Heracleum persicum Essential Oil Nanoemulsion: A Nanocarrier System for the Delivery of Promising Anticancer and Antioxidant Bioactive Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals, Reagents and Cell Lines
2.2. Essential Oil Extraction Procedure
2.3. Nanoemulsion Preparation, Identification and Characterization
2.4. Anticancer Assay
2.5. Cell Migration Assay
2.6. Gene Expression of Caspase 3
2.7. Flow Cytometry-Based Assay
2.8. In Vivo Assay
2.9. Histopathological Analysis and Tissue Staining
2.10. Antioxidant Gene Expression in Mice Liver
2.11. Statistical Analyses
3. Results and Discussion
3.1. HAE-NE Characterization and Identification
3.2. Migration Analysis
3.3. In Vitro Gene Expression Profiling of Caspase 3
3.4. Flow Cytometry Analysis
3.5. Histopathological Alterations and Morphometric Analysis
3.6. Antioxidant Gene Profiling In Vitro
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majidi, Z.; Lamardi, S.S. Phytochemistry and biological activities of Heracleum persicum: A review. J. Integr. Med. 2018, 16, 223–235. [Google Scholar] [CrossRef]
- Mehmandost, N.; García-Valverde, M.T.; Soriano, M.L.; Goudarzi, N.; Lucena, R.; Chamjangali, M.A.; Cardenas, S. Heracleum persicum based biosorbent for the removal of paraquat and diquat from waters. J. Environ. Chem. Eng. 2020, 8, 104481. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Dinparast, L.; Zengin, G. The genus Heracleum: A comprehensive review on its phytochemistry, pharmacology, and ethnobotanical values as a useful herb. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1018–1039. [Google Scholar] [PubMed]
- Majidi, Z. Effects of Heracleum persicum hydroalcoholic extract on insulin, serum anti-oxidant enzymes, glucose, and lipid profiles in alloxan-induced diabetic rats. Iran. J. Med. Sci. 2020, 45, 199–206. [Google Scholar] [PubMed]
- Akbaribazm, M.; Goodarzi, N.; Rahimi, M.; Naseri, L.; Khazaei, M. Anti-inflammatory, anti-oxidative and anti-apoptotic effects of Heracleum persicum L. extract on rats with gentamicin-induced nephrotoxicity. Asian Pac. J. Trop. Biomed. 2021, 11, 47–58. [Google Scholar]
- Alkan, E.E.; Celik, I. The therapeutics effects and toxic risk of Heracleum persicum Desf. extract on streptozotocin-induced diabetic rats. Toxicol. Rep. 2018, 5, 919–926. [Google Scholar] [CrossRef]
- Hajhashemi, V.; Sajjadi, S.E.; Heshmati, M. Anti-inflammatory and analgesic properties of Heracleum persicum essential oil and hydroalcoholic extract in animal models. J. Ethnopharmacol. 2009, 124, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Sahoo, S.; Tripathy, K.; Singh, Y.D.; Sarma, M.K.; Babu, P.J.; Singh, M.C. Essential oils and their pharmacotherapeutics applications in human diseases. Adv. Tradit. Med. 2020, 22, 1–15. [Google Scholar]
- Ahmad, A.; Elisha, I.L.; van Vuuren, S.; Viljoen, A. Volatile phenolics: A comprehensive review of the anti-infective properties of an important class of essential oil constituents. Phytochemistry 2021, 190, 112864. [Google Scholar]
- Wani, A.R.; Yadav, K.; Khursheed, A.; Rather, M.A. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microb. Pathog. 2021, 152, 104620. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.C.S.; Ferreira, A.S.M.; Dias, A.; Sárria, M.P.; Gomes, A.C. Nanotechnology-inspired bionanosystems for valorization of natural origin extracts. Sustain. Agric. Rev. 2020, 44, 47–71. [Google Scholar]
- Sharma, M.; Grewal, K.; Jandrotia, R.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed. Pharmacother. 2022, 146, 112514. [Google Scholar]
- Sheth, T.; Seshadri, S.; Prileszky, T.; Helgeson, M.E. Multiple nanoemulsions. Nat. Rev. Mater. 2020, 5, 214–228. [Google Scholar]
- Das, S.S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G.Z.J.P. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers 2020, 12, 1397. [Google Scholar] [CrossRef]
- Marzuki, N.H.C.; Wahab, R.A.; Hamid, M.A. An overview of nanoemulsion: Concepts of development and cosmeceutical applications. Biotechnol. Biotechnol. Equip. 2019, 33, 779–797. [Google Scholar] [CrossRef] [Green Version]
- López-Bascón, M.; De Castro, M.L. Soxhlet extraction. In Liquid-Phase Extraction; Elsevier: Amsterdam, The Netherlands, 2020; pp. 327–354. [Google Scholar]
- Shoorvarzi, S.N.; Shahraki, F.; Shafaei, N.; Karimi, E.; Oskoueian, E. Citrus aurantium L. bloom essential oil nanoemulsion: Synthesis, characterization, cytotoxicity, and its potential health impacts on mice. J. Food Biochem. 2020, 44, e13181. [Google Scholar] [CrossRef] [PubMed]
- Mehrabanjoubani, P.; Nohooji, M.G.; Karimi, E.; Abdolzadeh, A. The differences between Froriepia subpinnata (Ledeb.) Baill. and Pimpinella anisum L. commonly named as anarijeh based on major components of the essential oil; a marker for resolve ambiguities. J. Med. Plants 2021, 20, 59–71. [Google Scholar] [CrossRef]
- Charmforoshan, E.; Karimi, E.; Oskoueian, E.; Es-Haghi, A.; Iranshahi, M. Inhibition of human breast cancer cells (MCF-7 cell line) growth via cell proliferation, migration, and angiogenesis by auraptene of Ferula szowitsiana root extract. J. Food Meas. Charact. 2019, 13, 2644–2653. [Google Scholar] [CrossRef]
- Sajjadi, M.; Karimi, E.; Oskoueian, E.; Iranshahi, M.; Neamati, A. Galbanic acid: Induced antiproliferation in estrogen receptor-negative breast cancer cells and enhanced cellular redox state in the human dermal fibroblasts. J. Biochem. Mol. Toxicol. 2019, 33, e22402. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Zhao, W.; Le, H.H.; McQuade, R.; Furness, J.B.; Dunshea, F.R. Dietary betaine improves intestinal barrier function and ameliorates the impact of heat stress in multiple vital organs as measured by evans blue dye in broiler chickens. Animals 2020, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Cardiff, R.D.; Miller, C.H.; Munn, R.J. Manual hematoxylin and eosin staining of mouse tissue sections. Cold Spring Harb. Protoc. 2014, 2014, 655–658. [Google Scholar] [CrossRef] [PubMed]
- Beyrami, M.; Karimi, E.; Oskoueian, E. Synthesized chrysin-loaded nanoliposomes improves cadmium-induced toxicity in mice. Environ. Sci. Pollut. Res. 2020, 27, 40643–40651. [Google Scholar] [CrossRef] [PubMed]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Sefidkon, F.; Dabiri, M.; Mohammad, N. Analysis of the oil of Heracleum persicum L. (leaves and flowers). J. Essent. Oil Res. 2002, 14, 295–297. [Google Scholar] [CrossRef]
- Asgarpanah, J.; Mehrabani, G.D.; Ahmadi, M.; Ranjbar, R.; Ardebily, M.S.-A. Chemistry, pharmacology and medicinal properties of Heracleum persicum Desf. Ex Fischer: A review. J. Med. Plants Res. 2012, 6, 1813–1820. [Google Scholar]
- Radjabian, T.; Salimi, A.; Rahmani, N.; Shockravi, A.; Mozaffarian, V. Essential oil composition of some wild populations of Heracleum persicum Desf. Ex Fischer growing in Iran. J. Essent. Oil Bear. Plants 2013, 16, 841–849. [Google Scholar] [CrossRef]
- Firuzi, O.; Asadollahi, M.; Gholami, M.; Javidnia, K. Composition and biological activities of essential oils from four Heracleum species. Food Chem. 2010, 122, 117–122. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar]
- Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils—Present status and future perspectives. Medicines 2017, 4, 58. [Google Scholar] [CrossRef] [Green Version]
- Rios, J.-L. Essential oils: What they are and how the terms are used and defined. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 3–10. [Google Scholar]
- Koedoot, E.; Fokkelman, M.; Rogkoti, V.-M.; Smid, M.; van de Sandt, I.; de Bont, H.; Pont, C.; Klip, J.E.; Wink, S.; Timmermans, M.A. Uncovering the signaling landscape controlling breast cancer cell migration identifies novel metastasis driver genes. Nat. Commun. 2019, 10, 1–16. [Google Scholar]
- Thakuri, P.S.; Gupta, M.; Singh, S.; Joshi, R.; Glasgow, E.; Lekan, A.; Agarwal, S.; Luker, G.D.; Tavana, H. Phytochemicals inhibit migration of triple negative breast cancer cells by targeting kinase signaling. BMC Cancer 2020, 20, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moukette, B.M.; Castelão-Baptista, J.P.; Ferreira, L.; Silva, A.M.; Simões, R.F.; Cabral, C.; Pieme, C.A.; Ngogang, J.Y.; Sardão, V.A.; Oliveira, P.J. Afrostyrax lepidophyllus Mildbr. and Monodora myristica (Gaertn.) dunal extracts decrease doxorubicin cytotoxicity on H9c2 cardiomyoblasts. Evid.-Based Complement. Altern. Med. 2021, 2021, 8858165. [Google Scholar] [CrossRef] [PubMed]
- Fazelifar, P.; Tabrizi, M.H.; Rafiee, A. The Arachis hypogaea essential oil nanoemulsion as an efficient safe apoptosis inducer in human lung cancer cells (A549). Nutr. Cancer 2021, 73, 1059–1067. [Google Scholar] [CrossRef] [PubMed]
- Javanshir, A.; Karimi, E.; Maragheh, A.D.; Tabrizi, M.H. The antioxidant and anticancer potential of Ricinus communis L. essential oil nanoemulsions. J. Food Meas. Charact. 2020, 14, 1356–1365. [Google Scholar] [CrossRef]
- Mbaveng, A.T.; Fotso, G.W.; Ngnintedo, D.; Kuete, V.; Ngadjui, B.T.; Keumedjio, F.; Andrae-Marobela, K.; Efferth, T. Cytotoxicity of epunctanone and four other phytochemicals isolated from the medicinal plants Garcinia epunctata and Ptycholobium contortum towards multi-factorial drug resistant cancer cells. Phytomedicine 2018, 48, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Trang, D.T.; Hoang, T.K.V.; Nguyen, T.T.M.; Van Cuong, P.; Dang, N.H.; Dang, H.D.; Quang, T.N.; Dat, N.T. Essential oils of lemongrass (Cymbopogon citratus Stapf) induces apoptosis and cell cycle arrest in A549 lung cancer cells. BioMed Res. Int. 2020, 2020, 5924856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushwaha, P.P.; Vardhan, P.S.; Kapewangolo, P.; Shuaib, M.; Prajapati, S.K.; Singh, A.K.; Kumar, S. Bulbine frutescens phytochemical inhibits notch signaling pathway and induces apoptosis in triple negative and luminal breast cancer cells. Life Sci. 2019, 234, 116783. [Google Scholar] [CrossRef]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Ringuet, M.; Furness, J.B.; Dunshea, F.R. Betaine and antioxidants improve growth performance, breast muscle development and ameliorate thermoregulatory responses to cyclic heat exposure in broiler chickens. Animals 2018, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- Panahi, Y.; Dadjou, Y.; Pishgoo, B.; Akbari, A.; Sahebkar, A. Antioxidant activity of Heracleum persicum fruit extract: Evidence from a randomized controlled trial. J. Diet. Suppl. 2016, 13, 530–537. [Google Scholar] [CrossRef]
Gene | Forward (5′→3′) | Reverse (5′→3′) | Accession Number | |
---|---|---|---|---|
MDA-MB231 cell line | Caspase-3 | CTGGACTGTGGCATTGAGAC | ACAAAGCGACTGGATGAACC | NM_001284409 |
GAPDH 1 | GAAGGTGAAGGTCGGAGTC | GAAGATGGTGATGGGATTTC | NM002046 | |
Mice tissue | SOD | GAGACCTGGGCAATGTGACT | GTTTACTGCGCAATCCCAAT | NM_011434 |
CAT | ACATGGTCTGGGACTTCTGG | CAAGTTTTTGATGCCCTGGT | NM_009804 | |
GPx | CACAGTCCACCGTGTATGCC | GTGTCCGAACTGATTGCACG | NM_008160 | |
GAPDH | GACTTCAACAGCAACTCCCAC | TCCACCACCCTGTTGCTGTA | NM_001289726 |
Peak | Compound | Percentage |
---|---|---|
1 | (E)-anethole | 57.9 |
2 | terpinolene | 13.8 |
3 | ɣ-terpinene | 8.1 |
4 | myrcene | 6.8 |
5 | hexyl butyrate | 5.2 |
6 | octyl butanoate | 4.5 |
7 | octyl acetate | 3.7 |
0 mg/kg Body Weight | 10 mg/kg Body Weight | 20 mg/kg Body Weight | SEM | |
---|---|---|---|---|
Villus Height (µm) | 322 | 341 | 362 | 3.89 |
Villus Width (µm) | 68 | 76 | 94 | 4.38 |
Crypt Depth (µm) | 71 | 76 | 75 | 5.94 |
Goblet Cells | 2.3 | 3.1 | 3.8 | 0.29 |
0 mg/kg Body Weight | 10 mg/kg Body Weight | 20 mg/kg Body Weight | SEM 1 | |
---|---|---|---|---|
SOD 2 | 1 c | 1.9 b | 2.8 a | 0.06 |
CAT | 1 c | 1.6 b | 2.3 a | 0.08 |
GPx | 1 c | 1.5 b | 1.9 a | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashlouei, S.G.; Karimi, E.; Zareian, M.; Oskoueian, E.; Shakeri, M. Heracleum persicum Essential Oil Nanoemulsion: A Nanocarrier System for the Delivery of Promising Anticancer and Antioxidant Bioactive Agents. Antioxidants 2022, 11, 831. https://doi.org/10.3390/antiox11050831
Bashlouei SG, Karimi E, Zareian M, Oskoueian E, Shakeri M. Heracleum persicum Essential Oil Nanoemulsion: A Nanocarrier System for the Delivery of Promising Anticancer and Antioxidant Bioactive Agents. Antioxidants. 2022; 11(5):831. https://doi.org/10.3390/antiox11050831
Chicago/Turabian StyleBashlouei, Shima Ghareh, Ehsan Karimi, Mohsen Zareian, Ehsan Oskoueian, and Majid Shakeri. 2022. "Heracleum persicum Essential Oil Nanoemulsion: A Nanocarrier System for the Delivery of Promising Anticancer and Antioxidant Bioactive Agents" Antioxidants 11, no. 5: 831. https://doi.org/10.3390/antiox11050831
APA StyleBashlouei, S. G., Karimi, E., Zareian, M., Oskoueian, E., & Shakeri, M. (2022). Heracleum persicum Essential Oil Nanoemulsion: A Nanocarrier System for the Delivery of Promising Anticancer and Antioxidant Bioactive Agents. Antioxidants, 11(5), 831. https://doi.org/10.3390/antiox11050831