Extraction of Bioactive Metabolites from Achillea millefolium L. with Choline Chloride Based Natural Deep Eutectic Solvents: A Study of the Antioxidant and Antimicrobial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Samples
2.2. Preparation and Characterisation of the Natural Deep Eutectic Solvents (NADES)
2.3. Ultrasound-Assisted Extraction (UAE) of Bioactive Compounds
2.4. UHPLC-MS and HPLC-UV Identification and Quantification of Individual Compounds
2.5. Spectrophotometric Measurements
2.6. Antimicrobial Activity of A. millefolium Extracts
2.6.1. Microorganisms and Preparation of the Inoculum
2.6.2. Agar Dilution Method
2.6.3. Disc Diffusion Method
2.7. Statistical Analysis
3. Results and Discussion
3.1. Characterisation of NADES; Density and Viscosity Measurements
3.2. Extraction of the Phenolic Compounds of A. millefolium with NADES, and Evaluation of Their Extraction Efficiency
3.3. Antibacterial and Antifungal Activity of the Obtained Extracts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohammadhosseini, M.; Sarker, S.D.; Akbarzadeh, A. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J. Ethnopharmacol. 2017, 199, 257–315. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, N.; Babaei, K.; Farsaraei, S.; Moghaddam, M.; Ghasemi Pirbalouti, A. Changes in essential oil compositions, total phenol, flavonoids and antioxidant capacity of Achillea millefolium at different growth stages. Ind. Crop. Prod. 2020, 152, 112570. [Google Scholar] [CrossRef]
- Villanueva-Bermejo, D.; Zahran, F.; Troconis, D.; Villalva, M.; Reglero, G.; Fornari, T. Selective precipitation of phenolic compounds from Achillea millefolium L. extracts by supercritical anti-solvent technique. J. Supercrit. Fluids 2017, 120, 52–58. [Google Scholar] [CrossRef]
- Applequist, W.L.; Moerman, D.E. Yarrow (Achillea millefolium L.): A Neglected Panacea? A Review of Ethnobotany, Bioactivity, and Biomedical Research. Econ. Bot. 2011, 65, 209–225. [Google Scholar] [CrossRef]
- Daniel, P.S.; Lourenço, E.L.B.; Sete da Cruz, R.M.; De Souza Gonçalves, C.H.; Das Almas, L.R.M.; Hoscheid, J.; da Silva, C.; Jacomassi, E.; Brum Junior, L.; Alberton, O. Composition and antimicrobial activity of essential oil of yarrow (Achillea millefolium L.). Aust. J. Crop. Sci. 2020, 14, 545–550. [Google Scholar] [CrossRef]
- Becker, L.; Zaiter, A.; Petit, J.; Zimmer, D.; Karam, M.C.; Baudelaire, E.; Scher, J.; Dicko, A. Improvement of antioxidant activity and polyphenol content of Hypericum perforatum and Achillea millefolium powders using successive grinding and sieving. Ind. Crop. Prod. 2016, 87, 116–123. [Google Scholar] [CrossRef]
- Villalva, M.; Jaime, L.; Villanueva-Bermejo, D.; Lara, B.; Fornari, T.; Reglero, G.; Santoyo, S. Supercritical anti-solvent fractionation for improving antioxidant and anti-inflammatory activities of an Achillea millefolium L. extract. Food Res. Int. 2019, 115, 128–134. [Google Scholar] [CrossRef]
- Vitalini, S.; Beretta, G.; Iriti, M.; Orsenigo, S.; Basilico, N.; Dall’Acqua, S.; Iorizzi, M.; Fico, G. Phenolic compounds from Achillea millefolium L. and their bioactivity. Acta Biochim. Pol. 2011, 58, 203–209. [Google Scholar] [CrossRef]
- Generalić Mikinić, I.; Skroza, D.; Ljubenkov, I.; Krstulović, L.; Smole Možina, S.; Katalinić, V. Phenolic Acids Profile, Antioxidant and Antibacterial Activity of Chamomile, Common Yarrow and Immortelle (Asteraceae). Nat. Prod. Commun. 2014, 9, 1745–1748. [Google Scholar] [CrossRef] [Green Version]
- Stojanović, G.; Radulović, N.; Hashimoto, T.; Palić, R. In vitro antimicrobial activity of extracts of four Achillea species: The composition of Achillea clavennae L. (Asteraceae) extract. J. Ethnopharmacol. 2005, 101, 185–190. [Google Scholar] [CrossRef]
- Verma, R.S.; Joshi, N.; Padalia, R.C.; Goswami, P.; Singh, V.R.; Chauhan, A.; Verma, S.K.; Iqbal, H.; Verma, R.K.; Chanda, D.; et al. Chemical Composition and allelopathic, antibacterial, antifungal and in vitro acetylcholinesterase ingibitory activities of yarrow (Achillea millefolium L.) native in India. Ind. Crop. Prod. 2017, 104, 144–155. [Google Scholar] [CrossRef]
- Georgieva, L.; Gadjalova, A.; Mihaylova, D.; Pavlov, A. Achillea millefolium L.—Phytochemical profile and in vitro antioxidant activity. Int. Food Res. J. 2015, 22, 1347–1352. [Google Scholar]
- Pereira, J.M.; Peixoto, V.; Teixeira, A.; Sousa, D.; Barros, L.; Ferreira, I.C.F.R.; Vasconcelos, M.H. Achillea millefolium L. hydroethanolic extract inhibits growth of human tumor cell lines by interfering with cell cycle and inducing apoptosis. Food Chem. Toxicol. 2018, 118, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Tadić, V.; Arsić, I.; Zvezdanović, J.; Zugić, A.; Cvetković, D.; Pavkov, S. The estimation of the traditionally used yarrow (Achillea millefolium L. Asteraceae) oil extracts with anti-inflamatory potential in topical application. J. Ethnopharmacol. 2017, 199, 138–148. [Google Scholar] [CrossRef]
- Dias, M.I.; Barros, L.; Dueñas, M.; Pereira, E.; Carvalho, A.M.; Alves, R.C.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Chemical composition of wild and commercial Achillea millefolium L. and bioactivity of the methanolic extract, infusion and decoction. Food Chem. 2013, 141, 4152–4160. [Google Scholar] [CrossRef]
- Milutinović, M.; Radovanović, N.; Ćorović, M.; Šiler-Marinković, S.; Rajilić-Stojanović, M.; Dimitrijević-Branković, S. Optimisation of microwave-assisted extraction parameters for antioxidants from waste Achillea millefolium dust. Ind. Crop. Prod. 2015, 77, 333–341. [Google Scholar] [CrossRef]
- Vladić, J.; Jakovljević, M.; Molnar, M.; Vidović, S.; Tomić, M.; Drinić, Z.; Jokić, S. Valorization of yarrow (Achillea millefolium L.) by-product through application of subcritical water extraction. Molecules 2020, 25, 1878. [Google Scholar] [CrossRef] [Green Version]
- Ivanović, M.; Islamčević Razboršek, M.; Kolar, M. Innovative Extraction Techniques Using Eutectic Solvents and Analytical Methods for the Isolation and Characterization of Natural Bioactive Compounds from Plant Material. Plants 2020, 9, 1428. [Google Scholar] [CrossRef]
- Radošević, K.; Cvjetko Bubalo, M.; Gaurina Srček, V.; Grgas, D.; Landeka Dragičević, T.; Radojčić Redovniković, I. Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. Ecotoxicol. Environ. Saf. 2015, 112, 46–53. [Google Scholar] [CrossRef]
- Razboršek, M.I.; Ivanović, M.; Krajnc, P.; Kolar, M. Choline Chloride Based Natural Deep Eutectic Solvents as Extraction Media for Extracting Phenolic Compounds from Chokeberry (Aronia melanocarpe). Molecules 2020, 25, 1619. [Google Scholar] [CrossRef] [Green Version]
- Torregrosa-Crespo, J.; Marset, X.; Guillena, G.; Ramón, D.J.; Martínez-Espinosa, R.M. New guidelines for testing “Deep eutectic solvents” toxicity and their effects on the environment and living beings. Sci. Total Environ. 2020, 704, 135382. [Google Scholar] [CrossRef]
- Luo, Q.; Zhang, J.R.; Li, H.-B.; Wu, D.T.; Geng, F.; Corke, H.; Wei, X.L.; Gan, R.Y. Green extraction of antioxidant polyphenols from green tea (Camellia sinensis). Antioxidants 2020, 9, 785. [Google Scholar] [CrossRef]
- Ivanović, M.; Albreht, A.; Krajnc, P.; Vovk, I.; Islamčević Razboršek, M. Sustainable ultrasound-assisted extraction of valuable phenolics from inflorescences of Helichrysum arenarium L. using natural deep eutectic solvents. Ind. Crop. Prod. 2020, 160, 113102. [Google Scholar] [CrossRef]
- Peng, X.; Duan, M.H.; Yao, X.H.; Zhang, Y.H.; Zhao, C.J.; Zu, Y.G.; Fu, Y.J. Green extraction of five target phenolic acids from Lonicerae japonicae Flos with deep eutectic solvent. Sep. Purif. Technol. 2016, 157, 249–257. [Google Scholar] [CrossRef]
- Yin, X.-S.; Zhong, Z.-F.; Bian, G.-L.; Cheng, X.-J.; Li, D.-Q. Ultra-rapid, enhanced and eco-friendly extraction of four main flavonoids from the seeds of Oroxylum indicum by deep eutectic solvents combined with tissue-smashing extraction. Food Chem. 2020, 319, 126555. [Google Scholar] [CrossRef]
- Alañón, M.E.; Ivanović, M.; Pimentel-Mora, S.; Borrás-Linares, I.; Arráez-Román, D.; Segura-Carretero, A. A novel sustainable approach for the extraction of value-added compounds from Hibiscus sabdariffa L. calyces by natural deep eutectic solvents. Food Res. Int. 2020, 137, 109646. [Google Scholar] [CrossRef]
- Panić, M.; Gunjević, V.; Cravotto, G.; Radojčić Redovniković, I. Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using NADES. Food Chem. 2019, 300, 125185. [Google Scholar] [CrossRef]
- Ivanović, M.; Alañón, M.E.; Arráez-Román, D.; Segura-Carretero, A. Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents. Food Res. Int. 2018, 111, 67–76. [Google Scholar] [CrossRef]
- Yu, L.; Cao, L.; Chang, Y.H.; Duan, C.J.; Liu, C.; Zhao, X.L.; Yue, G.L.; Wang, X.Q.; Fu, Y.J. Enhanced extraction performance of iridoids, phenolic acids from Eucommia ulmoides leaves by tailor-made ternary deep eutectic solvent. Microchem. J. 2021, 161, 105788. [Google Scholar] [CrossRef]
- Mansinhos, I.; Gonçalves, S.; Rodríguez-Solana, R.; Ordóñez-Díaz, J.L.; Moreno-Rojas, J.M.; Romano, A. Ultrasonic-assisted extraction and natural deep eutectic solvents combination: A green strategy to improve the recovery of phenolic compounds from Lavandula pedunculata subsp. lusitanica (chaytor) franco. Antioxidants 2021, 10, 582. [Google Scholar] [CrossRef]
- Roy, V.C.; Ho, T.C.; Lee, H.J.; Park, J.S.; Nam, S.Y.; Lee, H.; Getachew, A.T.; Chun, B.S. Extraction of astaxanthin using ultrasound-assisted natural deep eutectic solvents from shrimp wastes and its application in bioactive films. J. Clean. Prod. 2021, 284, 125417. [Google Scholar] [CrossRef]
- Tong, X.; Yang, J.; Zhao, Y.; Wan, H.; He, Y.; Zhang, L.; Wan, H.; Li, C. Greener extraction process and enhanced in vivo bioavailability of bioactive components from Carthamus tinctorius L. by natural deep eutectic solvents. Food Chem. 2021, 348, 129090. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Ivanović, M.; Makoter, K.; Islamčević Razbošek, M. Comparative study of chemical composition and antioxidant activity of essential oils and crude extracts of four characteristic zingiberaceae herbs. Plants 2021, 10, 501. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- EUCAST of the ESCMID. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin. Microbiol. Infect. 2000, 6, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Ortez, J.H. Disk diffusion testing. In Manual of Antimicrobial Suscetibilitytesting; American Society for Microbiology: Washington, DC, USA, 2005; pp. 39–53. ISBN 1555813496. [Google Scholar]
- Cunha, S.C.; Fernandes, J.O. Extraction techniques with deep eutectic solvents. TrAC Trends Anal. Chem. 2018, 105, 225–239. [Google Scholar] [CrossRef]
- Agieienko, V.; Buchner, R. Densities, Viscosities, and Electrical Conductivities of Pure Anhydrous Reline and Its Mixtures with Water in the Temperature Range (293.15 to 338.15) K. J. Chem. Eng. Data 2019, 64, 4763–4774. [Google Scholar] [CrossRef]
- Yadav, A.; Kar, J.R.; Verma, M.; Naqvi, S.; Pandey, S. Densities of aqueous mixtures of (choline chloride + ethylene glycol) and (choline chloride + malonic acid) deep eutectic solvents in temperature range 283.15–363.15 K. Thermochim. Acta 2015, 600, 95–101. [Google Scholar] [CrossRef]
- Sha, F.; Zhao, T.; Guo, B.; Zhang, F.; Xie, X.; Zhang, J. Excess properties and spectroscopic studies of binary system 1,4-butanediol + water at T = (293.15, 298.15, 303.15, 308.15, 313.15 and 318.15) K. Phys. Chem. Liq. 2016, 54, 165–181. [Google Scholar] [CrossRef]
- Troupe, R.A.; Aspy, W.L.; Schrodt, P.R. Viscosity and Density of Aqueous Lactic Acid Solutions. Ind. Eng. Chem. 1951, 43, 1143–1146. [Google Scholar] [CrossRef]
- Xie, Y.; Dong, H.; Zhang, S.; Lu, X.; Ji, X. Effect of water on the density, viscosity, and CO2 solubility in choline chloride/urea. J. Chem. Eng. Data 2014, 59, 3344–3352. [Google Scholar] [CrossRef]
- Gygli, G.; Xu, X.; Pleiss, J. Meta-analysis of viscosity of aqueous deep eutectic solvents and their components. Sci. Rep. 2020, 10, 21395. [Google Scholar] [CrossRef]
- Mokhtarpour, M.; Shekaari, H. Application of Prigogine–Flory–Patterson theory to correlate the thermodynamic properties of aqueous mixtures of some three-component deep eutectic solvents based on choline chloride and carboxylic acids at T = (288.15 to 318.15) K. J. Mol. Liq. 2020, 320, 114224. [Google Scholar] [CrossRef]
- Barbieri, J.B.; Goltz, C.; Batistão Cavalheiro, F.; Theodoro Toci, A.; Igarashi-Mafra, L.; Mafra, M.R. Deep eutectic solvents applied in the extraction and stabilization of rosemary (Rosmarinus officinalis L.) phenolic compounds. Ind. Crops Prod. 2020, 144, 112049. [Google Scholar] [CrossRef]
- Bentley, J.; Olsen, E.K.; Moore, J.P.; Farrant, J.M. The phenolic profile extracted from the desiccation-tolerant medicinal shrub Myrothamnus flabellifolia using Natural Deep Eutectic Solvents varies according to the solvation conditions. Phytochemistry 2020, 173, 112323. [Google Scholar] [CrossRef]
- Salar Bashi, D.; Mortazavi, S.A.; Rezaei, K.; Rajaei, A.; Karimkhani, M.M. Optimization of ultrasound-assisted extraction of phenolic compounds from yarrow (Achillea beibrestinii) by response surface methodology. Food Sci. Biotechnol. 2012, 21, 1005–1011. [Google Scholar] [CrossRef]
- Pan, C.; Zhao, L.; Zhao, D. Microwave-assisted green extraction of antioxidant components from Osmanthus fragrans (Lour) flower using natural deep eutectic solvents. J. Appl. Res. Med. Aromat. Plants 2021, 20, 100285. [Google Scholar] [CrossRef]
- Salomon, L.; Lorenz, P.; Bunse, M.; Spring, O.; Stintzing, F.C.; Kammerer, D.R. Comparison of the Phenolic Compound Profile and Antioxidant Potential of Achillea atrata L. and Achillea millefolium L. Molecules 2021, 26, 1530. [Google Scholar] [CrossRef]
- Benetis, R.; Radušiene, J.; Jakštas, V.; Janulis, V.; Malinauskas, F. Development of an RP-HPLC method for the analysis of phenolic compounds in Achillea millefolium L. J. Liq. Chromatogr. Relat. Technol. 2008, 31, 596–610. [Google Scholar] [CrossRef]
- Shekaari, H.; Zafarani-Moattar, M.T.; Mohammadi, B. Thermophysical characterization of aqueous deep eutectic solvent (choline chloride/urea) solutions in full ranges of concentration at T = (293.15–323.15) K. J. Mol. Liq. 2017, 243, 451–461. [Google Scholar] [CrossRef]
- Dyrda, G.; Boniewska-Bernacka, E.; Man, D.; Barchiewicz, K.; Slota, R. The effect of organic solvents on selected microorganisms and model liposome membrane. Mol. Biol. Rep. 2019, 46, 3225–3232. [Google Scholar] [CrossRef] [Green Version]
- Hayyan, M.; Hashim, M.A.; Hayyan, A.; Al-Saadi, M.; AlNashef, I.M.; Mirghani, M.E.S.; Saheed, O.K. Are deep eutectic solvents benign or toxic? Chemosphere 2013, 90, 2193–2195. [Google Scholar] [CrossRef]
- Juneidi, I.; Hayyan, M.; Ali, O.M. Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish. Environ. Sci. Pollut. Res. 2016, 23, 7648–7659. [Google Scholar] [CrossRef]
- Oliveira, G.; Marques, C.; de Oliveira, A.; de Almeida dos Santos, A.; do Amaral, W.; Ineu, R.P.; Leimann, F.V.; Peron, A.P.; Igarashi-Mafra, L.; Mafra, M.R. Extraction of bioactive compounds from Curcuma longa L. using deep eutectic solvents: In vitro and in vivo biological activities. Innov. Food Sci. Emerg. Technol. 2021, 70, 102697. [Google Scholar] [CrossRef]
- Radošević, K.; Čanak, I.; Panić, M.; Markov, K.; Cvjetko Bubalo, M.; Frece, J.; Gaurina Srček, V.; Radojčić Redovniković, I. Antimicrobial, cytotoxic and antioxidative evaluation of natural deep eutectic solvents. Environ. Sci. Pollut. Res. 2018, 25, 14188–14196. [Google Scholar] [CrossRef]
- Jurić, T.; Mićić, N.; Potkonjak, A.; Milanov, D.; Dodić, J.; Trivunović, Z.; Popović, B.M. The evaluation of phenolic content, in vitro antioxidant and antibacterial activity of Mentha piperita extracts obtained by natural deep eutectic solvents. Food Chem. 2021, 362, 130226. [Google Scholar] [CrossRef]
- Silva, J.M.; Silva, E.; Reis, R.L.; Duarte, A.R.C. A closer look in the antimicrobial properties of deep eutectic solvents based on fatty acids. Sustain. Chem. Pharm. 2019, 14, 100192. [Google Scholar] [CrossRef]
- Zhao, B.; Xu, P.; Yang, F.; Wu, H.; Zong, M.; Lou, W. Biocompatible Deep Eutectic Solvents Based on Choline Chloride: Characterization and Application to the Extraction of Rutin from Sophora japonica. ACS Sustain. Chem. Eng. 2015, 3, 2746–2755. [Google Scholar] [CrossRef]
- Xu, P.; Zheng, G.W.; Zong, M.H.; Li, N.; Lou, W.Y. Recent progress on deep eutectic solvents in biocatalysis. Bioresour. Bioprocess. 2017, 4, 34. [Google Scholar] [CrossRef] [PubMed]
- Hikmawanti, N.P.E.; Ramadon, D.; Jantan, I.; Mun’im, A. Natural deep eutectic solvents (Nades): Phytochemical extraction performance enhancer for pharmaceutical and nutraceutical product development. Plants 2021, 10, 2091. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Compounds | Molar Ratio |
---|---|---|
ChCl-LA | Choline chloride:lactic acid | 1:2 |
ChCl-But | Choline chloride:1,4-butanediol | 1:2 |
ChCl-Prop | Choline chloride:1,2-propanediol | 1:2 |
ChCl-Fruc | Choline chloride:fructose:water | 2:1:1 |
ChCl-U | Choline chloride:urea | 2:1 |
tR | Compound | 80% EtOH | 80% MeOH | H2O | ChCl-LA | ChCl-But | ChCl-Prop | ChCl-Fruc | ChCl-U |
---|---|---|---|---|---|---|---|---|---|
9.03 | 1 Chlorogenic acid | 3.29 ± 0.01 a | 3.15 ± 0.13 a | 2.88 ± 0.18 a | 2.97 ± 0.12 a | 2.65 ± 0.05 a | 2.78 ± 0.20 a | 2.85 ± 0.45 a | 2.90 ± 0.10 a |
17.63 | 2 Luteolin-7-O-glucoside | 0.53 ± 0.03 b | 0.51 ± 0.02 b | 0.28 ± 0.04 a | 0.51 ± 0.07 b | 0.40 ± 0.08 a,b | 0.51 ± 0.03 b | 0.34 ± 0.04 a,b | 0.39 ± 0.06 a,b |
19.25 | 3 DCQA isomer I | 6.45 ± 0.05 b | 6.29 ± 0.31 b | 3.83 ± 0.60 a | 5.79 ± 0.46 b | 4.98 ± 0.11 b | 5.35 ± 0.18 b | 5.38 ± 0.80 b | 5.19 ± 0.32 b |
20.25 | 4 Apigenin-7-O-glucoside | 1.14 ± 0.01 c,d | 1.17 ± 0.09 c,d | 0.24 ± 0.00 a | 1.07 ± 0.18 c.d | 1.02 ± 0.11 c,d | 1.23 ± 0.02 d | 0.77 ± 0.13 b | 0.86 ± 0.11 b,c |
20.72 | 3 DCQA isomer II | 2.35 ± 0.01 b | 2.28 ± 0.03 b | 1.31 ± 0.19 a | 2.21 ± 0.13 b | 2.05 ± 0.10 b | 2.16 ± 0.06 b | 1.89 ± 0.32 b | 2.13 ± 0.10 b |
27.08 | 2 Luteolin | 0.12 ± 0.01 b | 0.10 ± 0.01 b | <LOQ | 0.14 ± 0.00 b | 0.13 ± 0.03 b | 0.11 ± 0.00 b | <LOQ | <LOQ |
32.46 | 5 Apigenin | 0.04 ± 0.01 b | <LOQ | <LOQ | <LOQ | >LOQ | 0.04 ± 0.01 b | <LOQ | <LOQ |
* TPC | 28.92 ± 0.33 c | 27.69 ± 0.49 c | 21.67 ± 1.30 b | 35.44 ± 2.12 d | 28.82 ± 2.06 c | 31.73 ± 1.17 c,d | 12.66 ± 0.75 a | 34.98 ± 1.22 d | |
$ ABTS | 40.95 ± 0.57 a,b,c | 40.51 ± 1.63 a | 42.75 ± 2.23 a,b,c | 41.48 ± 1.33 a,b | 46.89 ± 1.82 b,c,d | 46.70 ± 0.52 b,c,d | 47.75 ± 2.76 c,d | 51.66 ± 0.59 d | |
ᵜ FRAP | 22.44 ± 0.20 a | 22.50 ± 0.57 a | 18.84 ± 1.81 a | 58.52 ± 0.34 b | 24.71 ± 0.65 a | 24.28 ± 0.64 a | 22.87 ± 3.77 a | 21.98 ± 0.64 a |
Solvent | Antibacterial Activity | Antifungal Activity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S. aureus | B. cereus | E. coli | P. aeruginosa | Candida albicans ATCC 10231 | Candida albicans Isolate | |||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MFC | MIC | MFC | |
80% EtOH | 10 | 12 | 8 | >16 | 10 | 14 | 10 | 10 | 8 | 12 | 8 | 12 |
80% MeOH | 10 | 12 | 10 | >16 | 12 | 16 | 8 | 12 | 8 | 14 | 8 | 14 |
Ultra pure H2O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | / | / | / | / |
ChCl-LA * | 0.5 | 1 | 0.25 | 2 | 0.5 | 1 | 0.25 | 1 | 4 | 4 | 4 | 6 |
ChCl-But * | 14 | 14 | 14 | >16 | 14 | 16 | 10 | >16 | 10 | 14 | 10 | 14 |
ChCl-Prop * | 14 | 14 | 14 | >16 | 14 | 16 | 12 | >16 | 12 | 14 | 12 | 14 |
ChCl-Fruc * | 14 | 16 | 16 | >16 | 14 | >16 | 14 | >16 | 12 | 14 | 12 | 14 |
ChCl-U * | 10 | 12 | 10 | 16 | 10 | 14 | 10 | 14 | 10 | 14 | 10 | 12 |
Sample | Antibacterial Activity | Antifungal Activity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
S. aureus | B. cereus | E. coli | P. aeruginosa | Candida albicans ATCC 10231 | Candida albicans Isolate | |||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MFC | MIC | MFC | |
80% EtOH | 1.6 (6.4) * | 2.0 (8.0) | 1.6 (6.4) | 2.4 (9.6) | 1.6 (6.4) | 2.0 (8.0) | 1.6 (6.4) | 1.6 (6.4) | 1.6 (6.4) | 2.0 (8.0) | 1.6 (6.4) | 2.0 (8.0) |
80% MeOH | 2.4 (9.6) | 2.4 (9.6) | 2.4 (9.6) | 2.8 (11.2) | 2.4 (9.6) | 2.8 (11.2) | 2.0 (8.0) | 2.4 (9.6) | 1.6 (6.4) | 2.4 (9.6) | 2.0 (8.0) | >2.4 (>9.6) |
Ultra pure H2O | >3.2 | >3.2 | >3.2 | >3.2 | >3.2 | >3.2 | >3.2 | >3.2 | >3.2 | >3.2 | >3.2 | >3.2 |
ChCl-LA | 0.1 (0.5) | 0.2 (1.0) | >0.1 (0.3) | 0.2 (1.0) | 0.1 (0.5) | 0.2 (1.0) | >0.1 (0.23) | 0.1 (0.5) | 0.8 (4.0) | 1.2 (6.0) | 0.8 (4.0) | 1.2 (6.0) |
ChCl-But | 2.8 (14.0) | 2.8 (14.0) | 2.4 (12.0) | >3.2 (>16.0) | 2.4 (12.0) | >3.2 (>16.0) | 2.0 (10.0) | >3.2 (>16.0) | 1.6 (8.0) | 2.4 (12.0) | 1.6 (8.0) | 2.4 (12.0) |
ChCl-Prop | 2.8 (14.0) | 2.8 (14.0) | 2.8 (14.0) | >3.2 (>16.0) | 2.4 (12.0) | >3.2 (>16.0) | 2.0 (10.0) | 3.2 (16.0) | 1.6 (8.0) | 2.4 (12.0) | 2.0 (10.0) | 2.4 (12.0) |
ChCl-Fruc | 2.8 (14.0) | 3.2 (16.0) | 3.2 (16.0) | >3.2 (>16.0) | 3.2 (16.0) | >3.2 (>16.0) | 2.4 (12.0) | >3.2 (>16.0) | 2.4 (12.0) | 2.8 (14.0) | 2.4 (12.0) | 2.8 (14.0) |
ChCl-U | 1.2 (6.0) | 2.4 (12.0) | 1.2 (6.0) | 3.2 (16.0) | 1.2 (6.0) | 1.6 (8.0) | 1.2 (6.0) | 2.0 (10.0) | 2.0 (10.0) | 2.8 (14.0) | 2.0 (10.0) | 2.8 (14.0) |
Pure Solvent | UAE Extract | E 15 µg | G 10 µg | A 10 µg | C 5 µg | Ny 100 U. | FlU 100 µg | |||
---|---|---|---|---|---|---|---|---|---|---|
ChCl-LA 100% | ChCl-LA 50% | ChCl-LA 100% | ChCl-LA 50% | |||||||
Bacteria | ||||||||||
S. aureus | 28.67 ± 0.58 b | 21.67 ± 0.53 a | 27.17 ± 1.17 b | 20.83 ± 0.75 a | 28.80 ± 2.05 b | 29.20 ± 2.17 b | 34.80 ± 1.79 c | 31.20 ± 1.64 b | n.a. | n.a. |
B. cereus | 26.67 ± 0.58 b | 23.17 ± 0.29 b | 27.17 ± 0.63 b | 21.92 ± 0.20 b | 28.00 ±2.35 b | 24.80 ± 1.48 | 12.40 ± 3.21 a | 29.20 ± 1.64 b | n.a. | n.a. |
E. coli | 26.67 ± 0.58 b | 20.50 ± 0.50 a | 25.59 ± 1.96 b | 19.67 ± 0.52 a | n.d | 22.60 ± 1.52 a,b | 23.00 ± 1.22 a,b | 33.40 ± 1.52 c | n.a. | n.a. |
P. aeruginosa | 29.66 ± 0.58 b | 21.83 ± 0.29 a | 31.34 ± 0.41 b | 21.83 ± 1.29 a | n.d | 21.40 ± 1.14 a | 0 | 31.60 ± 1.67 b | n.a. | n.a. |
Yeasts | ||||||||||
Candida albicans ATTC 10231 | 8.33 ± 0.58 a | 6.5 ± 0.00 a | 8.42 ± 0.35 a | 6.33 ± 0.27 a | n.a. | n.a. | n.a. | n.a. | 25.75 ± 2.99 b | n.d |
Candida albicans isolate | 6.55 ± 0.00 a | n.d. | 6.67 ± 0.29 a | n.d. | n.a. | n.a. | n.a. | n.a. | 25.50 ± 3.11 b | n.d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanović, M.; Grujić, D.; Cerar, J.; Islamčević Razboršek, M.; Topalić-Trivunović, L.; Savić, A.; Kočar, D.; Kolar, M. Extraction of Bioactive Metabolites from Achillea millefolium L. with Choline Chloride Based Natural Deep Eutectic Solvents: A Study of the Antioxidant and Antimicrobial Activity. Antioxidants 2022, 11, 724. https://doi.org/10.3390/antiox11040724
Ivanović M, Grujić D, Cerar J, Islamčević Razboršek M, Topalić-Trivunović L, Savić A, Kočar D, Kolar M. Extraction of Bioactive Metabolites from Achillea millefolium L. with Choline Chloride Based Natural Deep Eutectic Solvents: A Study of the Antioxidant and Antimicrobial Activity. Antioxidants. 2022; 11(4):724. https://doi.org/10.3390/antiox11040724
Chicago/Turabian StyleIvanović, Milena, Dragana Grujić, Janez Cerar, Maša Islamčević Razboršek, Ljiljana Topalić-Trivunović, Aleksandar Savić, Drago Kočar, and Mitja Kolar. 2022. "Extraction of Bioactive Metabolites from Achillea millefolium L. with Choline Chloride Based Natural Deep Eutectic Solvents: A Study of the Antioxidant and Antimicrobial Activity" Antioxidants 11, no. 4: 724. https://doi.org/10.3390/antiox11040724
APA StyleIvanović, M., Grujić, D., Cerar, J., Islamčević Razboršek, M., Topalić-Trivunović, L., Savić, A., Kočar, D., & Kolar, M. (2022). Extraction of Bioactive Metabolites from Achillea millefolium L. with Choline Chloride Based Natural Deep Eutectic Solvents: A Study of the Antioxidant and Antimicrobial Activity. Antioxidants, 11(4), 724. https://doi.org/10.3390/antiox11040724