OxInflammation at High Altitudes: A Proof of Concept from the Himalayas
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- West, J.B. Early History of High-Altitude Physiology. Ann. N. Y. Acad. Sci. 2016, 1365, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Moore, L.G. Measuring High-Altitude Adaptation. J. Appl. Physiol. 2017, 123, 1371–1385. [Google Scholar] [CrossRef] [PubMed]
- Magliulo, L.; Bondi, D.; Pietrangelo, T.; Fulle, S.; Piccinelli, R.; Jandova, T.; di Blasio, G.; Taraborrelli, M.; Verratti, V. Serum Ferritin and Vitamin D Evaluation in Response to High Altitude Comparing Italians Trekkers vs. Nepalese Porters. Eur. J. Sport Sci. 2020, 21, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Verratti, V.; Falone, S.; Doria, C.; Pietrangelo, T.; di Giulio, C. Kilimanjaro Abruzzo Expedition: Effects of High-Altitude Trekking on Anthropometric, Cardiovascular and Blood Biochemical Parameters. Sport Sci. Health 2015, 11, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Pham, K.; Parikh, K.; Heinrich, E.C. Hypoxia and Inflammation: Insights from High-Altitude Physiology. Front. Physiol. 2021, 12, 712. [Google Scholar] [CrossRef]
- Samanta, D.; Semenza, G.L. Maintenance of Redox Homeostasis by Hypoxia-Inducible Factors. Redox Biol. 2017, 13, 331–335. [Google Scholar] [CrossRef]
- Mrakic-Sposta, S.; Gussoni, M.; Dellanoce, C.; Marzorati, M.; Montorsi, M.; Rasica, L.; Pratali, L.; D’Angelo, G.; Martinelli, M.; Bastiani, L.; et al. Effects of Acute and Sub-Acute Hypobaric Hypoxia on Oxidative Stress: A Field Study in the Alps. Eur. J. Appl. Physiol. 2021, 121, 297–306. [Google Scholar] [CrossRef]
- Strapazzon, G.; Malacrida, S.; Vezzoli, A.; Dal Cappello, T.; Falla, M.; Lochner, P.; Moretti, S.; Procter, E.; Brugger, H.; Mrakic-Sposta, S. Oxidative Stress Response to Acute Hypobaric Hypoxia and Its Association with Indirect Measurement of Increased Intracranial Pressure: A Field Study. Sci. Rep. 2016, 6, 32426. [Google Scholar] [CrossRef]
- Pooja Sharma, V.; Sharma, M.; Varshney, R.; Kumar, B.; Sethy, N.K. Association Between 17β-Estradiol Receptors and Nitric Oxide Signaling Augments High-Altitude Adaptation of Ladakhi Highlanders. High Alt. Med. Biol. 2021, 22, 174–183. [Google Scholar] [CrossRef]
- Malacrida, S.; Giannella, A.; Ceolotto, G.; Reggiani, C.; Vezzoli, A.; Mrakic-Sposta, S.; Moretti, S.; Turner, R.; Falla, M.; Brugger, H.; et al. Transcription Factors Regulation in Human Peripheral White Blood Cells during Hypobaric Hypoxia Exposure: An in-Vivo Experimental Study. Sci. Rep. 2019, 9, 9901. [Google Scholar] [CrossRef]
- Valacchi, G.; Virgili, F.; Cervellati, C.; Pecorelli, A. OxInflammation: From Subclinical Condition to Pathological Biomarker. Front. Physiol. 2018, 9, 858. [Google Scholar] [CrossRef]
- Stables, M.J.; Gilroy, D.W. Old and New Generation Lipid Mediators in Acute Inflammation and Resolution. Prog. Lipid Res. 2011, 50, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Curtis-Prior, P. The Eicosanoids; John Wiley & Sons, Ltd.: London, UK, 2004. [Google Scholar]
- Serhan, C.N. Pro-Resolving Lipid Mediators Are Leads for Resolution Physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Levy, B.D.; Clish, C.B.; Schmidt, B.; Gronert, K.; Serhan, C.N. Lipid Mediator Class Switching during Acute Inflammation: Signals in Resolution. Nat. Immunol. 2001, 2, 612–619. [Google Scholar] [CrossRef]
- Galano, J.-M.; Lee, Y.Y.; Oger, C.; Vigor, C.; Vercauteren, J.; Durand, T.; Giera, M.; Lee, J.C.-Y. Isoprostanes, Neuroprostanes and Phytoprostanes: An Overview of 25 Years of Research in Chemistry and Biology. Prog. Lipid Res. 2017, 68, 83–108. [Google Scholar] [CrossRef]
- Jefferson, J.A.; Simoni, J.; Escudero, E.; Hurtado, M.E.; Swenson, E.R.; Wesson, D.E.; Schreiner, G.F.; Schoene, R.B.; Johnson, R.J.; Hurtado, A. Increased Oxidative Stress Following Acute and Chronic High Altitude Exposure. High Alt. Med. Biol. 2004, 5, 61–69. [Google Scholar] [CrossRef]
- Baillie, J.K.; Bates, M.G.D.; Thompson, A.A.R.; Waring, W.S.; Partridge, R.W.; Schnopp, M.F.; Simpson, A.; Gulliver-Sloan, F.; Maxwell, S.R.J.; Webb, D.J. Endogenous Urate Production Augments Plasma Antioxidant Capacity in Healthy Lowland Subjects Exposed to High Altitude. Chest 2007, 131, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Verratti, V.; Ferrante, C.; Soranna, D.; Zambon, A.; Bhandari, S.; Orlando, G.; Brunetti, L.; Parati, G. Effect of High-Altitude Trekking on Blood Pressure and on Asymmetric Dimethylarginine and Isoprostane Production: Results from a Mount Ararat Expedition. J. Clin. Hypertens. 2020, 22, 1494–1503. [Google Scholar] [CrossRef] [PubMed]
- García-Flores, L.A.; Medina, S.; Cejuela, R.; Martínez-Sanz, J.M.; Oger, C.; Galano, J.M.; Durand, T.; Casas-Pina, T.; Martínez-Hernández, P.; Ferreres, F.; et al. Assessment of Oxidative Stress Biomarkers—Neuroprostanes and Dihomo-Isoprostanes—In the Urine of Elite Triathletes after Two Weeks of Moderate-Altitude Training. Free Radic. Res. 2016, 50, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Metherel, A.H.; Hogg, R.C.; Buzikievich, L.M.; Stark, K.D. Butylated Hydroxytoluene Can Protect Polyunsaturated Fatty Acids in Dried Blood Spots from Degradation for up to 8 Weeks at Room Temperature. Lipids Health Dis. 2013, 12, 1–10. [Google Scholar] [CrossRef]
- Bondi, D.; Aloisi, A.M.; Pietrangelo, T.; Piccinelli, R.; le Donne, C.; Jandova, T.; Pieretti, S.; Taraborrelli, M.; Santangelo, C.; Lattanzi, B.; et al. Feeding Your Himalayan Expedition: Nutritional Signatures and Body Composition Adaptations of Trekkers and Porters. Nutrients 2021, 13, 460. [Google Scholar] [CrossRef] [PubMed]
- Mrakic-Sposta, S.; Gussoni, M.; Montorsi, M.; Porcelli, S.; Vezzoli, A. A Quantitative Method to Monitor Reactive Oxygen Species Production by Electron Paramagnetic Resonance in Physiological and Pathological Conditions. Oxid. Med. Cell. Longev. 2014, 2014, 306179. [Google Scholar] [CrossRef]
- Kozik, V.; Jarzembek, K.; Jedrzejowska, A.; Bak, A.; Polak, J.; Bartoszek, M.; Pytlakowska, K. Investigation of Antioxidant Activity of Pomegranate Juices by Means of Electron Paramagnetic Resonance and UV-Vis Spectroscopy. J. AOAC Int. 2015, 98, 866–870. [Google Scholar] [CrossRef] [PubMed]
- Zang, S.; Tian, S.; Jiang, J.; Han, D.; Yu, X.; Wang, K.; Li, D.; Lu, D.; Yu, A.; Zhang, Z. Determination of Antioxidant Capacity of Diverse Fruits by Electron Spin Resonance (ESR) and UV-Vis Spectrometries. Food Chem. 2017, 221, 1221–1225. [Google Scholar] [CrossRef]
- Mrakic-Sposta, S.; Vezzoli, A.; Rizzato, A.; della Noce, C.; Malacrida, S.; Montorsi, M.; Paganini, M.; Cancellara, P.; Bosco, G. Oxidative Stress Assessment in Breath-Hold Diving. Eur. J. Appl. Physiol. 2019, 119, 2449–2456. [Google Scholar] [CrossRef] [PubMed]
- Mrakic-Sposta, S.; Vezzoli, A.; Maderna, L.; Gregorini, F.; Montorsi, M.; Moretti, S.; Greco, F.; Cova, E.; Gussoni, M. R(+)-Thioctic Acid Effects on Oxidative Stress and Peripheral Neuropathy in Type II Diabetic Patients: Preliminary Results by Electron Paramagnetic Resonance and Electroneurography. Oxid. Med. Cell. Longev. 2018, 2018, 1767265. [Google Scholar] [CrossRef] [PubMed]
- Dellanoce, C.; Cozzi, L.; Zuddas, S.; Pratali, L.; Accinni, R. Determination of Different Forms of Aminothiols in Red Blood Cells without Washing Erythrocytes. Biomed. Chromatogr. 2014, 28, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Vezzoli, A.; Dellanoce, C.; Mrakic-Sposta, S.; Montorsi, M.; Moretti, S.; Tonini, A.; Pratali, L.; Accinni, R. Oxidative Stress Assessment in Response to Ultraendurance Exercise: Thiols Redox Status and ROS Production According to Duration of a Competitive Race. Oxid. Med. Cell. Longev. 2016, 2016, 6439037. [Google Scholar] [CrossRef]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of Nitrate, Nitrite, and [15N]Nitrate in Biological Fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Ghimenti, S.; Lomonaco, T.; Bellagambi, F.G.; Biagini, D.; Salvo, P.; Trivella, M.G.; Scali, M.C.; Barletta, V.; Marzilli, M.; di Francesco, F.; et al. Salivary Lactate and 8-Isoprostaglandin F2α as Potential Non-Invasive Biomarkers for Monitoring Heart Failure: A Pilot Study. Sci. Rep. 2020, 10, 7441. [Google Scholar] [CrossRef]
- Biagini, D.; Antoni, S.; Lomonaco, T.; Ghimenti, S.; Salvo, P.; Bellagambi, F.G.; Scaramuzzo, R.T.; Ciantelli, M.; Cuttano, A.; Fuoco, R.; et al. Micro-Extraction by Packed Sorbent Combined with UHPLC-ESI-MS/MS for the Determination of Prostanoids and Isoprostanoids in Dried Blood Spots. Talanta 2020, 206, 120236. [Google Scholar] [CrossRef] [PubMed]
- Biagini, D.; Franzini, M.; Oliveri, P.; Lomonaco, T.; Ghimenti, S.; Bonini, A.; Vivaldi, F.; Macera, L.; Balas, L.; Durand, T.; et al. MS-based targeted profiling of oxylipins in COVID-19: A new insight into inflammation regulation. Free Radic. Biol. Med. 2022, 180, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Jollife, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. Metabolomic Data Processing, Analysis, and Interpretation Using MetaboAnalyst. Curr. Protoc. Bioinform. 2011, 34, 10–14. [Google Scholar] [CrossRef]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef]
- Oliveri, P.; Malegori, C.; Simonetti, R.; Casale, M. The Impact of Signal Pre-Processing on the Final Interpretation of Analytical Outcomes—A Tutorial. Anal. Chim. Acta 2019, 1058, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Tafuri, A.; Bondi, D.; Princiotta, A.; Pietrangelo, T.; Yadav, P.; Altieri, V.M.; Cerruto, M.A.; Pelliccione, F.; Antonelli, A.; Verratti, V. Effects of physical activity at high altitude on hormonal profiles in foreign trekkers and indigenous nepalese porters. In Best Practice in Health Care; Springer: Cham, Germany, 2021; pp. 111–119. [Google Scholar] [CrossRef]
- Prete, G.; Bondi, D.; Verratti, V.; Aloisi, A.M.; Rai, P.; Tommasi, L. Universality vs experience: A cross-cultural pilot study on the consonance effect in music at different altitudes. PeerJ 2020, 8, e9344. [Google Scholar] [CrossRef]
- Debevec, T.; Millet, G.P.; Pialoux, V. Hypoxia-Induced Oxidative Stress Modulation with Physical Activity. Front. Physiol. 2017, 8, 84. [Google Scholar] [CrossRef]
- Quindry, J.; Dumke, C.; Slivka, D.; Ruby, B. Impact of Extreme Exercise at High Altitude on Oxidative Stress in Humans. J. Physiol. 2016, 594, 5093–5104. [Google Scholar] [CrossRef] [PubMed]
- Chicco, A.J.; Le, C.H.; Gnaiger, E.; Dreyer, H.C.; Muyskens, J.B.; D’Alessandro, A.; Nemkov, T.; Hocker, A.D.; Prenni, J.E.; Wolfe, L.M.; et al. Adaptive Remodeling of Skeletal Muscle Energy Metabolism in High-Altitude Hypoxia: Lessons from Altitude Omics. J. Biol. Chem. 2018, 293, 6659–6671. [Google Scholar] [CrossRef]
- O’Brien, K.A.; Simonson, T.S.; Murray, A.J. Metabolic Adaptation to High Altitude. Curr. Opin. Endocr. Metab. Res. 2020, 11, 33–41. [Google Scholar] [CrossRef]
- Howald, H.; Hoppeler, H. Performing at Extreme Altitude: Muscle Cellular and Subcellular Adaptations. Eur. J. Appl. Physiol. 2003, 90, 360–364. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Bai, G.; Gao, Y.; Liu, S.; Shui, S.; Liu, G. PH-Dependent Rearrangement Determines the Iron-Activation and Antitumor Activity of Artemisinins. Free Radic. Biol. Med. 2021, 163, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Rasica, L.; Porcelli, S.; Limper, U.; Mrakic-Sposta, S.; Mazzolari, R.; Gelmini, F.; Beretta, G.; Marzorati, M. Beet on Alps: Time-Course Changes of Plasma Nitrate and Nitrite Concentrations during Acclimatization to High-Altitude. Nitric Oxide Biol. Chem. 2021, 107, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Hulbert, A.J. On the Importance of Fatty Acid Composition of Membranes for Aging. J. Theor. Biol. 2005, 234, 277–288. [Google Scholar] [CrossRef]
- Miller, L.E.; Mcginnis, G.R.; Kliszczewicz, B.; Slivka, D.; Hailes, W.; Miller, L.E.; Mcginnis, G.R.; Kliszczewicz, B.; Slivka, D.; Hailes, W.; et al. Blood Oxidative-Stress Markers during a High-Altitude Trek. Int. J. Sport Nutr. Exerc. Metab. 2013, 23, 65–72. [Google Scholar] [CrossRef]
- Biagini, D.; Lomonaco, T.; Ghimenti, S.; Fusi, J.; Cerri, E.; de Angelis, F.; Bellagambi, F.G.; Oger, C.; Galano, J.M.; Bramanti, E.; et al. Saliva as a Non-Invasive Tool for Monitoring Oxidative Stress in Swimmers Athletes Performing a VO2max Cycle Ergometer Test. Talanta 2020, 216, 120979. [Google Scholar] [CrossRef]
- He, F.; Li, J.; Liu, Z.; Chuang, C.C.; Yang, W.; Zuo, L. Redox Mechanism of Reactive Oxygen Species in Exercise. Front. Physiol. 2016, 7, 486. [Google Scholar] [CrossRef]
- Bailey, D.M.; Davies, B.; Young, I.S. Intermittent Hypoxic Training: Implications for Lipid Peroxidation Induced by Acute Normoxic Exercise in Active Men. Clin. Sci. 2001, 101, 465–475. [Google Scholar] [CrossRef]
- Tymko, M.M.; Tremblay, J.C.; Bailey, D.M.; Green, D.J.; Ainslie, P.N. The Impact of Hypoxaemia on Vascular Function in Lowlanders and High Altitude Indigenous Populations. J. Physiol. 2019, 597, 5759–5776. [Google Scholar] [CrossRef]
- Sinha, S.; Ray, U.S.; Saha, M.; Singh, S.N.; Tomar, O.S. Antioxidant and Redox Status after Maximal Aerobic Exercise at High Altitude in Acclimatized Lowlanders and Native Highlanders. Eur. J. Appl. Physiol. 2009, 106, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Pomatto, L.C.D.; Davies, K.J.A. Adaptive Homeostasis and the Free Radical Theory of Ageing. Free Radic. Biol. Med. 2018, 124, 420–430. [Google Scholar] [CrossRef] [PubMed]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [PubMed]
- Sametz, W.; Grobuschek, T.; Hammer-Kogler, S.; Juan, H.; Wintersteiger, R. Influence of Isoprostanes on Vasoconstrictor Effects of Noradrenaline and Angiotensin II. Eur. J. Pharmacol. 1999, 378, 47–55. [Google Scholar] [CrossRef]
- Kowaltowski, A.J.; Vercesi, A.E. Mitochondrial damage induced by conditions of oxidative stress. Free Radic. Biol. Med. 1998, 26, 463–471. [Google Scholar] [CrossRef]
- Mazzeo, R.S.; Child, A.; Butterfield, G.E.; Mawson, J.T.; Zamudio, S.; Moore, L.G. Catecholamine response during 12 days of high-altitude exposure (4300 m) in women. J. Appl. Physiol. 1998, 84, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Yeager, M.E.; Belchenko, D.D.; Nguyen, C.M.; Colvin, K.L.; Ivy, D.D.; Stenmark, K.R. Endothelin-1, the Unfolded Protein Response, and Persistent Inflammation: Role of Pulmonary Artery Smooth Muscle Cells. Am. J. Respir. Cell Mol. Biol. 2012, 46, 14–22. [Google Scholar] [CrossRef]
- Richalet, J.-P.; Hornych, A.; Rathat, C.; Aumont, J.; Larmignat, P.; R6my, P. Plasma Prostaglandins, Leukotrienes and Thromboxane in Acute High Altitude Hypoxia. Respir. Physiol. 1991, 85, 205–215. [Google Scholar] [CrossRef]
- Benedetti, F.; Durando, J.; Vighetti, S. Nocebo and Placebo Modulation of Hypobaric Hypoxia Headache Involves the Cyclooxygenase-Prostaglandins Pathway. Pain 2014, 155, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Voelkel, N.F.; Morganroth, M.; Feddersen, O.C. Potential Role of Arachidonic Acid Metabolites in Hypoxic Pulmonary Vasoconstriction. Chest 1985, 88, 245S–248S. [Google Scholar] [CrossRef]
- Chuong, P.; Wysoczynski, M.; Hellmann, J. Do Changes in Innate Immunity Underlie the Cardiovascular Benefits of Exercise? Front. Cardiovasc. Med. 2019, 6, 70. [Google Scholar] [CrossRef] [PubMed]
- Wagner, P.D. Altitude Physiology then (1921) and now (2021): Meat on the bones. Physiol. Rev. 2022, 102, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Koundal, S.; Gandhi, S.; Kaur, T.; Mazumder, A.; Khushu, S. “Omics” of High Altitude Biology: A Urinary Metabolomics Biomarker Study of Rats Under Hypobaric Hypoxia. OMICS A J. Integr. Biol. 2015, 19, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Dzhalilova, D.; Makarova, O. Differences in tolerance to hypoxia: Physiological, biochemical, and molecular-biological characteristics. Biomedicines 2020, 8, 428. [Google Scholar] [CrossRef]
Test | p-Value | Cohen’s d Unbiased | 95% CI | ||
---|---|---|---|---|---|
Lower | Upper | ||||
15-F2t-IsoP | Wilcoxon | 0.035 | −2.041 | −4.046 | −0.746 |
TX-B2 | Student | 0.073 | −0.777 | −1.869 | −0.080 |
15-E2t-IsoP | Wilcoxon | 0.438 | 0.300 | ||
PGE2 | Student | 0.043 | −0.927 | −2.110 | −0.032 |
14,15-DiHETE | Student | 0.073 | 0.777 | −0.081 | 1.868 |
11,12-DiHETE | Student | 0.075 | 0.772 | −0.085 | 1.860 |
LEU-B4 | Student | 0.001 | 2.192 | 0.833 | 4.339 |
8,9-DiHETE | Student | 0.083 | 0.744 | −0.106 | 1.817 |
15-deoxy-delta12,14-PGJ2 | Student | 0.022 | −1.128 | −2.446 | −0.174 |
20-HETE | Student | 0.043 | 0.929 | 0.033 | 2.113 |
13-HODE | Student | 0.136 | 0.611 | −0.213 | 1.611 |
15-HETE | Student | 0.405 | 0.312 | ||
12-HETE | Student | 0.226 | 0.475 | ||
5-HETE | Student | 0.564 | 0.212 | ||
14,15-EET | Student | 0.039 | 0.953 | 0.051 | 2.153 |
11,12-EET | Wilcoxon | 0.710 | 0.205 | ||
8,9-EET | Student | 0.035 | −0.986 | −2.208 | −0.075 |
AdA | Student | 0.122 | 0.639 | −0.189 | 1.654 |
EPA | Student | 0.115 | 0.656 | −0.176 | 1.679 |
alpha-LA | Wilcoxon | 0.844 | 0.219 | ||
DHA | Student | 0.008 | 1.486 | 0.410 | 3.067 |
AA | Student | 0.610 | 0.187 | ||
DPA | Student | 0.061 | 0.826 | −0.043 | 1.946 |
LA | Student | 0.018 | 1.188 | 0.215 | 2.548 |
Creatinine | Student | 0.763 | −0.109 | ||
Neopterin/Creatinine | Student | 0.010 | −1.396 | −2.909 | −0.353 |
Uric acid | Student | 0.296 | −0.402 | ||
Uric acid/Creatinine | Wilcoxon | 0.688 | 0.044 | ||
NOx | Student | 0.020 | −1.156 | −2.493 | −0.194 |
Cys ST | Student | <0 .001 | 2.458 | 0.983 | 4.829 |
CysGly ST | Student | 0.002 | 1.930 | 0.681 | 3.863 |
Hcy ST | Student | 0.029 | 1.039 | 0.112 | 2.295 |
GSH ST | Student | <0.001 | −3.607 | −6.967 | −1.600 |
ROS | Student | < 0.001 | −4.134 | −7.957 | −1.873 |
TAC | Student | <0.001 | 2.989 | 1.273 | 5.812 |
Compound * | Pre-Altitude Trek | Post-Altitude Trek | ||
---|---|---|---|---|
Mean | SD | Mean | SD | |
15-F2t-IsoP | 0.024 | 0.006 | 0.06 | 0.01 |
TX-B2 | 0.6 | 0.5 | 1.1 | 0.4 |
PGE2 | 0.05 | 0.03 | 0.11 | 0.07 |
14,15-DiHETE | 0.008 | 0.005 | 0.004 | 0.001 |
11,12-DiHETE | 0.008 | 0.006 | 0.003 | 6 × 10−4 |
LEU-B4 | 0.1 | 0.2 | 0.03 | 0.03 |
8,9-DiHETE | 0.008 | 0.004 | 0.006 | 7 × 10−4 |
15-deoxy-Δ12,14-PGJ2 | 0.006 | 0.006 | 0.02 | 0.02 |
20-HETE | 0.03 | 0.02 | 0.022 | 0.008 |
13-HODE | 20 | 6 | 13 | 4 |
15-HETE | 0.3 | 0.2 | 0.4 | 0.2 |
12-HETE | 20 | 20 | 30 | 6 |
5-HETE | 0.3 | 0.2 | 0.27 | 0.06 |
14,15-EET | 0.015 | 0.006 | 0.012 | 0.005 |
11,12-EET | 0.004 | 0.001 | 0.003 | 0.002 |
8,9-EET | 0.02 | 0.02 | 0.026 | 0.009 |
AdA | 4000 | 3000 | 3000 | 1000 |
EPA | 5000 | 3000 | 2500 | 900 |
alpha-LA | 20,000 | 10,000 | 16,000 | 9000 |
DHA | 20,000 | 7000 | 14,000 | 5000 |
AA | 18,000 | 9000 | 17,000 | 4000 |
DPA | 4000 | 3000 | 3000 | 1000 |
LA | 23,000 | 3000 | 20,000 | 3000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrakic-Sposta, S.; Biagini, D.; Bondi, D.; Pietrangelo, T.; Vezzoli, A.; Lomonaco, T.; Di Francesco, F.; Verratti, V. OxInflammation at High Altitudes: A Proof of Concept from the Himalayas. Antioxidants 2022, 11, 368. https://doi.org/10.3390/antiox11020368
Mrakic-Sposta S, Biagini D, Bondi D, Pietrangelo T, Vezzoli A, Lomonaco T, Di Francesco F, Verratti V. OxInflammation at High Altitudes: A Proof of Concept from the Himalayas. Antioxidants. 2022; 11(2):368. https://doi.org/10.3390/antiox11020368
Chicago/Turabian StyleMrakic-Sposta, Simona, Denise Biagini, Danilo Bondi, Tiziana Pietrangelo, Alessandra Vezzoli, Tommaso Lomonaco, Fabio Di Francesco, and Vittore Verratti. 2022. "OxInflammation at High Altitudes: A Proof of Concept from the Himalayas" Antioxidants 11, no. 2: 368. https://doi.org/10.3390/antiox11020368
APA StyleMrakic-Sposta, S., Biagini, D., Bondi, D., Pietrangelo, T., Vezzoli, A., Lomonaco, T., Di Francesco, F., & Verratti, V. (2022). OxInflammation at High Altitudes: A Proof of Concept from the Himalayas. Antioxidants, 11(2), 368. https://doi.org/10.3390/antiox11020368