties during chill storage. Meat Sci. 2008, 79, 727–733. [Google Scholar] [CrossRef]
- Nakyinsige, K.; Sazili, A.Q.; Aghwan, Z.A.; Zulkifli, I.; Goh, Y.M.; Abu Bakar, F.; Sarah, S.A. Development of microbial spoilage and lipid and protein oxidation in rabbit meat. Meat Sci. 2015, 108, 125–131. [Google Scholar] [CrossRef]
- Liu, C.; Bi, X.; Zhang, A.; Qi, B.; Yan, S. Preparation of an L-cysteine functionalized magnetic nanosorbent for the sensitive quantification of heavy metal ions in food by graphite furnace atomic absorption spectrometry. Anal. Lett. 2020, 53, 2079–2095. [Google Scholar] [CrossRef]
Heavy Metal | Used Salt Type | Target Concentration (mg/kg) | Initial Concentration in Ground Pork (μg/kg) |
---|---|---|---|
Arsenic (As) | As2O3 | 0.025 and 0.05 | - (1) |
Cadmium (Cd) | CdCl2 | 0.025 and 0.05 | - |
Chromium (Cr) | K2Cr2O7 | 0.5 and 1.0 | 15.19 ± 7.46 |
Lead (Pb) | Pb(NO3)2 | 0.05 and 0.10 | - |
Measured Variables | Treatment Effect (T) | Storage Effect (S) | Interaction (T × S) |
---|---|---|---|
pH value | NS (1) | 0.035 | NS |
CIE L* (lightness) | NS | NS | NS |
CIE a* (redness) | 0.001 | 0.035 | NS |
CIE b* (yellowness) | NS | <0.001 | NS |
Total color difference (∆E) | NS | NS | NS |
Total reducing activity | 0.001 | <0.001 | NS |
Hue angle (discoloration) | <0.001 | <0.001 | NS |
Peroxide value | 0.033 | <0.001 | NS |
TBARS | <0.001 | <0.001 | NS |
Carbonyls | 0.004 | <0.001 | 0.016 |
Thiols | NS | 0.031 | NS |
Effect | pH | Instrumental Color Characteristic | ||||
CIE L* (Lightness) | CIE a* (Redness) | CIE b* (Yellowness) | Hue Angle (Discoloration) | Total Color Difference (∆E) | ||
Treatment effect (T) | ||||||
Control | 5.96 ± 0.03 | 53.24 ± 0.57 | 13.37 ± 0.32a | 10.96 ± 0.56 | 39.18 ± 1.69b | 3.74 ± 0.35 |
As 0.025 mg/kg | 5.82 ± 0.04 | 53.93 ± 0.44 | 12.84 ± 0.35ab | 11.41 ± 0.60 | 41.56 ± 1.47a | 3.19 ± 0.17 |
As 0.05 mg/kg | 5.84 ± 0.03 | 53.80 ± 0.52 | 12.09 ± 0.31c | 11.42 ± 0.46 | 43.11 ± 1.21a | 3.92 ± 0.51 |
Cd 0.025 mg/kg | 5.84 ± 0.04 | 52.97 ± 0.39 | 12.59 ± 0.25bc | 11.13 ± 0.49 | 41.32 ± 1.29a | 3.05 ± 0.22 |
Cd 0.05 mg/kg | 5.87 ± 0.04 | 54.03 ± 0.23 | 12.44 ± 0.31bc | 11.34 ± 0.47 | 42.21 ± 1.37a | 3.08 ± 0.30 |
Cr 0.5 mg/kg | 5.88 ± 0.04 | 54.86 ± 0.73 | 12.30 ± 0.44bc | 11.13 ± 0.45 | 42.79 ± 1.92a | 3.92 ± 0.45 |
Cr 1.0 mg/kg | 5.85 ± 0.04 | 53.91 ± 0.86 | 12.02 ± 0.42c | 11.35 ± 0.35 | 42.58 ± 1.17a | 2.81 ± 0.22 |
Pb 0.05 mg/kg | 5.82 ± 0.04 | 54.11 ± 0.34 | 12.34 ± 0.28bc | 11.48 ± 0.67 | 42.73 ± 1.31a | 2.95 ± 0.48 |
Pb 0.1 mg/kg | 5.85 ± 0.04 | 54.66 ± 0.59 | 12.53 ± 0.23bc | 11.54 ± 0.50 | 42.27 ± 1.52a | 3.93 ± 0.53 |
pH | CIE L* (Lightness) | CIE a* (Redness) | CIE b* (Yellowness) | Hue Angle (Discoloration) | Total Color Difference (∆E) | |
Storage effect (S) | ||||||
Day 1 | 5.87 ± 0.01xy | 54.49 ± 0.36 | 12.76 ± 0.17x | 9.63 ± 0.13z | 37.06 ± 0.58z | - |
Day 4 | 5.82 ± 0.01y | 53.61 ± 0.24 | 12.44 ± 0.61xy | 11.90 ± 0.13y | 43.68 ± 0.44y | 3.22 ± 0.21 |
Day 7 | 5.89 ± 0.02x | 53.74 ± 0.23 | 12.31 ± 0.12y | 12.40 ± 0.13x | 45.17 ± 0.43x | 3.58 ± 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ham, Y.-K.; Song, D.-H.; Kim, H.-W. Effects of Toxic Heavy Metal Salts on Oxidative Quality Deterioration in Ground Pork Model during Aerobic Display Storage. Antioxidants 2022, 11, 1310. https://doi.org/10.3390/antiox11071310
Ham Y-K, Song D-H, Kim H-W. Effects of Toxic Heavy Metal Salts on Oxidative Quality Deterioration in Ground Pork Model during Aerobic Display Storage. Antioxidants. 2022; 11(7):1310. https://doi.org/10.3390/antiox11071310
Chicago/Turabian StyleHam, Youn-Kyung, Dong-Heon Song, and Hyun-Wook Kim. 2022. "Effects of Toxic Heavy Metal Salts on Oxidative Quality Deterioration in Ground Pork Model during Aerobic Display Storage" Antioxidants 11, no. 7: 1310. https://doi.org/10.3390/antiox11071310
APA StyleHam, Y.-K., Song, D.-H., & Kim, H.-W. (2022). Effects of Toxic Heavy Metal Salts on Oxidative Quality Deterioration in Ground Pork Model during Aerobic Display Storage. Antioxidants, 11(7), 1310. https://doi.org/10.3390/antiox11071310