Microencapsulation and Bioaccessibility of Phenolic Compounds of Vaccinium Leaf Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Aqueous Extraction
2.4. HPLC-DAD-ESI-MS Identification and Quantification
2.5. Rheological Measurements
2.6. Microencapsulation Process (Spray-Drying, Atomization)
2.6.1. Carrier Preparation
2.6.2. Microencapsulation
2.7. Bioaccessibility of Phenolic Compounds of Vaccinium spp. Leaves during Simulated Digestion
2.8. Statistical Analysis
3. Results and Discussions
3.1. Rheological Measurements of Aqueous Extracts of Vaccinium spp. Mixed with Microencapsulation Carrier
3.2. Characterisation of Spray Drying-Microencapsulated Powder
3.3. Phenolic Profile of Aqueous and Microencapsulated Extracts
Peak No. | Retention Time Rt (min) | UV λmax (nm) | [M+H]+ (m/z) | Compound | Subclass | Source | VCS | VMT | VVIT | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Extract | Microcapsules | Extract | Microcapsules | Extract | Microcapsules | |||||||
1 | 3.78 | 279 | 307, 290 | Gallocatechin | Flavanol | VCS, VVIT | 1.24 ± 0.01 a | 0.21 ± 0.01 b | N.D. | N.D. | 0.95 ± 0.01 a | 0.16 ± 0.01 b |
2 | 4.69 | 279 | 307, 290 | Epigallocatechin | Flavanol | VCS, VVIT | 1.57 ± 0.01 a | 0.25 ± 0.01 b | N.D. | N.D. | 32.22 ± 0.32 a | 4.80 ± 0.07 b |
3 | 10.36 | 281, 329 | 355, 163 | 3-Caffeoylquinic acid (Neochlorogenic acid) | HA | VCS | 5.00 ± 0.09 a | 0.45 ± 0.01 b | N.D. | N.D. | N.D. | N.D. |
4 | 11.33 | 280 | 579, 291 | Procyanidin dimer I | Flavanol | VCS, VMT, VVIT | 1.71 ± 0.01 a | 0.18 ± 0.01 b | 5.55 ± 0.09 a | 0.78 ± 0.01 b | 5.33 ± 0.08 a | 0.88 ± 0.01 b |
5 | 12.21 | 281, 329 | 355, 163 | 5-Caffeoylquinic acid (Chlorogenic acid) | HA | VCS, VMT, VVIT | 33.6 ± 0.23 a | 3.85 ± 0.02 b | 104.74 ± 2.23 a | 12.79 ± 0.10 b | 6.36 ± 0.04 a | 0.64 ± 0.01 b |
6 | 12.76 | 280 | 291 | (+) Catechin | Flavanol | VCS, VMT, VVIT | 1.96 ± 0.02 a | 0.18 ± 0.01 b | 2.32 ± 0.03 a | 0.24 ± 0.01 b | 4.76 ± 0.06 a | 0.82 ± 0.01 b |
7 | 13.21 | 280 | 291 | (−) Epicatechin | Flavanol | VCS, VMT | 1.87 ± 0.02 a | 0.26 ± 0.01 b | 1.95 ± 0.02 a | 0.19 ± 0.01 b | N.D. | N.D. |
8 | 13.71 | 282, 329 | 181, 163 | Caffeic acid | HA | VCS, VMT | 2.73 ± 0.03 a | 0.48 ± 0.01 b | 3.06 ± 0.03 a | 0.46 ± 0.01 b | N.D. | N.D. |
9 | 14.79 | 283, 330 | 369 | Feruloylquinic acid I | HA | VCS | 2.36 ± 0.02 a | 0.30 ± 0.01 b | N.D. | N.D. | N.D. | N.D. |
10 | 15.55 | 283, 330 263, 355 | 369 611, 303 | Feruloylquinic acid I Quercetin-rutinoside (Rutin) | HA Flavonol | VCS, VVIT | 1.76 ± 0.02 a | 0.24 ± 0.01 b | N.D. | N.D. | 14.77 ± 0.24 a | 2.18 ± 0.02 b |
11 | 16.28 | 263, 355 | 465, 303 | Quercetin-glucoside | Flavonol | VCS, VMT, VVIT | 1.86 ± 0.02 a | 0.24 ± 0.01 b | 14.53 ± 0.21 a | 1.76 ± 0.02 b | 2.16 ± 0.03 a | 0.29 ± 0.01 b |
12 | 16.88 | 263, 355 | 625, 303 | Quercetin- diglucoside | Flavonol | VCS | 0.26 ± 0.01 a | 0.03 ± 0.01 b | N.D. | N.D. | N.D. | N.D. |
13 | 17.20 | 288, 330 | 435 | Caffeoylarbutin | HA | VVIT | N.D. | N.D. | N.D. | N.D. | 0.52 ± 0.01 a | 0.07 ± 0.01 b |
14 | 17.43 | 263, 356 | 493, 303 | Quercetin-acetyl-rhamnoside | Flavonol | VCS, VMT, VVIT | 0.49 ± 0.01 a | 0.10 ± 0.01 b | 0.98 ± 0.01 a | 0.11 ± 0.01 b | 0.98 ± 0.01 a | 0.15 ± 0.01 b |
15 | 17.67 | 262, 355 | 449, 303 | Quercetin-rhamnoside | Flavonol | VMT, VVIT | N.D. | N.D. | 1.65 ± 0.02 a | 0.19 ± 0.01 b | 0.62 ± 0.01 a | 0.12 ± 0.01 b |
16 | 18.84 | 262, 355 | 435, 303 | Quercetin-arabinoside | Flavonol | VMT, VVIT | N.D. | N.D. | 0.64 ± 0.01 a | 0.08 ± 0.01 b | 0.36 ± 0.01 a | 0.04 ± 0.01 b |
17 | 19.31 | 262, 357 | 596, 303 | Quercetin-glucosyl-xyloside | Flavonol | VMT, VVIT | N.D. | N.D. | 0.70 ± 0.01 a | 0.08 ± 0.01 b | 1.96 ± 0.02 a | 0.27 ± 0.01 b |
18 | 20.08 | 282, 329 | 517, 163 | Dicaffeoylquinic acid | HA | VVIT | N.D. | N.D. | N.D. | N.D. | 0.57 ± 0.01 a | 0.07 ± 0.01 b |
19 | 11.02 | 210, 517 | 449, 287 | Cyanidin-glucoside | Anthocyanin | VCS, VMT | 0.03 ± 0.01 | N.D. | 0.01 ± 0.01 | N.D. | N.D. | N.D. |
20 | 11.78 | 214, 517 | 419, 287 | Cyanidin-arabinoside | Anthocyanin | VCS | 0.03 ± 0.01 | N.D. | N.D. | N.D. | N.D. | N.D. |
Total Phenolics | 56.47 ± 0.42 a | 6.77 ± 0.07 b | 136.13 ± 1.23 a | 16.68 ± 0.15 b | 71.56 ± 0.55 a | 10.49 ± 0.12 b |
Rt (min) | Compound | VMT Microencapsulated | VMT Solution | ||||||
---|---|---|---|---|---|---|---|---|---|
BD | SSF | SGF | SIF | BD | SSF | SGF | SIF | ||
3.85 | Quinic acid | N.D. | N.D. | N.D. | 1.50 ± 0.01 | N.D. | N.D. | N.D. | 11.88 ± 0.17 |
10.39 | Protocathecuic acid | N.D. | N.D. | N.D. | 1.56 ± 0.01 | N.D. | N.D. | N.D. | 13.76 ± 0.15 |
12.21 | Chlorogenic acid | 12.79 ± 0.10 a,b | 12.34 ± 0.09 b | 3.65 ± 0.04 c | 1.38 ± 0.01 d | 104.74 ± 2.23 a,b | 96.85 ± 0.87 b | 25.54 ± 0.21 c | 4.88 ± 0.03 d |
16.28 | Quercetin-glucoside | 1.76 ± 0.02 a,b | 1.66 ± 0.02 b | 1.16 ± 0.01 c | 0.33 ± 0.01 d | 14.53 ± 0.21 a,b | 14.01 ± 0.10 b | 8.10 ± 0.09 c | 1.36 ± 0.01 d |
Total Phenolics | 14.55 ± 0.12 a | 14.00 ± 0.10 b | 4.81 ± 0.05 c,d | 4.77 ± 0.05 d | 119.27 ± 2. 41 a | 110.86 ± 2.03 b | 33.64 ± 0.32 c | 31.88 ± 0.26 d |
3.4. Bioaccessibility of Phenolic Compounds
Extract | Bioaccessibility (%) |
---|---|
VMT | 26.72% |
VMT Microencapsulated | 32.78% |
VCS | 38.65% |
VCS Microencapsulated | 41.07% |
VVIT | 34.04% |
VVIT Microencapsulated | 45.43% |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, Y.; Zhang, N.; Tian, J.; Xin, G.; Liu, L.; Sun, X.; Li, B. Advanced approaches for improving bioavailability and controlled release of anthocyanins. J. Control. Release 2022, 341, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Hu, X.; Chai, X.; Ye, Q.; Pang, J.; Li, D.; Hou, T. Opportunities for overcoming tuberculosis: Emerging targets and their inhibitors. Drug Discov. Today 2022, 27, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Szabo, K.; Teleky, B.-E.; Ranga, F.; Simon, E.; Pop, O.L.; Babalau-Fuss, V.; Kapsalis, N.; Vodnar, D.C. Bioaccessibility of microencapsulated carotenoids, recovered from tomato processing industrial by-products, using in vitro digestion model. LWT—Food Sci. Technol. 2021, 152, 112285. [Google Scholar] [CrossRef]
- Vodnar, D.C.; Calinoiub, L.F.; Mitrea, L.; Precup, G.; Bindea, M.; Pacurar, A.M.; Szabo, K.; Stefanescu, B.E.; Călinoiu, L.F.; Mitrea, L.; et al. A new generation of probiotic functional beverages using bioactive compounds from agro-industrial waste. In Functional and Medicinal Beverages; Academic Press: Cambridge, MA, USA, 2019; Volume 11, pp. 483–528. ISBN 9780128163979. [Google Scholar]
- Bujor, O.C.; Le Bourvellec, C.; Volf, I.; Popa, V.I.; Dufour, C. Seasonal variations of the phenolic constituents in bilberry (Vaccinium myrtillus L.) leaves, stems and fruits, and their antioxidant activity. Food Chem. 2016, 213, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Bujor, O.C.; Ginies, C.; Popa, V.I.; Dufour, C. Phenolic compounds and antioxidant activity of lingonberry (Vaccinium vitis-idaea L.) leaf, stem and fruit at different harvest periods. Food Chem. 2018, 252, 356–365. [Google Scholar] [CrossRef]
- Ancillotti, C.; Ciofi, L.; Rossini, D.; Chiuminatto, U.; Stahl-Zeng, J.; Orlandini, S.; Furlanetto, S.; Del Bubba, M. Liquid chromatographic/electrospray ionization quadrupole/time of flight tandem mass spectrometric study of polyphenolic composition of different Vaccinium berry species and their comparative evaluation. Anal. Bioanal. Chem. 2017, 409, 1347–1368. [Google Scholar] [CrossRef]
- Fan, M.; Li, T.; Li, Y.; Qian, H.; Zhang, H.; Rao, Z.; Wang, L. Vaccinium bracteatum Thunb. as a promising resource of bioactive compounds with health benefits: An updated review. Food Chem. 2021, 356, 129738. [Google Scholar] [CrossRef]
- Bujor, O.C.; Tanase, C.; Popa, M.E. Phenolic antioxidants in aerial parts of wild Vaccinium species: Towards pharmaceutical and biological properties. Antioxidants 2019, 8, 649. [Google Scholar] [CrossRef] [Green Version]
- Ştefanescu, B.E.; Szabo, K.; Mocan, A.; Crisan, G. Phenolic compounds from five ericaceae species leaves and their related bioavailability and health benefits. Molecules 2019, 24, 2046. [Google Scholar] [CrossRef] [Green Version]
- Tundis, R.; Tenuta, M.C.; Loizzo, M.R.; Bonesi, M.; Finetti, F.; Trabalzini, L.; Deguin, B. Vaccinium species (Ericaceae): From chemical composition to bio-functional activities. Appl. Sci. 2021, 11, 5655. [Google Scholar] [CrossRef]
- Karppinen, K.; Zoratti, L.; Nguyenquynh, N.; Häggman, H.; Jaakola, L. On the developmental and environmental regulation of secondary metabolism in vaccinium spp. Berries. Front. Plant Sci. 2016, 7, 655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calinoiu, L.F.; Ştefanescu, B.E.; Pop, I.D.; Muntean, L.; Vodnar, D.C.; Călinoiu, L.-F.; Ştefănescu, B.; Pop, I.D.; Muntean, L.; Vodnar, D.C. Chitosan Coating Applications in Probiotic Microencapsulation. Coatings 2019, 9, 194. [Google Scholar] [CrossRef] [Green Version]
- Braic, R.Ş.; Vari, C.; Imre, S.; Huţanu, A.; Fogarasi, E.; Todea, T.; Groşan, A.; Eşianu, S.; Laczkó-Zöld, E.; Dogaru, M. Vaccinium extracts as modulators in experimental type 1 diabetes. J. Med. Food 2018, 21, 1106–1112. [Google Scholar] [CrossRef]
- Garzón, G.A.; Soto, C.Y.; López-R, M.; Riedl, K.M.; Browmiller, C.R.; Howard, L. Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale swartz pomace. Heliyon 2020, 6, e03845. [Google Scholar] [CrossRef]
- Sidorova, Y.; Shipelin, V.; Mazo, V.; Zorin, S.; Petrov, N.; Kochetkova, A. Hypoglycemic and hypolipidemic effect of Vaccinium myrtillus L. leaf and Phaseolus vulgaris L. seed coat extracts in diabetic rats. Nutrition 2017, 41, 107–112. [Google Scholar] [CrossRef]
- Bljajić, K.; Petlevski, R.; Vujić, L.; Čačić, A.; Šoštarić, N.; Jablan, J.; De Carvalho, I.S.; Končić, M.Z. Chemical composition, antioxidant and α-glucosidase-inhibiting activities of the aqueous and hydroethanolic extracts of vaccinium myrtillus leaves. Molecules 2017, 22, 703. [Google Scholar] [CrossRef]
- Bilawal, A.; Ishfaq, M.; Gantumur, M.A.; Qayum, A.; Shi, R.; Fazilani, S.A.; Anwar, A.; Jiang, Z.; Hou, J. A review of the bioactive ingredients of berries and their applications in curing diseases. Food Biosci. 2021, 44, 101407. [Google Scholar] [CrossRef]
- Ștefănescu, B.E.; Călinoiu, L.F.; Ranga, F.; Fetea, F.; Mocan, A.; Vodnar, D.C.; Crișan, G. Chemical composition and biological activities of the nord-west romanian wild bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) leaves. Antioxidants 2020, 9, 495. [Google Scholar] [CrossRef]
- Ieri, F.; Martini, S.; Innocenti, M.; Mulinacci, N. Phenolic distribution in liquid preparations of vaccinium myrtillus L. and vaccinium vitis idaea L. Phytochem. Anal. 2013, 24, 467–475. [Google Scholar] [CrossRef]
- Lim, S.L.; Mohamed, S. Functional food and dietary supplements for lung health. Trends Food Sci. Technol. 2016, 57, 74–82. [Google Scholar] [CrossRef]
- Wang, X.; Sun, H.; Fan, Y.; Li, L.; Makino, T.; Kano, Y. Analysis and bioactive evaluation of the compounds absorbed into blood after oral administration of the extracts of Vaccinium vitis-idaea in rat. Biol. Pharm. Bull. 2005, 28, 1106–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyas, P.; Kalidindi, S.; Chibrikova, L.; Igamberdiev, A.U.; Weber, J.T. Chemical analysis and effect of blueberry and lingonberry fruits and leaves against glutamate-mediated excitotoxicity. J. Agric. Food Chem. 2013, 61, 7769–7776. [Google Scholar] [CrossRef] [PubMed]
- Raudone, L.; Vilkickyte, G.; Pitkauskaite, L.; Raudonis, R.; Vainoriene, R.; Motiekaityte, V. Antioxidant Activities of Vaccinium vitis-idaea L. Leaves within cultivars and their phenolic compounds. Molecules 2019, 24, 844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefănescu, B.-E.; Călinoiu, L.F.; Ranga, F.; Fetea, F.; Mocan, A.; Vodnar, D.C.; Crisan, G. The Chemical and Biological Profiles of Leaves from Commercial Blueberry Varieties. Plants 2020, 9, 1193. [Google Scholar] [CrossRef]
- Wang, L.J.; Wu, J.; Wang, H.X.; Li, S.S.; Zheng, X.C.; Du, H.; Xu, Y.J.; Wang, L.S. Composition of phenolic compounds and antioxidant activity in the leaves of blueberry cultivars. J. Funct. Foods 2015, 16, 295–304. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Variation of phenolic profile and antioxidant activity of North American highbush blueberry leaves with variation of time of harvest and cultivar. Ind. Crops Prod. 2014, 62, 147–155. [Google Scholar] [CrossRef]
- Riihinen, K.; Jaakola, L.; Kärenlampi, S.; Hohtola, A. Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and “northblue” blueberry (Vaccinium corymbosum × V. angustifolium). Food Chem. 2008, 110, 156–160. [Google Scholar] [CrossRef]
- de Vos, P.; Faas, M.M.; Spasojevic, M.; Sikkema, J. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int. Dairy J. 2010, 20, 292–302. [Google Scholar] [CrossRef]
- Heidebach, T.; Först, P.; Kulozik, U. Microencapsulation of Probiotic Cells for Food Applications. Crit. Rev. Food Sci. Nutr. 2012, 52, 291–311. [Google Scholar] [CrossRef]
- Chen, M.J.; Chen, K.N. Applications of Probiotic Encapsulation in Dairy Products. Encapsulation Control. Release Technol. Food Syst. 2007, 83–112. [Google Scholar] [CrossRef]
- Mitrea, L.; Călinoiu, L.-F.; Precup, G.; Bindea, M.; Rusu, B.; Trif, M.; Ferenczi, L.-J.; Ştefănescu, B.-E.; Vodnar, D.C. Inhibitory Potential Of Lactobacillus Plantarum on Escherichia Coli. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Food Sci. Technol. 2017, 74, 99. [Google Scholar] [CrossRef] [Green Version]
- Mitrea, L.; Calinoiu, L.-F.; Precup, G.; Bindea, M.; Rusu, B.; Trif, M.; Ferenczi, L.-J.; Stefanescu, B.E.; Vodnar, D.-C.; Precup, G. The Probiotic Bacteria Viability under Different Conditions. Bull. UASVM Food Sci. Technol. 2014, 73, 55–60. [Google Scholar] [CrossRef]
- Shishir, M.R.I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci. Technol. 2018, 78, 34–60. [Google Scholar] [CrossRef]
- Arslan-Tontul, S.; Erbas, M. Single and double layered microencapsulation of probiotics by spray drying and spray chilling. Lwt-Food Sci. Technol. 2017, 81, 160–169. [Google Scholar] [CrossRef]
- Simon, E.L.; Rusu, B.; Vodnar, D.C. Probiotics microencapsulation in casein free carrier by spray-drying. In Session 3: Food Science and Technology Probiotics; Academic Press: Cluj-Napoca, Romania, 2018. [Google Scholar]
- Lipan, L.; Rusu, B.; Sendra, E.; Hernández, F.; Vázquez-araújo, L.; Vodnar, C. Spray drying and storage of probiotic-enriched almond milk: Probiotic survival and physicochemical properties. J. Sci. Food Agric. 2020, 100, 3697–3708. [Google Scholar] [CrossRef] [PubMed]
- Simon, E.; Călinoiu, L.F.; Mitrea, L.; Vodnar, D.C. Probiotics, prebiotics, and synbiotics: Implications and beneficial effects against irritable bowel syndrome. Nutrients 2021, 13, 2112. [Google Scholar] [CrossRef] [PubMed]
- Vodnar, D.-C.; Mitrea, L.; Teleky, B.-E.; Szabo, K.; Calinoiu, L.-F.; Nemes, S.-A.; Martău, G.-A. Coronavirus Disease (COVID-19) Caused by (SARS-CoV-2) Infections: A Real Challenge for Human Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 786. [Google Scholar] [CrossRef]
- Guo, Y.; Luo, C.; Xu, L.; Lin, H.; Li, Z.; Pavase, T.R.; Wu, Y.; Chen, Y. Comparison of digestibility and potential allergenicity of raw shrimp (Litopenaeus vannamei) extracts in static and dynamic digestion systems. Food Chem. 2021, 345, 128831. [Google Scholar] [CrossRef]
- Xavier, A.A.; Mariutti, L.R. Static and semi-dynamic in vitro digestion methods: State of the art and recent achievements towards standardization. Curr. Opin. Food Sci. 2021, 41, 260–273. [Google Scholar] [CrossRef]
- Medina-Meza, I.G.; Barbosa-Cánovas, G.V. Assisted extraction of bioactive compounds from plum and grape peels by ultrasonics and pulsed electric fields. J. Food Eng. 2015, 166, 268–275. [Google Scholar] [CrossRef]
- Călinoiu, L.F.; Vodnar, D.C. Thermal processing for the release of phenolic compounds from wheat and oat bran. Biomolecules 2020, 10, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitrea, L.; Ranga, F.; Fetea, F.; Dulf, F.V.; Rusu, A.; Trif, M.; Vodnar, D.C. Biodiesel-derived glycerol obtained from renewable biomass—A suitable substrate for the growth of Candida zeylanoides yeast strain ATCC 20367. Microorganisms 2019, 7, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szabo, K.; Dulf, F.V.; Teleky, B.-E.; Eleni, P.; Boukouvalas, C.; Krokida, M.; Kapsalis, N.; Rusu, A.V.; Socol, C.T.; Vodnar, D.C. Evaluation of the Bioactive Compounds Found in Tomato Seed Oil and Tomato Peels Influenced by Industrial Heat Treatments. Foods 2021, 10, 110. [Google Scholar] [CrossRef] [PubMed]
- Dulf, F.V.; Vodnar, D.C.; Dulf, E.H.; Toşa, M.I. Total Phenolic Contents, Antioxidant Activities, and Lipid Fractions from Berry Pomaces Obtained by Solid-State Fermentation of Two Sambucus Species with Aspergillus niger. J. Agric. Food Chem. 2015, 63, 3489–3500. [Google Scholar] [CrossRef] [PubMed]
- Teleky, B.-E.; Martău, G.-A.; Vodnar, D.-C. Physicochemical Effects of Lactobacillus plantarum and Lactobacillus casei Cocultures on Soy–Wheat Flour Dough Fermentation. Foods 2020, 9, 1894. [Google Scholar] [CrossRef]
- Mitrea, L.; Teleky, B.-E.; Leopold, L.-F.; Nemes, S.-A.; Plamada, D.; Dulf, F.V.; Pop, I.-D.; Vodnar, D.C. The physicochemical properties of five vegetable oils exposed at high temperature for a short-time-interval. J. Food Compos. Anal. 2022, 106, 104305. [Google Scholar] [CrossRef]
- Martau, G.A.; Teleky, B.-E.; Ranga, F.; Pop, I.D.; Vodnar, D.C. Apple Pomace as a Sustainable Substrate in Sourdough Fermentation. Front. Microbiol. 2021, 12, 3850. [Google Scholar] [CrossRef]
- Szabo, K.; Teleky, B.E.; Mitrea, L.; Călinoiu, L.F.; Martău, G.A.; Simon, E.; Varvara, R.A.; Vodnar, D.C. Active packaging-poly (vinyl alcohol) films enriched with tomato by-products extract. Coatings 2020, 10, 141. [Google Scholar] [CrossRef] [Green Version]
- Mitrea, L.; Călinoiu, L.-F.F.; Martău, G.-A.; Szabo, K.; Teleky, B.-E.E.; Mureșan, V.; Rusu, A.-V.V.; Socol, C.-T.T.; Vodnar, D.-C.C.; Mărtau, G.A.; et al. Poly(vinyl alcohol)-based biofilms plasticized with polyols and colored with pigments extracted from tomato by-products. Polymers 2020, 12, 532. [Google Scholar] [CrossRef] [Green Version]
- Vodnar, D.C.; Socaciu, C. Green tea increases the survival yield of Bifidobacteria in simulated gastrointestinal environment and during refrigerated conditions. Chem. Cent. J. 2012, 6, 61. [Google Scholar] [CrossRef] [Green Version]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Machmudah, S.; Wahyu Fitriana, M.; Fatbamayani, N.; Wahyudiono, H.K.; Winardi, S.; Goto, M. Phytochemical compounds extraction from medicinal plants by subcritical water and its encapsulation via electrospraying. Alex. Eng. J. 2022, 61, 2116–2128. [Google Scholar] [CrossRef]
- Nindo, C.I.; Tang, J.; Powers, J.R.; Singh, P. Viscosity of blueberry and raspberry juices for processing applications. J. Food Eng. 2005, 69, 343–350. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, A.; Lu, Q.; Hui, M. The Effects of Rheological Properties of Wall Materials on Morphology and Particle Size Distribution of Microcapsule. Czech J. Food Sci. 2010, 28, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Rajabi, H.; Ghorbani, M.; Jafari, S.M.; Sadeghi Mahoonak, A.; Rajabzadeh, G. Retention of saffron bioactive components by spray drying encapsulation using maltodextrin, gum Arabic and gelatin as wall materials. Food Hydrocoll. 2015, 51, 327–337. [Google Scholar] [CrossRef]
- Gimbun, J.; Nguang, S.L.; Pang, S.F.; Yeong, Y.L.; Kee, K.L.; Chin, S.C. Assessment of Phenolic Compounds Stability and Retention during Spray Drying of Phyllanthus niruri Extracts. Ind. Eng. Chem. Res. 2019, 58, 752–761. [Google Scholar] [CrossRef]
- Pellicer, J.A.; Fortea, M.I.; Trabal, J.; Rodríguez-López, M.I.; Carazo-Díaz, C.; Gabaldón, J.A.; Núñez-Delicado, E. Optimization of the microencapsulation of synthetic strawberry flavour with different blends of encapsulating agents using spray drying. Powder Technol. 2018, 338, 591–598. [Google Scholar] [CrossRef]
- Ramakrishnan, Y.; Adzahan, N.M.; Yusof, Y.A.; Muhammad, K. Effect of wall materials on the spray drying efficiency, powder properties and stability of bioactive compounds in tamarillo juice microencapsulation. Powder Technol. 2018, 328, 406–414. [Google Scholar] [CrossRef]
- Janiszewska-Turak, E.; Witrowa-Rajchert, D. The influence of carrot pretreatment, type of carrier and disc speed on the physical and chemical properties of spray-dried carrot juice microcapsules. Dry. Technol. 2021, 39, 439–449. [Google Scholar] [CrossRef]
- Righi da Rosa, J.; Nunes, G.L.; Motta, M.H.; Fortes, J.P.; Cezimbra Weis, G.C.; Rychecki Hecktheuer, L.H.; Muller, E.I.; Ragagnin de Menezes, C.; Severo da Rosa, C. Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: Characterization, stability and simulated gastrointestinal conditions. Food Hydrocoll. 2019, 89, 742–748. [Google Scholar] [CrossRef]
- Idham, Z.; Muhamad, I.I.; Sarmidi, M.R. Degradation kinetics and color stability of spray-dried encapsulated anthocyanins from Hibiscus sabdariffa L. J. Food Process Eng. 2012, 35, 522–542. [Google Scholar] [CrossRef]
- Cruz-Molina, A.V.D.L.; Ayala Zavala, J.F.; Bernal Mercado, A.T.; Cruz Valenzuela, M.R.; González-Aguilar, G.A.; Lizardi-Mendoza, J.; Brown-Bojorquez, F.; Silva-Espinoza, B.A. Maltodextrin encapsulation improves thermal and pH stability of green tea extract catechins. J. Food Process. Preserv. 2021, 45, e15729. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions Principles, Practices, and Techniques; CRC Press: Boca Raton, FL, USA, 2005; ISBN 0849320232. [Google Scholar]
- Rodríguez-Solana, R.; Coelho, N.; Santos-Rufo, A.; Gonçalves, S.; Pérez-Santín, E.; Romano, A. The influence of in vitro gastrointestinal digestion on the chemical composition and antioxidant and enzyme inhibitory capacities of carob liqueurs obtained with different elaboration techniques. Antioxidants 2019, 8, 563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, J.; Xie, J.; Shi, S.; Luo, L.; Li, K.; Xiong, P.; Cai, W. Diagnostic Fragment-Ion-Based for Rapid Identification of Chlorogenic Acids Derivatives in Inula cappa Using UHPLC-Q-Exactive Orbitrap Mass Spectrometry. J. Anal. Methods Chem. 2021, 2021, 6393246. [Google Scholar] [CrossRef]
- Clifford, M.N. Chlorogenic acids and other cinnamates—Nature, occurrence, dietary burden, absorption and metabolism. J. Sci. Food Agric. 2000, 80, 1033–1043. [Google Scholar] [CrossRef]
- Precup, G.; Pocol, C.B.; Teleky, B.-E.; Vodnar, D.C. Awareness, Knowledge, and Interest about Prebiotics—A Study among Romanian Consumers. Int. J. Environ. Res. Public Health 2022, 19, 1208. [Google Scholar] [CrossRef]
- Clifford, M.N.; Kerimi, A.; Williamson, G. Bioavailability and metabolism of chlorogenic acids (acyl-quinic acids) in humans. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1299–1352. [Google Scholar] [CrossRef]
- Majdoub, Y.O.E.; Ginestra, G.; Mandalari, G.; Dugo, P.; Mondello, L.; Cacciola, F. The digestibility of hibiscus sabdariffa L. Polyphenols using an in vitro human digestion model and evaluation of their antimicrobial activity. Nutrients 2021, 13, 2360. [Google Scholar] [CrossRef]
- Karakaya, S. Bioavailability of phenolic compounds. Crit. Rev. Food Sci. Nutr. 2004, 44, 453–464. [Google Scholar] [CrossRef]
- Carbonell-Capella, J.M.; Buniowska, M.; Barba, F.J.; Esteve, M.J.; Frígola, A. Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 155–171. [Google Scholar] [CrossRef]
- Podio, N.S.; López-Froilán, R.; Ramirez-Moreno, E.; Bertrand, L.; Baroni, M.V.; Pérez-Rodríguez, M.L.; Sánchez-Mata, M.C.; Wunderlin, D.A. Matching in Vitro Bioaccessibility of Polyphenols and Antioxidant Capacity of Soluble Coffee by Boosted Regression Trees. J. Agric. Food Chem. 2015, 63, 9572–9582. [Google Scholar] [CrossRef] [PubMed]
- de Morais Sousa, M.; de Lima, R.M.T.; de Lima, A.; Reis, A.C.; Cavalcante, A.A.D.C.M.; Sattler, J.A.G.; de Almeida-Muradian, L.B.; Neto, J.D.S.L.; dos Reis Moreira-Araujo, R.S.; do Nascimento Nogueira, N. Antioxidant action and enzyme activity modulation by bioaccessible polyphenols from jambolan (Syzygium cumini (L.) Skeels). Food Chem. 2021, 363, 130353. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | Initial Quantity | Final Quantity | Yield |
---|---|---|---|
(Dry Weight) g | (Powder) g | (Final Quantity/Initial Quantity × 100) | |
VMT | 120 mL for feeding consisting of 44 ± 1.2 g dry weight/volume carrier | 35.21 ± 0.5 g powder | 35.21/44 × 100 yield approx. 80% |
VCS | 135 mL for feeding consisting of 48.5 ± 0.9 g dry weight/volume carrier | 38.37 ± 1.5 g powder | 38.37/48.5 × 100 yield approx. 79% |
VVIT | 105 mL for feeding consisting of 38.5 ± 1.4 g dry weight/volume carrier | 31.12 ± 2.3 g powder | 31.12/38.5 × 100 yield approx. 81% |
Rt (min) | Compound | VCS Microencapsulated | VCS Solution | ||||||
---|---|---|---|---|---|---|---|---|---|
BD | SSF | SGF | SIF | BF | SSF | SGF | SIF | ||
3.85 | Quinic acid | N.D. | N.D. | N.D. | 0.84 ± 0.01 | N.D. | N.D. | N.D. | 6.56 ± 0.05 |
10.39 | Protocathecuic acid | N.D. | N.D. | N.D. | 0.72 ± 0.01 | N.D. | N.D. | N.D. | 6.44 ± 0.05 |
12.28 | 5-Caffeoylquinic acid (Chlorogenic acid) | 3.85 ± 0.02 a,b | 3.55 ± 0.02 b | 1.85 ± 0.01 c | 0.12 ± 0.01 d | 33.63 ± 0.23 a | 29.85 ± 0.19 b | 16.38 ± 0.11 c | 0.72 ± 0.01 d |
16.28 | Quercetin-glucoside | 0.24 ± 0.01 a,b | 0.20 ± 0.01 b | 0.14 ± 0.01 c | 0.00 | 1.86 ± 0.02 a,b | 1.78 ± 0.02 b | 0.86 ± 0.01 c | N.D. |
Total Phenolics | 4.09 ± 0.03 a,b | 3.75 ± 0.02 b | 1.99 ± 0.01 c,d | 1.68 ± 0.01 d | 35.49 ± 0.25 a | 31.63 ± 0.20 b | 17.24 ± 0.10 c | 13.72 ± 0.09 d |
Rt (min) | Compound | VVIT Microencapsulated | VVIT Solution | ||||||
---|---|---|---|---|---|---|---|---|---|
BD | SSF | SGF | SIF | BD | SSF | SGF | SIF | ||
3.85 | Quinic acid | N.D. | N.D. | N.D. | 1.02 ± 0.01 | N.D. | N.D. | N.D. | 6.76 ± 0.05 |
4.59 | Epigallocatechin | 4.80 ± 0.07 a | 4.13 ± 0.05 b | 2.79 ± 0.01 c | 1.54 ± 0.01 d | 32.22 ± 0.32 a | 26.60 ± 0.21 b | 11.10 ± 0.08 c | 5.72 ± 0.04 d |
10.39 | Protocatechuic acid | N.D. | N.D. | N.D. | 0.92 ± 0.01 | N.D. | N.D. | N.D. | 4.88 ± 0.05 |
15.45 | Feruloylquinic acid I Quercetin-rutinoside (Rutin) | 2.18 ± 0.02 a,b | 2.00 ± 0.02 b | 0.39 ± 0.01 c | N.D. | 14.77 ± 0.24 a | 11.30 ± 0.09 b | 4.98 ± 0.03 c | N.D. |
16.28 | Quercetin-glucoside | 0.29 ± 0.01 a,b | 0.20 ± 0.01 b | 0.13 ± 0.01 c | N.D. | 2.16 ± 0.03 a | 1.94 ± 0.01 b | 0.96 ± 0.01 c | N.D. |
17.20 | Caffeoylarbutin | 0.07 ± 0.01 a,b,c | 0.06 ± 0.01 b,c | 0.04 ± 0.01 c | N.D. | 0.52 ± 0.01 a | 0.42 ± 0.01 b,c | 0.40 ± 0.01 c | N.D. |
17.42 | Quercetin-acetyl-rhamnoside | 0.15 ± 0.01 a,b | 0.14 ± 0.01 b | 0.06 ± 0.01 c | N.D. | 0.98 ± 0.01 a | 0.73 ± 0.01 b | 0.62 ± 0.01 c | N.D. |
17.65 | Quercetin-rhamnoside | 0.12 ± 0.01 a,b | 0.10 ± 0.01 b,c | 0.08 ± 0.01 c | N.D. | 0.62 ± 0.01 a | 0.57 ± 0.01 a,b | 0.50 ± 0.01 b,c | N.D. |
19.30 | Quercetin-glucosyl-xyloside | 0.27 ± 0.01 a,b | 0.26 ± 0.01 b | 0.14 ± 0.01 c | 0.10 ± 0.01 d | 1.96 ± 0.02 a,b | 1.94 ± 0.02 b | 1.42 ± 0.01 c | 0.76 ± 0.01 d |
Total Phenolics | 7.88 ± 0.14 a | 6.89 ± 0.10 b | 3.63 ± 0.02 c,d | 3.58 ± 0.01 d | 53.23 ± 0.64 a | 43.50 ± 0.32 b | 19.98 ± 0.17 c,d | 18.12 ± 0.10 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ștefănescu, B.E.; Nemes, S.-A.; Teleky, B.-E.; Călinoiu, L.F.; Mitrea, L.; Martău, G.A.; Szabo, K.; Mihai, M.; Vodnar, D.C.; Crișan, G. Microencapsulation and Bioaccessibility of Phenolic Compounds of Vaccinium Leaf Extracts. Antioxidants 2022, 11, 674. https://doi.org/10.3390/antiox11040674
Ștefănescu BE, Nemes S-A, Teleky B-E, Călinoiu LF, Mitrea L, Martău GA, Szabo K, Mihai M, Vodnar DC, Crișan G. Microencapsulation and Bioaccessibility of Phenolic Compounds of Vaccinium Leaf Extracts. Antioxidants. 2022; 11(4):674. https://doi.org/10.3390/antiox11040674
Chicago/Turabian StyleȘtefănescu, Bianca Eugenia, Silvia-Amalia Nemes, Bernadette-Emőke Teleky, Lavinia Florina Călinoiu, Laura Mitrea, Gheorghe Adrian Martău, Katalin Szabo, Mihaela Mihai, Dan Cristian Vodnar, and Gianina Crișan. 2022. "Microencapsulation and Bioaccessibility of Phenolic Compounds of Vaccinium Leaf Extracts" Antioxidants 11, no. 4: 674. https://doi.org/10.3390/antiox11040674
APA StyleȘtefănescu, B. E., Nemes, S.-A., Teleky, B.-E., Călinoiu, L. F., Mitrea, L., Martău, G. A., Szabo, K., Mihai, M., Vodnar, D. C., & Crișan, G. (2022). Microencapsulation and Bioaccessibility of Phenolic Compounds of Vaccinium Leaf Extracts. Antioxidants, 11(4), 674. https://doi.org/10.3390/antiox11040674