Hydrothermal Treatment Effect on Antioxidant Activity and Polyphenols Concentration and Profile of Brussels sprouts (Brassica oleracea var. gemmifera) in an In Vitro Simulated Gastrointestinal Digestion Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. In Vitro Digestion
2.3. Preparation of Methanolic Extracts
2.4. Determination of Total Polyphenols Concentration
2.5. Determination of Antioxidant Activity
2.6. Determination of Polyphenolic Acid Profile
2.6.1. Preparation of Extracts
2.6.2. Chromatographic Analysis of Polyphenolic Acid Profile
2.7. Statistical Analysis
3. Results and Discussion
3.1. Polyphenols Concentration of Brussels sprouts Raw and Subjected to Hydrothemal Treatments before and after In Vitro Digestion
3.2. Antioxidant Activity of Brussels sprouts Raw and Subjected to Hydrothemal Treatments before and after In Vitro Digestion
3.3. Polyphenolic Acids Concentration in Brussels sprouts Raw and Subjected to Hydrothemal Treatments before and after In Vitro Digestion
3.4. Flavonoids Concentration in Brussels sprouts Raw and Subjected to Hydrothemal Treatments before and after In Vitro Digestion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Favela-González, K.M.; Hernández-Almanza, A.Y.; De la Fuente-Salcido, N.M. The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. J. Food Biochem. 2020, 44, e13414. [Google Scholar] [CrossRef] [PubMed]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korus, A.; Lisiewska, Z. Effect of preliminary processing and method of preservation on the content of selected antioxidative compounds in kale (Brassica oleracea L. var. acephala) leaves. Food Chem. 2011, 129, 149–154. [Google Scholar] [CrossRef]
- Managa, M.G.; Remize, F.; Garcia, C.; Sivakumar, D. Effect of Moist Cooking Blanching on Colour, Phenolic Metabolites and Glucosinolate Content in Chinese Cabbage (Brassica rapa L. subsp. chinensis). Foods 2019, 8, 399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Florkiewicz, A.; Socha, R.; Filipiak-Florkiewicz, A.; Topolska, K. Sous-vide technique as an alternative to traditional cooking methods in the context of antioxidant properties of Brassica vegetables. J. Sci. Food Agric. 2019, 99, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Herbello-Hermelo, P.; Lamas, J.P.; Lores, M.; Domínguez-González, R.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Polyphenol bioavailability in nuts and seeds by an in vitro dialyzability approach. Food Chem. 2018, 254, 20–25. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Oniszczuk, A.; Oniszczuk, T.; Combrzyński, M.; Nowakowska, D.; Matwijczuk, A. Influence of In Vitro Digestion on Composition, Bioaccessibility and Antioxidant Activity of Food Polyphenols—A Non-Systematic Review. Nutrients 2020, 12, 1401. [Google Scholar] [CrossRef]
- Florkiewicz, A.; Bączkowicz, M.; Pietrzyk, S. Jakość sensoryczna warzyw kapustnych gotowanych metodą sous-vide oraz tradycyjnymi technikami obróbki hydrotermicznej. Żywność Nauka Technol. Jakość 2018, 25, 150–171. [Google Scholar] [CrossRef]
- Żyła, K.; Ledoux, D.R.; Garcia, A.; Veum, T.L. An in vitro procedure for studying enzymic dephosphorylation of phytate in 581 maize-soya bean feeds for turkey poults. Br. J. Nutr. 1995, 74, 3–17. [Google Scholar] [CrossRef]
- Starzynska-Janiszewska, A.; Dulinski, R.; Stodolak, B.; Mickowska, B.; Wikiera, A. Prolonged tempe-type fermentation in order to 583 improve bioactive potential and nutritional parameters of quinoa seeds. J. Cereal Sci. 2016, 71, 116–121. [Google Scholar] [CrossRef]
- Dziadek, K.; Kopeć, A.; Czaplicki, S. The petioles and leaves of sweet cherry (Prunus avium L.) as a potential source of natural bioactive compounds. Eur. Food Res. Technol. 2018, 244, 1415–1426. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Metzger, L.E.; Nielsen, S.S. Nutrition labeling in food analysis. In Food Analysis, 5th ed.; Nielsen, S.S., Ed.; Springer: Cham, Switzerland, 2017; pp. 35–43. [Google Scholar]
- Korus, J.; Gumul, D.; Czechowska, K. Effect of Extrusion on the Phenolic Composition and Antioxidant Activity of Dry Beans of Phaseolus vulgaris L. Food Technol. Biotechnol. 2007, 45, 139–146. [Google Scholar]
- Nardini, M.; Ghiselli, A. Determination of free and bound phenolic acids in beer. Food Chem. 2000, 84, 137–143. [Google Scholar] [CrossRef]
- Pająk, P.; Socha, R.; Gałkowska, D.; Rożnowski, J.; Fortuna, T. Phenolic profile and antioxidant activity in selected seed and sprouts. Food Chem. 2014, 143, 300–306. [Google Scholar] [CrossRef]
- Lafarga, T.; Viñas, I.; Bobo, G.; Simó, J.; Aguiló-Aguayo, I. Effect of steaming and sous vide processing on the total phenolic content, vitamin C and antioxidant potential of the genus Brassica. Innov. Food Sci. Emerg. Technol. 2018, 47, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Baardseth, P.; Bjerke, F.; Martinsen, B.K.; Skrede, G. Vitamin C, total phenolics and antioxidative activity in tip-cut green beans (Phaseolus vulgaris) and swede rods (Brassica napus var. napobrassica) processed by methods used in catering. J. Sci. Food Agric. 2010, 90, 1245–1255. [Google Scholar] [CrossRef]
- Guillén, S.; Mir-Bel, J.; Oria, R.; Salvador, M.L. Influence of cooking conditions on organoleptic and health-related properties of artichokes, green beans, broccoli and carrots. Food Chem. 2017, 217, 209–216. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Artés-Hernández, F.; Gómez, P.A.; Artés, F. Quality changes after vacuum-based and conventional industrial cooking of kailan-hybrid broccoli throughout retail cold storage. LWT-Food Sci. Technol. 2013, 50, 707–714. [Google Scholar] [CrossRef]
- Martínez-Hernández, G.B.; Artés-Hernández, F.; Colares-Souza, F.; Gómez, P.A.; García-Gómez, P.; Artés, F. Innovative Cooking Techniques for Improving the Overall Quality of a Kailan-Hybrid Broccoli. Food Bioprocess Technol. 2013, 6, 2135–2149. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Zając, N. Digestion and absorption of phenolic compounds assessed by in vitro simulation methods. A review. Rocz. Państwego Zakładu Hig. 2013, 64, 79–84. [Google Scholar]
- Gayoso, L.; Claerbout, A.S.; Calvo, M.I.; Cavero, R.Y.; Astiasarán, I.; Ansorena, D. Bioaccessibility of rutin, caffeic acid and rosmarinic acid: Influence of the in vitro gastrointestinal digestion models. J. Funct. Foods 2016, 26, 428–438. [Google Scholar] [CrossRef]
- Pineda-Vadillo, C.; Nau, F.; Dubiard, C.G.; Cheynier, V.; Meudec, E.; Sanz-Buenhombre, M.; Guadarrama, A.; Tóth, T.; Csavajda, É.; Hingyi, H.; et al. In vitro digestion of dairy and egg products enriched with grape extracts: Effect of the food matrix on polyphenol bioaccessibility and antioxidant activity. Food Res. Int. 2016, 88, 284–292. [Google Scholar] [CrossRef]
- Bertolini, D.; Conte, A. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem. 2010, 120, 599–606. [Google Scholar]
- Pinacho, R.; Cavero, R.Y.; Astiasarán, I.; Ansorena, D.; Calvo, M.I. Phenolic compounds of blackthorn (Prunus spinosa L.) and influence of in vitro digestion on their antioxidant capacity. J. Funct. Foods 2015, 19, 49–62. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Gao, J.; Feng, J.; Shang, Y.; Wei, Z. Phenolics and antioxidant activity of bamboo leaves soup as affected by in vitro digestion. Food Chem. Toxicol. 2020, 135, 110941. [Google Scholar] [CrossRef] [PubMed]
- Baeza, G.; Sarriá, B.; Bravo, L.; Mateos, R. Polyphenol content, in vitro bioaccessibility and antioxidant capacity of widely consumed beverages. J. Sci. Food Agric. 2018, 98, 1397–1406. [Google Scholar] [CrossRef] [Green Version]
- Kamiloglu, S.; Capanoglu, E.; Bilen, F.D.; Gonzales, G.B.; Grootaert, C.; Van de Wiele, T.; Van Camp, J. Bioaccessibility of polyphenols from plant-processing byproducts of black carrot (Daucus carota L.). J. Agric. Food Chem. 2016, 64, 2450–2458. [Google Scholar] [CrossRef]
- Siracusa, L.; Kulisic-Bilusic, T.; Politeo, O.; Krause, I.; Dejanovic, B.; Ruberto, G. Phenolic composition and antioxidant activity of aqueous infusions from Capparis spinosa L. and Crithmum maritimum L. before and after submission to a twostep in vitro digestion model. J. Agric. Food Chem. 2011, 59, 12453–12459. [Google Scholar] [CrossRef]
- Li, Z.; Lee, H.; Liang, X.; Liang, D.; Wang, Q.; Huang, D.; Ong, C. Profiling of Phenolic Compounds and Antioxidant Activity of 12 Cruciferous Vegetables. Molecules 2018, 23, 1139. [Google Scholar] [CrossRef] [Green Version]
- Abramović, H.; Grobin, B.; Poklar Ulrih, N.; Cigić, B. The Methodology Applied in DPPH, ABTS and Folin-Ciocalteau Assays Has a Large Influence on the Determined Antioxidant Potential. Acta Chim. Slov. 2017, 64, 491–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bommegowda Rashmi, H.; Singh Negi, P. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res. Int. 2020, 136, 109298. [Google Scholar] [CrossRef]
- Chiavaro, E.; Mazzeo, T.; Visconti, A.; Manzi, C.; Fogliano, V.; Pellegrini, N. Nutritional quality of sous vide cooked carrots and Brussels sprouts. J. Agric. Food Chem. 2012, 60, 6019–6025. [Google Scholar] [CrossRef]
- Rodríguez-Roque, M.J.; Rojas-Graü, M.A.; Elez-Martínez, P.; Martín-Belloso, O. Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chem. 2013, 136, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Trinidad, B.; Sanchez-Burgos, J.A.; Juscelino, T.; Sayago-Ayerdi, S.G.; Zamora-Gasga, V.M. In vitro gastrointestinal digestion of mango by-product snacks: Potential absorption of polyphenols and antioxidant capacity. Int. J. Food Sci. Technol. 2019, 54, 3091–3098. [Google Scholar]
- Dos Reis, L.C.R.; De Oliveira, V.R.; Hagen, M.E.K.; Jablonski, A.; Flôres, S.H.; De Oliveira Rios, A. Effect of cooking on the concentration of bioactive compounds in broccoli (Brassica oleracea var. Avenger) and cauliflower (Brassica oleracea var. Alphina F1) grown in an organic system. Food Chem. 2015, 172, 770–777. [Google Scholar] [CrossRef]
- Sikora, E.; Cieślik, E.; Filipiak-Florkiewicz, A.; Leszczyńska, T. Effect of hydrothermal processing on phenolic acids and flavonols contents in selected brassica vegetables. ACTA Sci. Pol. Technol. Aliment. 2012, 11, 45–51. [Google Scholar] [PubMed]
Phenolic Acid | Raw | Thermal Treatment | |||
---|---|---|---|---|---|
Steaming | Sous-Vide | Boiling | |||
Gallic acid | A | 136.81 ± 0.33 f | 51.17 ± 0.18 c | 69.13 ± 0.10 e | 62.45 ± 1.46 d |
B | 3.08 ± 0.00 a | 14.71 ± 0.01 b | 3.58 ± 0.01 a | 3.50 ± 0.02 a | |
Chlorogenic acid | A | 10.14 ± 0.00 f | 4.89 ± 0.02 d | 11.14 ± 0.11 g | 7.76 ± 0.00 e |
B | 0.44 ± 0.00 a | 0.00 ± 0.00 c | 0.70 ± 0.00 b | 0.53 ± 0.00 ab | |
4-Hydroxybenzoic acid | A | 13.53 ± 0.09 c | 22.42 ± 0.77 d | 26.18 ± 0.02 e | 6.11 ± 0.22 b |
B | 0.93 ± 0.01 a | 2.05 ± 0.03 a | 1.16 ± 0.00 a | 1.24 ± 0.02 a | |
Caffeic acid | A | 34.10 ± 0.00 d | 51.31 ± 0.05 h | 48.43 ± 0.05 g | 27.83 ± 0.09 c |
B | 8.53 ± 0.00 a | 44.06 ± 0.03 f | 37.94 ± 0.01 e | 22.12 ± 0.03 b | |
Vanillic acid | A | 24.66 ± 0.05 g | 22.34 ± 0.02 f | 25.71 ± 0.02 h | 20.54 ± 0.37 e |
B | 3.70 ± 0.00 a | 15.55 ± 0.05 d | 13.78 ± 0.01 c | 8.48 ± 0.11 b | |
Syringic acid | A | 5.26 ± 0.09 a | 5.24± 0.03 a | 6.66 ± 0.02 e | 5.34 ± 0.00 a |
B | 0.47 ± 0.00 c | 1.34 ± 0.00 d | 1.69 ± 0.02 b | 1.64 ± 0.01 b | |
p-Coumaric acid | A | 17.56 ± 0.00 g | 5.32 ± 0.11 e | 4.62 ± 0.02 d | 4.96 ± 0.00 a |
B | 4.84 ± 0.01 a | 5.83 ± 0.01 f | 3.70 ± 0.00 c | 2.26 ± 0.00 b | |
Ferulic acid | A | 36.07 ± 0.09 g | 33.54 ± 0.08 f | 28.86 ± 0.07 e | 22.62 ± 0.03 a |
B | 9.45 ± 0.01 b | 27.22 ± 0.08 d | 22.57 ± 0.01 a | 16.99 ± 0.06 c | |
Sinapinic acid | A | 392.49 ± 0.52 d | 550.93 ± 1.25 h | 500.39 ± 0.53 g | 303.20 ± 0.03 c |
B | 94.97 ± 0.11 a | 453.90 ± 0.06 f | 407.21 ± 0.30 e | 267.24 ± 0.46 b | |
Rosmarinic acid | A | 0.00 ± 0.00 a | 1.05 ± 0.01 b | 1.03 ± 0.01 b | 0.00 ± 0.00 a |
B | 0.68 ± 0.01 c | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | |
Protocatechuic acid | A | 13.43 ± 0.38 b | 0.00 ± 0.00 a | 85.00 ± 0.13 d | 40.95 ± 0.87 c |
B | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
Flavonoid | Raw | Thermal Treatment | |||
---|---|---|---|---|---|
Steaming | Sous-Vide | Boiling | |||
Catechin | A | 96.65 ± 1.22 b | 121.03 ± 0.03 f | 12.30 ± 0.51 d | 95.06 ± 2.79 b |
B | 1.74 ± 0.97 c | 74.27 ± 0.20 e | 21.52 ± 0.02 a | 24.04 ± 0.22 a | |
Epicatechin | A | 27.62 ± 0.28 f | 11.42 ± 0.01 b | 5.24 ± 0.03 e | 12.88 ± 0.40 c |
B | 3.34 ± 0.01 d | 12.10 ± 0.16 bc | 8.55 ± 0.07 a | 9.58 ± 0.09 a | |
Naringin | A | 19.63 ± 0.00 c | 23.69 ± 0.03 d | 46.29 ± 0.09 f | 25.94 ± 0.37 e |
B | 0.68 ± 0.00 a | 2.16 ± 0.00 b | 1.24 ± 0.03 a | 0.83 ± 0.03 a | |
Rutin | A | 10.80 ± 0.09 f | 4.50 ± 0.04 d | 1.00 ± 0.05 a | 9.25 ± 0.06 e |
B | 1.01 ± 0.01 a | 6.58 ± 0.00 bc | 6.27 ± 0.20 b | 6.82 ± 0.00 c | |
Hesperidin | A | 6.43 ± 0.05 c | 23.32 ± 0.09 h | 20.93 ± 0.03 g | 5.21 ± 0.31 b |
B | 0.68 ± 0.01 a | 8.32 ± 0.02 d | 18.15 ± 0.01 f | 10.15 ± 0.00 e | |
Myricetin | A | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 2.01 ± 0.01 e | 0.00 ± 0.00 a |
B | 0.60 ± 0.01 b | 2.70 ± 0.00 f | 1.29 ± 0.01 d | 1.11 ± 0.01 c | |
Quercetin | A | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 1.85 ± 0.01 d | 0.00 ± 0.00 a |
B | 0.58 ± 0.00 c | 0.00 ± 0.00 a | 1.14 ± 0.01 b | 1.12 ± 0.01 b | |
Luteolin | A | 15.31 ± 0.09 h | 5.13 ± 0.00 c | 2.60 ± 0.03 a | 9.06 ± 0.12 g |
B | 4.35 ± 0.02 b | 7.90 ± 0.02 e | 7.08 ± 0.02 d | 8.26 ± 0.00 f | |
Kaempferol | A | 0.00 ± 0.00 a | 2.23 ± 0.00 e | 2.81 ± 0.01 f | 0.00 ± 0.00 a |
B | 0.52 ± 0.00 b | 2.94 ± 0.02 g | 1.91 ± 0.00 d | 1.48 ± 0.02 c | |
Apigenin | A | 0.00 ± 0.00 a | 1.72 ± 0.01 c | 1.52 ± 0.08 bc | 14.86 ± 0.65 d |
B | 0.39 ± 0.00 ab | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 0.00 ± 0.00 a | |
Isorhamnetin | A | 0.00 ± 0.00 a | 1.56 ± 0.02 b | 0.79 ± 0.03 d | 0.00 ± 0.00 a |
B | 0.28 ± 0.01 c | 1.37 ± 0.01 e | 1.63 ± 0.00 b | 1.45 ± 0.00 e | |
Hispidulin | A | 3.62 ± 0.05 e | 1.43 ± 0.02 b | 1.32 ± 0.01 b | 6.48 ± 0.03 f |
B | 0.29 ± 0.00 d | 0.00 ± 0.00 c | 0.61 ± 0.00 a | 0.59 ± 0.01 a | |
Acacetin | A | 8.78 ± 0.05 g | 5.43 ± 0.01 f | 2.44 ± 0.01 e | 0.00 ± 0.00 b |
B | 0.70 ± 0.00 a | 1.54 ± 0.00 d | 0.76 ± 0.00 a | 1.09 ± 0.02 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doniec, J.; Florkiewicz, A.; Dziadek, K.; Filipiak-Florkiewicz, A. Hydrothermal Treatment Effect on Antioxidant Activity and Polyphenols Concentration and Profile of Brussels sprouts (Brassica oleracea var. gemmifera) in an In Vitro Simulated Gastrointestinal Digestion Model. Antioxidants 2022, 11, 446. https://doi.org/10.3390/antiox11030446
Doniec J, Florkiewicz A, Dziadek K, Filipiak-Florkiewicz A. Hydrothermal Treatment Effect on Antioxidant Activity and Polyphenols Concentration and Profile of Brussels sprouts (Brassica oleracea var. gemmifera) in an In Vitro Simulated Gastrointestinal Digestion Model. Antioxidants. 2022; 11(3):446. https://doi.org/10.3390/antiox11030446
Chicago/Turabian StyleDoniec, Joanna, Adam Florkiewicz, Kinga Dziadek, and Agnieszka Filipiak-Florkiewicz. 2022. "Hydrothermal Treatment Effect on Antioxidant Activity and Polyphenols Concentration and Profile of Brussels sprouts (Brassica oleracea var. gemmifera) in an In Vitro Simulated Gastrointestinal Digestion Model" Antioxidants 11, no. 3: 446. https://doi.org/10.3390/antiox11030446