Integrated Metabolomics, Lipidomics, and Genomics Reveal the Presence of a New Biomarker, Butanediol Glucuronide, Associated with the Activation of Liver Ketogenesis and Lipid Oxidation by Tomato-Based Sofrito in Obese Rats
Abstract
1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Animal Study
2.3. Sofrito Bioactive Compounds Analysis in Feed
2.4. Untargeted Approach
2.4.1. Metabolomics Assay
Sample Extraction
LC-HRMS Analysis
2.4.2. Lipidomics Assay
Sample Extraction
LC-HRMS Analysis
2.4.3. Data Analysis
2.5. RNA Isolation and Quantitative RT-PCR
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jackson, S.E.; Llewellyn, C.H.; Smith, L. The obesity epidemic—Nature via nurture: A narrative review of high-income countries. SAGE Open Med. 2020, 8, 205031212091826. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 19 November 2019).
- Finkelstein, E.A.; Khavjou, O.A.; Thompson, H.; Trogdon, J.G.; Pan, L.; Sherry, B.; Dietz, W. Obesity and Severe Obesity Forecasts Through 2030. Am. J. Prev. Med. 2012, 42, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Callahan, E.A. Current Status and Response to the Global Obesity Pandemic; Callahan, E.A., Ed.; National Academies Press: Washington, DC, USA, 2019; ISBN 978-0-309-48505-0. [Google Scholar]
- Azzu, V.; Vacca, M.; Virtue, S.; Allison, M.; Vidal-Puig, A. Adipose Tissue-Liver Cross Talk in the Control of Whole-Body Metabolism: Implications in Nonalcoholic Fatty Liver Disease. Gastroenterology 2020, 158, 1899–1912. [Google Scholar] [CrossRef]
- Marrelli, M.; Statti, G.; Conforti, F. A review of biologically active natural products from Mediterranean wild edible plants: Benefits in the treatment of obesity and its related disorders. Molecules 2020, 25, 649. [Google Scholar] [CrossRef]
- Kushner, R.F. Weight loss strategies for treatment of obesity. Prog. Cardiovasc. Dis. 2014, 56, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Campbell, J.A.; Ahmad, H.; Si, L.; Graaff, B.; Palmer, A.J. Bariatric surgery is a cost-saving treatment for obesity—A comprehensive meta-analysis and updated systematic review of health economic evaluations of bariatric surgery. Obes. Rev. 2020, 21, e12932. [Google Scholar] [CrossRef]
- Moore, M.P.; Cunningham, R.P.; Dashek, R.J.; Mucinski, J.M.; Rector, R.S. A Fad too Far? Dietary Strategies for the Prevention and Treatment of NAFLD. Obesity 2020, 28, 1843–1852. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E. The role of the Mediterranean diet on weight loss and obesity-related diseases. Rev. Endocr. Metab. Disord. 2020, 21, 315–327. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; García-Arellano, A.; Toledo, E.; Salas-Salvadó, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schröder, H.; Arós, F.; Gómez-Gracia, E.; et al. A 14-Item Mediterranean Diet Assessment Tool and Obesity Indexes among High-Risk Subjects: The PREDIMED Trial. PLoS ONE 2012, 7, e43134. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; de Alvarenga, J.F.R.; Estruch, R.; Lamuela-Raventos, R.M. Bioactive compounds present in the Mediterranean sofrito. Food Chem. 2013, 141, 3365–3372. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi de Alvarenga, J.F.; Quifer-Rada, P.; Francetto Juliano, F.; Hurtado-Barroso, S.; Illan, M.; Torrado-Prat, X.; Lamuela-Raventós, R.M. Using Extra Virgin Olive Oil to Cook Vegetables Enhances Polyphenol and Carotenoid Extractability: A Study Applying the sofrito Technique. Molecules 2019, 24, 1555. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi de Alvarenga, J.F.; Quifer-Rada, P.; Hurtado-Barroso, S.; Illan, M.; Torrado-Prat, X.; Lamuela-Raventós, R.M. Cuisinomics: MS-based untargeted approach reveals chemical modulation by a recipe during home cooking. Food Res. Int. 2020, 138, 109787. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi de Alvarenga, J.F.; Tran, C.; Hurtado-Barroso, S.; Martinez-Huélamo, M.; Illan, M.; Lamuela-Raventos, R.M. Home cooking and ingredient synergism improve lycopene isomer production in Sofrito. Food Res. Int. 2017, 99, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Storniolo, C.E.; Sacanella, I.; Mitjavila, M.T.; Lamuela-Raventos, R.M.; Moreno, J.J. Bioactive compounds of cooked tomato sauce modulate oxidative stress and arachidonic acid cascade induced by oxidized LDL in macrophage cultures. Nutrients 2019, 11, 1880. [Google Scholar] [CrossRef] [PubMed]
- Storniolo, C.E.; Sacanella, I.; Lamuela-Raventos, R.M.; Moreno, J.J. Bioactive Compounds of Mediterranean Cooked Tomato Sauce (Sofrito) Modulate Intestinal Epithelial Cancer Cell Growth through Oxidative Stress/Arachidonic Acid Cascade Regulation. ACS Omega 2020, 5, 17071–17077. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Barroso, S.; Martínez-Huélamo, M.; De Alvarenga, J.F.R.; Quifer-Rada, P.; Vallverdú-Queralt, A.; Pérez-Fernández, S.; Lamuela-Raventós, R.M. Acute effect of a single dose of tomato sofrito on plasmatic inflammatory biomarkers in healthy men. Nutrients 2019, 11, 851. [Google Scholar] [CrossRef]
- Ferro, Y.; Mazza, E.; Angotti, E.; Pujia, R.; Mirarchi, A.; Salvati, M.A.; Terracciano, R.; Savino, R.; Romeo, S.; Scuteri, A.; et al. Effect of a novel functional tomato sauce (OsteoCol) from vine-ripened tomatoes on serum lipids in individuals with common hypercholesterolemia: Tomato sauce and hypercholesterolemia. J. Transl. Med. 2021, 19, 19. [Google Scholar] [CrossRef]
- Martín-Pozuelo, G.; Navarro-González, I.; González-Barrio, R.; Santaella, M.; García-Alonso, J.; Hidalgo, N.; Gómez-Gallego, C.; Ros, G.; Periago, M.J. The effect of tomato juice supplementation on biomarkers and gene expression related to lipid metabolism in rats with induced hepatic steatosis. Eur. J. Nutr. 2015, 54, 933–944. [Google Scholar] [CrossRef]
- Rodriguez-Rodriguez, R.; Jiménez-Altayó, F.; Alsina, L.; Onetti, Y.; Rinaldi de Alvarenga, J.F.; Claro, C.; Ogalla, E.; Casals, N.; Lamuela-Raventos, R.M. Mediterranean tomato-based sofrito protects against vascular alterations in obese Zucker rats by preserving NO bioavailability. Mol. Nutr. Food Res. 2017, 61, 1601010. [Google Scholar] [CrossRef]
- Sandoval, V.; Rodríguez-Rodríguez, R.; Martínez-Garza, Ú.; Rosell-Cardona, C.; Lamuela-Raventós, R.; Marrero, P.F.; Haro, D.; Relat, J. Mediterranean Tomato-Based Sofrito Sauce Improves Fibroblast Growth Factor 21 (FGF21) Signaling in White Adipose Tissue of Obese ZUCKER Rats. Mol. Nutr. Food Res. 2018, 62, 1700606. [Google Scholar] [CrossRef] [PubMed]
- Hrvolová, B.; Martínez-Huélamo, M.; Colmán-Martínez, M.; Hurtado-Barroso, S.; Lamuela-Raventós, R.M.; Kalina, J. Development of an advanced HPLC–MS/MS method for the determination of carotenoids and fat-soluble vitamins in human plasma. Int. J. Mol. Sci. 2016, 17, 1719. [Google Scholar] [CrossRef]
- Di Lecce, G.; Martínez-Huélamo, M.; Tulipani, S.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Setup of a UHPLC–QqQ-MS Method for the Analysis of Phenolic Compounds in Cherry Tomatoes, Tomato Sauce, and Tomato Juice. J. Agric. Food Chem. 2013, 61, 8373–8380. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, A.L.; Cavaliere, C.; Crescenzi, C.; Foglia, P.; Nescatelli, R.; Samperi, R.; Laganà, A. Comparison of extraction methods for the identification and quantification of polyphenols in virgin olive oil by ultra-HPLC-QToF mass spectrometry. Food Chem. 2014, 158, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Angelidou, G.; Ni, Z.; Criscuolo, A.; Schiller, J.; Blüher, M.; Fedorova, M. AdipoAtlas: A reference lipidome for human white adipose tissue. Cell Rep. Med. 2021, 2, 100407. [Google Scholar] [CrossRef] [PubMed]
- Haug, K.; Cochrane, K.; Nainala, V.C.; Williams, M.; Chang, J.; Jayaseelan, K.V.; O’Donovan, C. MetaboLights: A resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 2020, 48, D440–D444. [Google Scholar] [CrossRef]
- Ancillotti, C.; Ulaszewska, M.; Mattivi, F.; Del Bubba, M. Untargeted Metabolomics Analytical Strategy Based on Liquid Chromatography/Electrospray Ionization Linear Ion Trap Quadrupole/Orbitrap Mass Spectrometry for Discovering New Polyphenol Metabolites in Human Biofluids after Acute Ingestion of Vaccinium myrti. J. Am. Soc. Mass Spectrom. 2019, 30, 381–402. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Narváez-Rivas, M.; Zhang, Q. Comprehensive untargeted lipidomic analysis using core–shell C30 particle column and high field orbitrap mass spectrometer. J. Chromatogr. A 2016, 1440, 123–134. [Google Scholar] [CrossRef]
- Della Corte, A.; Chitarrini, G.; Di Gangi, I.M.; Masuero, D.; Soini, E.; Mattivi, F.; Vrhovsek, U. A rapid LC-MS/MS method for quantitative profiling of fatty acids, sterols, glycerolipids, glycerophospholipids and sphingolipids in grapes. Talanta 2015, 140, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Benton, H.P.; Want, E.J.; Ebbels, T.M.D. Correction of mass calibration gaps in liquid chromatography–mass spectrometry metabolomics data. Bioinformatics 2010, 26, 2488–2489. [Google Scholar] [CrossRef] [PubMed]
- Tautenhahn, R.; Böttcher, C.; Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 2008, 9, 504. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, R.; Miralpeix, C.; Fosch, A.; Pozo, M.; Calderón-Domínguez, M.; Perpinyà, X.; Vellvehí, M.; López, M.; Herrero, L.; Serra, D.; et al. CPT1C in the ventromedial nucleus of the hypothalamus is necessary for brown fat thermogenesis activation in obesity. Mol. Metab. 2019, 19, 75–85. [Google Scholar] [CrossRef]
- Bendini, A.; Vallverdú-Queralt, A.; Valli, E.; Palagano, R.; Lamuela-Raventos, R.M.; Toschi, T.G. Italian and Spanish commercial tomato sauces for pasta dressing: Study of sensory and head-space profiles by Flash Profiling and solid-phase microextraction-gas chomatography-mass spectrometry. J. Sci. Food Agric. 2017, 97, 3261–3267. [Google Scholar] [CrossRef]
- Beltrán Sanahuja, A.; De Pablo Gallego, S.L.; Maestre Pérez, S.E.; Valdés García, A.; Prats Moya, M.S. Influence of Cooking and Ingredients on the Antioxidant Activity, Phenolic Content and Volatile Profile of Different Variants of the Mediterranean Typical Tomato Sofrito. Antioxidants 2019, 8, 551. [Google Scholar] [CrossRef]
- Farag, M.A.; Ali, S.E.; Hodaya, R.H.; El-Seedi, H.R.; Sultani, H.N.; Laub, A.; Eissa, T.F.; Abou-Zaid, F.O.F.; Wessjohann, L.A. Phytochemical profiles and antimicrobial activities of Allium cepa red cv. and A. sativum subjected to different drying methods: A comparative MS-based metabolomics. Molecules 2017, 22, 761. [Google Scholar] [CrossRef]
- Ji, X.-J.; Huang, H.; Ouyang, P.-K. Microbial 2,3-butanediol production: A state-of-the-art review. Biotechnol. Adv. 2011, 29, 351–364. [Google Scholar] [CrossRef]
- Hossain, M.A.; Lee, S.-J.; Park, N.-H.; Birhanu, B.T.; Mechesso, A.F.; Park, J.-Y.; Park, E.-J.; Lee, S.-P.; Youn, S.-J.; Park, S.-C. Enhancement of Lipid Metabolism and Hepatic Stability in Fat-Induced Obese Mice by Fermented Cucurbita moschata Extract. Evidence-Based Complement. Altern. Med. 2018, 2018, 3908453. [Google Scholar] [CrossRef] [PubMed]
- Trouwborst, I.; Bowser, S.M.; Goossens, G.H.; Blaak, E.E. Ectopic Fat Accumulation in Distinct Insulin Resistant Phenotypes; Targets for Personalized Nutritional Interventions. Front. Nutr. 2018, 5, 77. [Google Scholar] [CrossRef]
- Cheng, X.; Geng, F.; Pan, M.; Wu, X.; Zhong, Y.; Wang, C.; Tian, Z.; Cheng, C.; Zhang, R.; Puduvalli, V.; et al. Targeting DGAT1 Ameliorates Glioblastoma by Increasing Fat Catabolism and Oxidative Stress. Cell Metab. 2020, 32, 229–242.e8. [Google Scholar] [CrossRef] [PubMed]
- Puchalska, P.; Crawford, P.A. Metabolic and Signaling Roles of Ketone Bodies in Health and Disease. Annu. Rev. Nutr. 2021, 41, 49–77. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Choi, J.; Selen Alpergin, E.S.; Zhao, L.; Hartung, T.; Scafidi, S.; Riddle, R.C.; Wolfgang, M.J. Loss of Hepatic Mitochondrial Long-Chain Fatty Acid Oxidation Confers Resistance to Diet-Induced Obesity and Glucose Intolerance. Cell Rep. 2017, 20, 655–667. [Google Scholar] [CrossRef]
- McCarthy, C.G.; Waigi, E.W.; Singh, G.; Castaneda, T.R.; Mell, B.; Chakraborty, S.; Wenceslau, C.F.; Joe, B. Physiologic, Metabolic, and Toxicologic Profile of 1,3-Butanediol. J. Pharmacol. Exp. Ther. 2021, 379, 245–252. [Google Scholar] [CrossRef]
- Walton, C.M.; Jacobsen, S.M.; Dallon, B.W.; Saito, E.R.; Bennett, S.L.H.; Davidson, L.E.; Thomson, D.M.; Hyldahl, R.D.; Bikman, B.T. Ketones Elicit Distinct Alterations in Adipose Mitochondrial Bioenergetics. Int. J. Mol. Sci. 2020, 21, 6255. [Google Scholar] [CrossRef]
- Taggart, A.K.P.; Kero, J.; Gan, X.; Cai, T.Q.; Cheng, K.; Ippolito, M.; Ren, N.; Kaplan, R.; Wu, K.; Wu, T.J.; et al. (D)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J. Biol. Chem. 2005, 280, 26649–26652. [Google Scholar] [CrossRef]
- van der Stelt, I.; Hoevenaars, F.; Široká, J.; de Ronde, L.; Friedecký, D.; Keijer, J.; van Schothorst, E. Metabolic Response of Visceral White Adipose Tissue of Obese Mice Exposed for 5 Days to Human Room Temperature Compared to Mouse Thermoneutrality. Front. Physiol. 2017, 8, 179. [Google Scholar] [CrossRef]
- Zhang, F.; Hao, G.; Shao, M.; Nham, K.; An, Y.; Wang, Q.; Zhu, Y.; Kusminski, C.M.; Hassan, G.; Gupta, R.K.; et al. An Adipose Tissue Atlas: An Image-Guided Identification of Human-like BAT and Beige Depots in Rodents. Cell Metab. 2018, 27, 252–262.e3. [Google Scholar] [CrossRef]
- Grzybek, M.; Palladini, A.; Alexaki, V.I.; Surma, M.A.; Simons, K.; Chavakis, T.; Klose, C.; Coskun, Ü. Comprehensive and quantitative analysis of white and brown adipose tissue by shotgun lipidomics. Mol. Metab. 2019, 22, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martí, A.; Sandoval, V.; Marrero, P.F.; Haro, D.; Relat, J. Nutritional regulation of fibroblast growth factor 21: From macronutrients to bioactive dietary compounds. Horm. Mol. Biol. Clin. Investig. 2017, 30, 20160034. [Google Scholar] [CrossRef] [PubMed]
C | Compound | rt | P | MF | Exact Mass | MS/MS | Error | ID | T | Change |
---|---|---|---|---|---|---|---|---|---|---|
C001 | butanediol glucuronide (alcohol) | 81 | − | C10H18O8 | 265.0928 [M − H]− 531.1929 [2M − H]− 363.0697 [M − H+H3PO4]− | 265.0930 [M − H] (90); 247.0825 [M − H]-H2O; (40) 229.0719 [M − H]-(2)H2O (20); 205.0719 [M − H]-CH3COO (25); 189.0769 [M − H]-C2H2O2-H2O (20); 175.0250 [M − H]-glucuronide (20); 157.0145 [M − H]-glucuronide-H2O (50); 129.0196 (40); 113.0248 (100) gluruconide frag; 99.0091 (15) gluruconide frag; 95.0142 (30) gluruconide frag; 87.0091 (40) gluruconide frag; 85.0299 (60) gluruconide frag | 0.30 | II | L | S > C |
+ | 284.1341 [M + NH4]+ 267.1077 [M + H]+ 533.2075 [2M + H]+ 289.0895 [M + Na]+ 305.0635 [M + K]+ | 249.0965 (100) [M + H]-NH3-H2O; 91.0751 (15) [M + H]-glucuronide; 73.0645 (30); [M + H]- H2O-glucuronide | −1.12 | |||||||
C002 | DG 14:0_18:2 | 1061 | + | C35H64O5 | 582.5090 [M + NH4]+ | 565.3 [M + H]-NH3 (25); 547.4 [M + H]-NH3-H2O (100); 337.3 (228) [M + H]-C14H28O2 (60); 285.2 (280.1) [M + H]-C18H32O2 (90) | −0.20 | II | V | O > L |
C003 | DG 16:1_18:2 | 1081 | + | C37H66O5 | 608.5230 [M + NH4]+ 629.4522 [M + K]+ | 591.5 [M + H]-NH3 (60); 573.4 [M + H]-NH3-H2O (100); 337.3 [M + H]-C16H30O2 (30); 311.3 [M + H]-C18H32O2 (20) | −2.99 | II | E | S > C |
C004 | DG 18:2_20:4 | 1089 | + | C41H68O5 | 658.5385 [M + NH4]+ | 641.5 [M + H]-NH3 (100); 623.4 [M + H]-NH3-H2O (25); 361.3 [M + H]-C18H32O2 (10); 337.3 [M + H]-C20H32O2 (100) | −2.99 | II | E | S > C |
C005 | DG 34:3 (II) | 1099 | + | C37H66O5 | 608.5233 [M + NH4]+ | n.d. | −2.48 | III | E | S > C |
C006 | DG 16:0_16:1 | 1146 | + | C35H66O5 | 584.5230 [M + NH4]+ 605.4523 [M + K]+ 612.5542 [M + C2H8N]+ | 567.4 [M + H]-NH3 (100); 549.5 [M + H]-NH3-H2O (95); 313.3 [M + H]-NH3-C16H30O2 (80); 311.3 [M + H]-NH3-C16H32O2 (60) | −3.12 | II | V | S > C O > L |
C007 | DG 34:2 (I) | 1158 | + | C37H68O5 | 610.5385 [M + NH4]+ 615.4949 [M + Na]+ 638.5699 [M + C2H8N]+ 631.4679 [M + K]+ | n.d. | −3.23 | III | E,V | S > C |
C008 | DG 34:2 (II) | 1168 | + | C37H68O5 | 610.5384 [M + NH4]+ 615.4942 [M + Na]+ 631.4675 [M + K]+ 638.5697 [M + C2H8N]+ | n.d. | −3.40 | III | E,V | S > C |
C009 | DG 18:1_20:4 | 1168 | + | C41H70O5 | 660.5542 [M + NH4]+ 681.4834 [M + K]+ | 643.4 [M + H]-NH3 (70); 625.5 [M + H]-NH3-H2O (20); 361.4 [M + H]-NH3-C18H34O2 (20); 339.3 [M + H]-NH3-C20H32O2 (100) | −2.90 | II | E | S > C O > L |
C010 | DG 18:1_18:2 | 1182 | + | C39H70O5 | 636.5540 [M + NH4]+ 641.5097 [M + Na]+ 664.5857 [M + C2H8N]+ 657.4833 [M + K]+ | 619.5 [M + H]-NH3 (70); 601.5 [M + H]-NH3-H2O (100); 339.2 [M + H]-NH3-C18H32O2 (35); 337.2 [M + H]-NH3-C18H34O2 (20); | −3.34 | II | E | S > C |
C011 | DG 16:0_16:0 | 1233 | + | C35H68O5 | 586.5387 [M + NH4] 614.5700 [M + C2H8N] 607.4678 [M + K] | 569.5 [M + H]-NH3 (60); 551.5 [M + H]-NH3-H2O (70); 313.2 [M + H]-NH3-C16H32O2 (100) | −3.02 | II | E,V | S > C O > L |
C012 | DG 16:0_18:1 | 1248 | + | C37H70O5 | 612.5542 [M + NH4]+ 617.5096 [M + Na]+ 640.5854 [M + C2H8N]+ 633.4830 [M + K]+ | 595.3 [M + H]-NH3 (50); 577.4 [M + H]-NH3-H2O (100); 339.3 [M + H]-NH3-C16H32O2 (70); 313.2 [M + H]-NH3-C18H34O2 (80) | −3.14 | II | E,V | S > C O > L |
C013 | DG 18:1_18:1 | 1259 | + | C39H72O5 | 638.5716 [M + NH4]+ 643.5273 [M + Na]+ 659.5008 [M + K]+ 666.6033 [M + C2H8N]+ | 621.5 [M + H]-NH3 (35); 603.5 [M + H]-NH3-H2O (75); 339.2 [M + H]-NH3-C18H34O2 (100) | −0.19 | II | E,V | S > C O > L |
C014 | DG 18:0_18:2 | 1272 | + | C39H72O5 | 638.5719 [M + NH4]+ 666.6035 [M + C2H8N]+ 659.5008 [M + K]+ | 621.5 [M + H]-NH3 (20); 603.5 [M + H]-NH3-H2O (100); 341.2 [M + H]-NH3-C18H32O2 (85) 337.4 [M + H]-NH3-C18H36O2 (40) | 0.30 | II | V | O > L |
C015 | TG 38:3 | 1281 | + | C41H72O6 | 678.5672 [M + NH4]+ 699.4965 [M + K]+ | n.d. | 0.85 | III | E,V | C > S L > O |
C016 | TG 4:0_18:2_18:2 | 1284 | + | C43H74O6 | 704.5814 [M + NH4]+ 7255121 [M + K]+ 732.6140 [M + C2H8N]+ | 687.5 [M + H]-NH3 (100); 669.7 [M + H]-NH3-H2O (15); 599.5 [M + H]-NH3-C4H8O2 (70) 407.4 [M + H]-NH3-C18H32O2 (65) | −1.22 | II | E,V | C > S L > O |
C017 | TG 2:0_16:0_18:1 | 1308 | + | C39H72O6 | 654.5647 [M + NH4]+ 675.4943 [M + K]+ 682.5963 [M + C2H8N]+ | 637.4 [M + H]-NH3 (10); 577.4 [M + H]-NH3-C2H4O2 (50) 381.3 [M + H]-NH3-C16H32O2 (100) 355.2 [M + H]-NH3-C18H32O2 (45) | −3.05 | II | E | S > C |
C018 | DG 34:0 | 1314 | + | C37H72O5 | 614.5716 [M + NH4]+ 635.5011 [M + K]+ | n.d. | −0.19 | III | V | O > L |
C019 | DG 18:0_18:1 | 1319 | + | C39H74O5 | 640.5874 [M + NH4]+ 661.5168 [M + K]+ 668.6190 [M + C2H8N]+ | 623.2 [M + H]-NH3 (65); 605.6 [M + H]-NH3-H2O (85); 341.2 [M + H]-NH3-C18H34O2 (100); 339.3 [M + H]-NH3-C18H36O2 (70) | 0.06 | II | E,V | S > C O > L |
C020 | TG 4:0_16:0_18:2 | 1324 | + | C41H74O6 | 680.5820 [M + NH4]+ 685.5379 [M + Na]+ 701.5116 [M + K]+ 708.6138 [M + C2H8N]+ | 575.5 [M + H]-NH3-C4H8O2 (90) 407.3 [M + H]-NH3-C16H32O2 (100) 383.4 [M + H]-NH3-C18H32O2 (70) | −0.36 | II | V | L > O |
C021 | TG 4:0_18:1_18:2 | 1328 | + | C43H76O6 | 706.5981 [M + NH4]+ 727.5277 [M + K]+ 734.6296 [M + C2H8N]+ | 689.5 [M + H]-NH3 (50); 671.5 [M + H]-NH3-H2O (15); 601.5 [M + H]-NH3-C4H8O2 (100) 407.3 [M + H]-NH3-C18H32O2 (50) 409.3 [M + H]-NH3-C18H34O2 (60) | 0.23 | II | E,V | C > S L > O |
C022 | TG 42:4 | 1336 | + | C45H78O6 | 732.6140 [M + NH4]+ | n.d. | 0.59 | III | V | L > O |
C023 | TG 40:2 | 1360 | + | C43H78O6 | 708.6137 [M + NH4]+ 736.6456 [M + C2H8N]+ | n.d. | 0.17 | III | V | L > O |
C024 | TG 6:0_18:1_18:2 | 1363 | + | C45H80O6 | 734.6295 [M + NH4]+ 755.5590 [M + K]+ | 717.5 [M + H]-NH3 (40); 601.5 [M + H]-NH3-C6H12O2 (100) 437.4 [M + H]-NH3-C18H32O2 (75) 435.4 [M + H]-NH3-C18H34O2 (55) | 0.38 | II | E,V | C > S L > O |
C025 | TG 44:4 | 1368 | + | C47H82O6 | 760.6453 [M + NH4]+ 781.5746 [M + K]+ | n.d. | 0.57 | III | E,V | C > S L > O |
C026 | TG 10:0_18:2_18:3 | 1375 | + | C49H84O6 | 786.6609 [M + NH4]+ | 769.5 [M + H]-NH3 (100); 751.5 [M + H]-NH3-H2O (20); 597.4 [M + H]-NH3-C10H20O2 (50) 491.5 [M + H]-NH3-C18H30O2 (35) 489.4 [M + H]-NH3-C18H32O2 (45) | 0.47 | II | V | L > O |
C027 | TG 38:0 | 1379 | + | C41H78O6 | 684.6140 [M + NH4]+ 705.5435 [M + K]+ | n.d. | 0.63 | III | E,V | C > S L > O |
C028 | TG 8:0_16:0_18:2 | 1385 | + | C45H82O6 | 736.6451 [M + NH4]+ 757.5747 [M + K]+ 741.6006 [M + Na]+ | 719.6 [M + H]-NH3 (20); 575.5 [M + H]-NH3-C8H16O2 (100); 463.3 [M + H]-NH3-C16H32O2 (85) 439.3 [M + H]-NH3-C18H32O2 (75) | 0.31 | II | E,V | C > S L > O |
C029 | TG 10:0_16:1_18:2 | 1388 | + | C47H84O6 | 762.6611 [M + NH4]+ 783.5906 [M + K]+ | 745.6 [M + H]-NH3 (20); 573.5 [M + H]-NH3-C10H20O2 (100) 491.4 [M + H]-NH3-C16H30O2 (80) 465.4 [M + H]-NH3-C18H32O2 (70) | 0.77 | II | E,V | C > S L > O |
C030 | TG 10:0_18:2_18:2 | 1392 | + | C49H86O6 | 788.6765 [M + NH4]+ 809.6062 [M + K]+ 793.6322 [M + Na]+ 816.7082 [M + C2H8N]+ | 771.6 [M + H]-NH3 (100); 753.6 [M + H]-NH3-H2O (20); 699.5 [M + H]-NH3-C10H20O2 (90) 491.5 [M + H]-NH3-C18H32O2 (80) | 0.42 | II | E,V | C > S L > O |
C031 | TG 43:2 | 1397 | + | C46H84O6 | 750.6611 [M + NH4]+ | n.d. | 0.78 | III | V | L > O |
C032 | TG 12:0_18:2_18:3 | 1397 | + | C51H88O6 | 814.6926 [M + NH4]+ 835.6221 [M + K]+ | 797.6 [M + H]-NH3 (100); 779.6 [M + H]-NH3-H2O (20); 597.5 [M + H]-NH3-C12H24O2 (50) 519.4 [M + H]-NH3-C18H30O2 (40) 517.3 [M + H]-NH3-C18H32O2 (35) | 0.97 | II | E,V | C > S L > O |
C033 | TG 45:3 | 1399 | + | C48H86O6 | 776.6767 [M + NH4]+ | n.d. | 0.69 | III | V | L > O |
C034 | TG 8:0_16:0_16:0 | 1401 | + | C43H82O6 | 712.6453 [M + NH4]+ 733.5748 [M + K]+ | 551.5 [M + H]-NH3-C8H16O2 (50) 439.4 [M + H]-NH3-C16H32O2 (100) | 0.60 | II | E,V | C > S L > O |
C035 | TG 14:1_18:2_18:3 | 1402 | + | C53H90O6 | 840.7079 [M + NH4]+ 861.6371 [M + K]+ | 823.6 [M + H]-NH3 (100); 805.5 [M + H]-NH3-H2O (20); 597.4 [M + H]-NH3-C14H26O2 (70) 545.5 [M + H]-NH3-C18H30O2 (50) 543.4 [M + H]-NH3-C18H32O2 (40) | 0.51 | II | E,V | C > S L > O |
C036 | TG 10:0_16:0_18:2 | 1406 | + | C47H86O6 | 764.6761 [M + NH4]+ 785.6061 [M + K]+ | 747.5 [M + H]-NH3 (10) 575.4 [M + H]-NH3-C10H20O2 (100) 491.4 [M + H]-NH3-C16H32O2 (90) 467.5 [M + H]-NH3-C18H32O2 (80) | −0.11 | II | V | L > O |
C037 | TG 49:5 | 1406 | + | C52H90O6 | 828.7085 [M + NH4]+ | n.d. | 1.26 | III | V | L > O |
C038 | TG 16:1_18:3_18:3 | 1406 | + | C55H92O6 | 866.7238 [M + NH4]+ 887.6536 [M + K]+ | 849.7 [M + H]-NH3 (100); 831.6 [M + H]-NH3-H2O (20); 595.6 [M + H]-NH3-C16H30O2 (50) 571.4 [M + H]-NH3-C18H30O2 (60) | 0.79 | II | E,V | C > S L > O |
C039 | TG 18:2_18:3_18:3 | 1407 | + | C57H94O6 | 892.7394 [M + NH4]+ 897.6951 [M + Na]+ 913.6689 [M + K]+ 920.7722 [M + C2H8N]+ | 875.7 [M + H]-NH3 (100); 857.6 [M + H]-NH3-H2O (20); 597.4 [M + H]-NH3-C18H30O2 (70); 595.4 [M + H]-NH3-C18H32O2 (40) | 0.71 | II | E,V | C > S L > O |
C040 | TG 51:6 | 1409 | + | C54H92O6 | 854.7236 [M + NH4]+ | n.d. | 0.56 | III | E,V | C > S L > O |
C041 | TG 58:11 | 1410 | + | C61H96O6 | 942.7511 [M + NH4]+ | n.d. | −3.60 | III | E,V | C > S |
C042 | TG 14:1_16:1_18:2 | 1411 | + | C51H90O6 | 816.7072 [M + NH4]+ 821.6636 [M + Na]+ 837.6373 [M + K]+ | 799.8 [M + H]-NH3 (80); 781.8 [M + H]-NH3-H2O (10); 573.5 [M + H]-NH3-C14H26O2 (100) 545.4 [M + H]-NH3-C16H30O2 (60) 519.5 [M + H]-NH3-C18H32O2 (50) | -0.35 | II | V | L > O |
C043 | TG 16:0_16:3_20:4/TG 16:3_18:2_18:2 | 1411 | + | C55H92O6 | 866.7238 [M + NH4]+ 887.6537 [M + K]+ | 849.7 [M + H]-NH3 (70); 831.6 [M + H]-NH3-H2O (15); 599.5 [M + H]-NH3-C16H26O2 (100) 569.3 [M + H]-NH3-C18H32O2 (40) 547.4 [M + H]-NH3-C20H32O2 (50) | 0.79 | III | V | L > O |
C044 | TG 53:7 | 1412 | + | C56H94O6 | 880.7392 [M + NH4]+ | n.d. | −0.49 | III | E,V | C > S L > O |
C045 | TG 16:1_16:1_18:3/ TG 14:1_18:2_18:2 | 1414 | + | C53H92O6 | 842.7227 [M + NH4]+ 847.6791 [M + Na]+ 863.6530 [M + K]+ | 825.7 [M + H]-NH3 (100); 807.7 [M + H]-NH3-H2O (20); 599.5 [M + H]-NH3-C14H26O2 (40) 571.4 [M + H]-NH3-C16H30O2 (60) 547.5 [M + H]-NH3-C18H30O2 (30) 545.4 [M + H]-NH3-C18H32O2 (50) | −0.52 | II | E,V | C > S L > O |
C046 | TG 18:2_18:3_20:4/TG 18:2_18:2_20:5 | 1414 | + | C59H96O6 | 918.7550 [M + NH4]+ 939.6845 [M + K]+ | 901.7 [M + H]-NH3 (80) 883.7 [M + H]-NH3-H2O (20) 623.5 [M + H]-NH3-C18H30O2 (20) 621.6 [M + H]-NH3-C18H32O2 (30) 599.5 [M + H]-NH3-C20H32O2 (40) 597.4 [M + H]-NH3-C20H32O2 (100) | 0.63 | II | E,V | C > S L > O |
C047 | TG 45:2 | 1415 | + | C48H88O6 | 778.6926 [M + NH4]+ | n.d. | 1.01 | III | V | L > O |
C048 | TG 16:1_18:2_18:3 | 1416 | + | C55H94O6 | 868.7355 [M + NH4]+ 873.6923 [M + Na]+ 889.6655 [M + K]+ | 851.6 [M + H]-NH3 (100) 833.6 [M + H]-NH3-H2O (20) 597.5 [M + H]-NH3-C16H30O2 (60) 573.5 [M + H]-NH3-C18H30O2 (40) 571.5 [M + H]-NH3-C18H32O2 (35) | −0.56 | II | E,V | C > S L > O |
C049 | TG 47:3 | 1417 | + | C50H90O6 | 804.7088 [M + NH4]+ | n.d. | 1.68 | III | V | L > O |
C050 | TG 18:2_20:4_22:6 | 1417 | + | C63H98O6 | 968.7675 [M + NH4]+ | 651.6 [M + H]-NH3 (45) 671.5 [M + H]-NH3-C18H32O2 (30) 647.4 [M + H]-NH3-C20H32O2 (100) 623.4 [M + H]-NH3-C22H32O2 (60) | −2.71 | II | E | C > S |
C051 | TG 18:2_18:2_18:3 | 1419 | + | C57H96O6 | 894.7538 [M + NH4]+ 899.7105 [M + Na]+ 915.6837 [M + K]+ 922.788 [M + C2H8N]+ | 877.8 [M + H]-NH3 (100) 859.8 [M + H]-NH3-H2O (15) 599.4 [M + H]-NH3-C18H30O2 (70) 597.4 [M + H]-NH3-C18H32O2 (70) | −0.72 | II | E,V | C > S L > O |
C052 | TG 10:0_16:0_18:1/ others | 1420 | + | C47H88O6 | 766.6919 [M + NH4]+ 771.6481 [M + Na]+ 787.6217 [M + K]+ | 577.4 [M + H]-NH3-C10H20O2 (50) 549.5 [M + H]-NH3-C12H24O2 (70) 521.4 [M + H]-NH3-C14H28O2 (85) 495.4 [M + H]-NH3-C16H30O2 (60) 493.4 [M + H]-NH3-C16H32O2 (100) 467.5 [M + H]-NH3-C18H34O2 (40) | 0.09 | E,V | S > C O > L | |
C053 | TG 49:4 | 1420 | + | C52H92O6 | 851.6532 [M + K]+ 830.7241 [M + NH4]+ | n.d. | 1.19 | III | E,V | C > S L > O |
C054 | TG 15:1_18:2_18:2 | 1421 | + | C54H94O6 | 856.7396 [M + NH4]+ 877.6690 [M + K]+ | 839.6 [M + H]-NH3 (100) 821.6 [M + H]-NH3-H2O (15) 599.5 [M + H]-NH3-C15H28O2 (40) 559.5 [M + H]-NH3-C18H32O2 (60) | 0.98 | II | E,V | C > S L > O |
C055 | TG 55:8 | 1422 | + | C58H96O6 | 906.7541 [M + NH4]+ | n.d. | −0.37 | III | V | L > O |
C056 | TG 18:2_18:2_22:6 | 1422 | + | C61H98O6 | 944.7701 [M + NH4]+ 965.6994 [M + K]+ | 927.7 [M + H]-NH3 (60) 909.6 [M + H]-NH3-H2O (30) 647.5 [M + H]-NH3-C18H32O2 (20) 599.5 [M + H]-NH3-C22H32O2 (100) | 0.02 | II | E,V | C > S L > O |
C057 | TG 16:1_16:1_16:1 | 1423 | + | C51H92O6 | 818.7227 [M + NH4]+ 839.6530 [M + K]+ 823.6790 [M + Na]+ | 801.6 [M + H]-NH3 (20) 783.5 [M + H]-NH3-H2O (10) 547.4 [M + H]-NH3-C16H30O2 (100) | −0.54 | II | E,V | S > C O > L |
C058 | TG 17:1_18:2_18:3 | 1424 | + | C56H96O6 | 882.7549 [M + NH4]+ 903.6841 [M + K]+ | 865.7 [M + H]-NH3 (100); 847.6 [M + H]-NH3-H2O (20); 585.3 [M + H]-NH3-C18H32O2 (60); 597.5 [M + H]-NH3-C17H32O2 (50); | 0.54 | II | E,V | C > S L > O |
C059 | TG 18:2_18:2_20:4 | 1426 | + | C59H98O6 | 920.7697 [M + NH4]+ 941.6994 [M + K]+ | 903.7 [M + H]-NH3 (65); 623.6 [M + H]-NH3-C18H32O2 (20); 599.5 [M + H]-NH3-C20H32O2 (20); | −0.42 | II | E,V | C > S L > O |
C060 | TG 16:0_16:1_20:4 | 1428 | + | C55H96O6 | 870.7535 [M + NH4]+ 853.7282 [M + H]+ | 853.8 [M + H]-NH3 (90); 835.8 [M + H]-NH3-H2O (20) 597.5 [M + H]-NH3-C16H32O2 (60) 549.5 [M + H]-NH3-C20H32O2 (100) | −1.09 | II | V | L > O |
C061 | TG 15:0_16:1_16:1 | 1430 | + | C50H92O6 | 806.7238 [M + NH4]+ | 789.3 [M + H]-NH3 (30); 547.4 [M + H]-NH3-C15H30O2 (30) 535.5 [M + H]-NH3-C16H30O2 (100) | 0.85 | III | V | O > L |
C062 | TG 18:2_18:2_18:2 | 1430 | + | C57H98O6 | 896.7688 [M + NH4]+ 917.6988 [M + K]+ 879.7437 [M + H]+ 901.7257 [M + Na]+ | 879.7 [M + H]-NH3 (100); 861.7 [M + H]-NH3-H2O (15); 599.5 [M + H]-NH3-C18H32O2 (100); | −1.46 | II | E,V | C > S L > O |
C063 | TG 15:0_16:1_18:2 | 1432 | + | C52H94O6 | 832.7392 [M + NH4]+ | 815.7 [M + H]-NH3 (60); 573.5 [M + H]-NH3-C15H30O2 (100) 561.4 [M + H]-NH3-C16H30O2 (80) 535.4 [M + H]-NH3-C18H32O2 (95); | 0.52 | II | E,V | C > S L > O |
C064 | TG 55:7 | 1432 | + | C58H98O6 | 908.7698 [M + NH4]+ | n.d. | −0.31 | III | E,V | C > S L > O |
C065 | TG 18:2_18:2_22:5/ TG 18:1_18:2_20:6 | 1432 | + | C61H100O6 | 946.7825 [M + NH4]+ | 929.7 [M + H]-NH3 (45); 911.6 [M + H]-NH3-H2O (15); 649.6 [M + H]-NH3-C18H32O2 (40); 625.7 [M + H]-NH3-C20H28O2 (30); 599.5 [M + H]-NH3-C22H34O2 (100); | −3.48 | II | E | C > S |
C066 | TG 12:0_14:0_18:0/ TG 14:0_14:0_16:0 | 1433 | + | C47H90O6 | 768.7081 [M + NH4]+ | 551.5 [M + H]-NH3-C12H24O2 (50); 523.5 [M + H]-NH3-C14H28O2 (80); 495.5 [M + H]-NH3-C16H32O2 (100); | 0.83 | II | E,V | S > C O > L |
C067 | TG 16:1_17:1_18:2 | 1433 | + | C54H96O6 | 858.7547 [M + NH4]+ 879.6843 [M + K]+ | 841.7 [M + H]-NH3 (100); 587.5 [M + H]-NH3-C16H30O2 (65); 573.4 [M + H]-NH3-C17H32O2 (75); 561.5 [M + H]-NH3-C18H32O2 (60); | 0.32 | II | E,V | C > S L > O |
C068 | TG 14:0_16:0_16:1/TG 12:0_16:0_18:1 | 1434 | + | C49H92O6 | 794.7228 [M + NH4]+ 815.6531 [M + K]+ 799.6793 [M + Na]+ | 777.6 [M + H]-NH3 (15); 577.5 [M + H]-NH3-C12H24O2 (30); 549.4 [M + H]-NH3-C14H28O2 (80); 523.4 [M + H]-NH3-C16H30O2 (50); 521.5 [M + H]-NH3-C16H32O2 (100); | −0.42 | II | E,V | S > C O > L |
C069 | TG 17:1_18:2_18:2 | 1434 | + | C56H98O6 | 884.7704 [M + NH4]+ 905.6996 [M + K]+ | 867.7 [M + H]-NH3 (100); 849.5 [M + H]-NH3-H2O (15); 599.5 [M + H]-NH3-C17H32O2 (40); 587.4 [M + H]-NH3-C18H32O2 (50); | 0.37 | II | E,V | C > S L > O |
C070 | TG 16:0_16:1_16:1/… | 1435 | + | C51H94O6 | 820.7380 [M + NH4]+ 825.6947 [M + Na]+ 841.6684 [M + K]+ | 803.6 [M + H]-NH3 (15); 549.5 [M + H]-NH3-C16H30O2 (100); 547.5 [M + H]-NH3-C16H32O2 (60); | −0.97 | II | E,V | S > C O > L |
C071 | TG 55:6 | 1436 | + | C58H100O6 | 910.7855 [M + NH4]+ | n.d. | −0.26 | III | V | L > O |
C072 | TG 18:1_18:2_20:4/ TG 16:0_18:2_22:5 | 1436 | + | C59H100O6 | 922.7852 [M + NH4]+ 943.715 [M + K]+ | 905.7 [M + H]-NH3 (60); 887.7 [M + H]-NH3-H2O (15); 649.5 [M + H]-NH3-C16H32O2 (15) 625.5 [M + H]-NH3-C18H32O2 (30) 623.6 [M + H]-NH3-C18H34O2 (25) 601.5 [M + H]-NH3-C20H32O2 (80) 577.5 [M + H]-NH3-C18H332O2 (10) 575.5 [M + H]-NH3-C22H34O2 (100) | −0.59 | II | E,V | C > S L > O |
C073 | TG 58:8 | 1436 | + | C61H102O6 | 948.8005 [M + NH4]+ 969.7299 [M + K]+ | n.d. | −0.95 | II | E,V | C > S L > O |
C074 | TG 16:1_16:1_18:1 | 1437 | + | C53H96O6 | 846.7535 [M + NH4]+ 867.6837 [M + K]+ | 829.7 [M + H]-NH3 (20) 575.4 [M + H]-NH3-C16H30O2 (100) 547.5 [M + H]-NH3-C18H34O2 (45) | −1.12 | II | E,V | S > C O > L |
C075 | TG 16:1_18:1_18:2 | 1440 | + | C55H98O6 | 872.769 [M + NH4]+ 855.7436 [M + H]+ | 855.7 [M + H]-NH3 (50) 837.6 [M + H]-NH3-H2O (15); 601.5 [M + H]-NH3-C16H30O2 (95); 575.4 [M + H]-NH3-C18H32O2 (60) 573.4 [M + H]-NH3-C18H34O2 (100) | −1.26 | II | E,V | C > S L > O |
C076 | TG 18:1_18:2_18:2 | 1441 | + | C57H100O6 | 898.7841 [M + NH4]+ 881.7586 [M + H]+ 919.7147 [M + K]+ | 881.7 [M + H]-NH3 (100) 863.6 [M + H]-NH3-H2O (15); 601.5 [M + H]-NH3-C18H32O2 (70) 599.6 [M + H]-NH3-C18H34O2 (80) | −1.85 | II | E,V | C > S L > O |
C077 | TG 15:0_16:0_16:1 | 1442 | + | C50H94O6 | 808.7391 [M + NH4]+ | 791.6 [M + H]-NH3 (10) 549.6 [M + H]-NH3-C15H30O2 (100) 537.5 [M + H]-NH3-C16H30O2 (60) 535.4 [M + H]-NH3-C16H32O2 (90) | 0.40 | E,V | S > C O > L | |
C078 | TG 15:0_16:0_18:2 | 1444 | + | C52H96O6 | 834.7546 [M + NH4]+ | 575.4 [M + H]-NH3-C15H30O2 (90); 561.5 [M + H]-NH3-C16H32O2 (100); 537.5 [M + H]-NH3-C18H32O2 (80) | 0.21 | II | V | L > O |
C079 | TG 15:0_18:1_18:2/ others | 1444 | + | C54H98O6 | 860.7696 [M + NH4]+ 881.6997 [M + K]+ | 843.6 [M + H]-NH3 (50) 601.5 [M + H]-NH3-C15H30O2 (95) 587.5 [M + H]-NH3-C16H32O2 (65); 575.4 [M + H]-NH3-C17H32O2 (50); 563.5 [M + H]-NH3-C18H32O2 (100); 561.5 [M + H]-NH3-C18H34O2 (60); | −0.57 | E,V | C > S L > O | |
C080 | TG 57:7 | 1444 | + | C60H102O6 | 936.8009 [M + NH4]+ | n.d. | −0.52 | III | E,V | C > S L > O |
C081 | TG 60:9 | 1444 | + | C63H104O6 | 974.8164 [M + NH4]+ | n.d. | −0.66 | III | V | O > L |
C082 | TG 17:1_18:1_18:2 | 1445 | + | C56H100O6 | 886.7857 [M + NH4]+ 891.7404 [M + Na]+ 907.7150 [M + K]+ | 869.7 [M + H]-NH3 (100); 851.7 [M + H]-NH3-H2O (15); 601.4 [M + H]-NH3-C17H32O2 (85); 589.6 [M + H]-NH3-C18H32O2 (90); 587.5 [M + H]-NH3-C18H34O2 (80) | −0.03 | II | E,V | C > S L > O |
C083 | TG 58:7 | 1445 | + | C61H104O6 | 950.8164 [M + NH4]+ 971.746 [M + K]+ | n.d. | −0.68 | III | E,V | C > S L > O |
C084 | TG 14:0_16:0_16:0 | 1446 | + | C49H94O6 | 796.7367 [M + NH4]+ | 551.5 [M + H]-NH3-C16H30O2 (100); 523.4 [M + H]-NH3-C14H28O2 (40) | −2.67 | II | E | S > C |
C085 | TG 18:2_18:2_19:1 | 1446 | + | C58H102O6 | 912.8013 [M + NH4]+ 933.7308 [M + K]+ | 869.7 [M + H]-NH3 (100); 615.5 [M + H]-NH3-C18H32O2 (85); 599.6 [M + H]-NH3-C19H36O2 (60) | −0.09 | II | E,V | C > S L > O |
C086 | TG 16:0_16:0_16:1/TG 14:0_16:0_18:1 | 1447 | + | C51H96O6 | 822.7539 [M + NH4]+ 843.6841 [M + K]+ | 805.7 [M + H]-NH3 (20); 551.5 [M + H]-NH3-C16H30O2 (45); 549.6 [M + H]-NH3-C16H32O2 (100); | −0.66 | II | E,V | S > C O > L |
C087 | TG 16:0_16:0_18:2 TG 16:0_16:1_18:1 | 1449 | + | C53H98O6 | 848.7691 [M + NH4]+ | 577.4 [M + H]-NH3-C16H30O2 (80); 575.4 [M + H]-NH3-C16H32O2 (100); 549.5 [M + H]-NH3-C18H34O2 (90) | −1.18 | II | E,V | S > C O > L |
C088 | TG 18:1_18:1_18:2 | 1452 | + | C57H102O6 | 900.7994 [M + NH4]+ | 883.8 [M + H]-NH3 (30); 603.5 [M + H]-NH3-C18H32O2 (40); 601.5 [M + H]-NH3-C18H34O2 (100) | −2.24 | II | E,V | C > S L > O |
C089 | TG 15:0_16:0_18:1 | 1454 | + | C52H98O6 | 836.7700 [M + NH4]+ 857.7001 [M + K]+ | 819.7 [M + H]-NH3 (20); 577.5 [M + H]-NH3-C15H30O2 (100); 563.6 [M + H]-NH3-C16H32O2 (80); 537.4 [M + H]-NH3-C18H34O2 (90) | −0.10 | II | E,V | S > C O > L |
C090 | TG 57:6 | 1454 | + | C60H104O6 | 938.8167 [M + NH4]+ | n.d. | −0.36 | III | E,V | C > S L > O |
C091 | TG 17:1_18:1_18:1 | 1456 | + | C56H102O6 | 888.8004 [M + NH4]+ 893.7565 [M + Na]+ 909.7307 [M + K]+ | 871.7 [M + H]-NH3 (20); 603.4 [M + H]-NH3-C17H32O2 (40); 589.6 [M + H]-NH3-C18H34O2 (100) | −1.13 | II | E,V | C > S L > O |
C092 | TG 56:5 | 1456 | + | C59H104O6 | 926.8153 [M + NH4]+ 947.7461 [M + K]+ 931.7720 [M + Na]+ | n.d. | −1.90 | III | E,V | S > C O > L |
C093 | TG 18:1_18:2_19:1 | 1457 | + | C58H104O6 | 914.8167 [M + NH4]+ 935.7462 [M + K]+ 942.8487 [M + C2H8N]+ | 897.7 [M + H]-NH3 (60); 617.6 [M + H]-NH3-C18H32O2 (90); 615.5 [M + H]-NH3-C18H34O2 (100); 601.4 [M + H]-NH3-C19H36O2 (40) | −0.37 | II | E,V | C > S L > O |
C094 | TG 18:1_18:1_22:4 | 1457 | + | C61H106O6 | 952.8319 [M + NH4]+ | 935.7 [M + H]-NH3 (100); 917.7 [M + H]-NH3-H2O (15); 653.6 [M + H]-NH3-C18H34O2 (60); 603.5 [M + H]-NH3-C22H36O2 (50) | −0.83 | II | V | O > L |
C095 | TG 60:7 | 1457 | + | C63H108O6 | 978.8476 [M + NH4]+ | n.d. | −0.76 | III | E,V | C > S L > O |
C096 | TG 57:5 | 1458 | + | C60H106O6 | 940.8322 [M + NH4]+ | n.d. | −0.52 | III | V | L > O |
C097 | TG 16:0_16:0_18:1 | 1460 | + | C53H100O6 | 850.7846 [M + NH4]+ | 577.4 [M + H]-NH3-C16H32O2 (100); 551.5 [M + H]-NH3-C18H34O2 (45) | −1.36 | II | E,V | S > C O > L |
C098 | TG 16:0_18:1_18:1 | 1460 | + | C55H102O6 | 876.8001 [M + NH4]+ | 603.4 [M + H]-NH3-C16H32O2 (60); 577.5 [M + H]-NH3-C18H34O2 (100) | −1.49 | II | E,V | S > C O > L |
C099 | TG 18:1_18:2_20:1 | 1465 | + | C59H106O6 | 928.8317 [M + NH4]+ | 911.7 [M + H]-NH3 (50); 893.8 [M + H]-NH3-H2O (15); 631.5 [M + H]-NH3-C18H32O2 (40); 629.5 [M + H]-NH3-C18H34O2 (100); 601.5 [M + H]-NH3-C20H38O2 (60) | −1.08 | II | V | L > O |
C100 | TG 16:0_16:0_17:0 | 1466 | + | C52H100O6 | 838.7862 [M + NH4]+ | 565.5 [M + H]-NH3-C16H32O2 (100); 551.5 [M + H]-NH3-C17H34O2 (80) | 0.57 | II | V | L > O |
C101 | TG 18:1_18:1_19:1 | 1468 | + | C58H106O6 | 916.8325 [M + NH4]+ 937.7621 [M + K]+; 921.788 [M + Na]+ | 899.8 [M + H]-NH3 (30) 881.7 [M + H]-NH3-H2O (15); 617.6 [M + H]-NH3-C18H34O2 (100); 603.6 [M + H]-NH3-C19H36O2 (50) | −0.20 | II | E,V | C > S L > O |
C102 | TG 18:0_18:1_22:4 | 1468 | + | C61H108O6 | 975.7774 [M + K]+ 954.8479 [M + NH4]+ | 937.8 [M + H]-NH3 (90) 919.6 [M + H]-NH3-H2O (30); 655.6 [M + H]-NH3-C18H34O2 (70); 653.5 [M + H]-NH3-C18H36O2 (55); 605.5 [M + H]-NH3-C22H36O2 (65) | −0.46 | II | E,V | S > C O > L |
C103 | TG 57:4 | 1469 | + | C60H108O6 | 942.8485 [M + NH4]+ | n.d. | 0.18 | III | V | L > O |
C104 | TG 59:5 | 1470 | + | C62H110O6 | 968.8638 [M + NH4]+ | n.d. | −0.19 | III | V | L > O |
C105 | TG 16:0_18:0_18:1 | 1473 | + | C55H104O6 | 878.8162 [M + NH4]+ 899.7463 [M + K]+ 883.7727 [M + Na]+ | 605.4 [M + H]-NH3-C16H32O2 (100); 579.4 [M + H]-NH3-C18H34O2 (70); 577.5 [M + H]-NH3-C18H36O2 (90) | −0.96 | II | E,V | S > C O > L |
C106 | TG 18:0_18:1_18:1/TG 16:0_18:1_20:1 | 1473 | + | C57H106O6 | 904.8314 [M + NH4]+ | 605.4 [M + H]-NH3-C18H34O2 (100); 603.4 [M + H]-NH3-C18H36O2 (50) | −1.44 | II | E,V | S > C O > L |
C107 | TG 18:1_18:1_20:1 | 1475 | + | C59H108O6 | 930.8472 [M + NH4]+ 935.8038 [M + Na]+ 951.7773 [M + K]+ | 913.8 [M + H]-NH3 (20); 631.5 [M + H]-NH3-C18H34O2 (100); 603.5 [M + H]-NH3-C20H38O2 (65) | −1.24 | II | V | L > O |
C108 | TG 18:0_18:1_22:3 | 1476 | + | C61H110O6 | 956.8635 [M + NH4]+ 977.793 [M + K]+ | 939.8 [M + H]-NH3 (100); 921.6 [M + H]-NH3-H2O (30); 657.5 [M + H]-NH3-C18H34O2 (40); 655.6 [M + H]-NH3-C18H36O2 (65); 605.5 [M + H]-NH3-C22H38O2 (45) | −0.51 | II | E,V | C > S L > O |
C109 | TG 18:2_18:2_24:1 | 1476 | + | C63H112O6 | 982.8792 [M + NH4]+ | 695.8 [M + H]-NH3 (100); 947.8 [M + H]-NH3-H2O (20); 685.7 [M + H]-NH3-C18H32O2 (60); 599.4 [M + H]-NH3-C24H46O2 (50) | −0.45 | II | E,V | C > S L > O |
C110 | TG 16:0_17:0_18:0/ others | 1479 | + | C54H104O6 | 866.8178 [M + NH4]+ | 607.5 [M + H]-NH3-C15H30O2 (30); 593.6 [M + H]-NH3-C16H32O2 (100); 579.6 [M + H]-NH3-C17H34O2 (80); 565.4 [M + H]-NH3-C18H36O2 (75); 551.5 [M + H]-NH3-C19H38O2 (30); | 0.91 | II | V | L > O |
C111 | TG 18:1_18:1_19:0 | 1479 | + | C58H108O6 | 918.8481 [M + NH4]+ 923.8041 [M + Na]+ 939.7776 [M + K]+ | 619.6 [M + H]-NH3-C18H34O2 (100); 603.5 [M + H]-NH3-C19H38O2 (50) | −0.26 | II | E,V | C > S L > O |
C112 | TG 18:2_18:2_23:0/TG 18:1_18:2_23:1 | 1481 | + | C62H112O6 | 970.8798 [M + NH4]+ | 953.9 [M + H]-NH3 (100); 935.7 [M + H]-NH3-H2O (15); 673.6 [M + H]-NH3-C18H32O2 (90); 671.7 [M + H]-NH3-C18H34O2 (70); 601.6 [M + H]-NH3-C23H44O2 (50); 599.6 [M + H]-NH3-C23H46O2 (50) | 0.18 | II | E,V | C > S L > O |
C113 | TG 18:0_18:0_18:1/TG 16:0_18:1_20:0 | 1485 | + | C57H108O6 | 906.8474 [M + NH4]+ 927.7779 [M + K]+ 911.8043 [M + Na]+ | 607.5 [M + H]-NH3-C18H34O2 (70); 605.5 [M + H]-NH3-C18H36O2 (100); | −1.05 | II | E,V | S > C O > L |
C114 | TG 60:4 | 1485 | + | C63H114O6 | 984.895 [M + NH4]+ | n.d. | −0.29 | III | E,V | C > S L > O |
C115 | TG 58:3 | 1486 | + | C61H112O6 | 958.8791 [M + NH4]+ 979.8088 [M + K]+ 963.8349 [M + Na]+ | n.d. | −0.56 | III | E,V | C > S L > O |
C116 | TG 18:1_18:1_21:0/ TG 16:0_18:1_23:1/ TG 16:0_18:0_23:2 | 1493 | + | C60H112O6 | 946.8797 [M + NH4]+ 967.8087 [M + K]+ | 673.7 [M + H]-NH3-C16H32O2 (90); 647.6 [M + H]-NH3-C18H34O2 (60); 645.6 [M + H]-NH3-C18H36O2 (100); 603.6 [M + H]-NH3-C21H42O2 (30); 577.5 [M + H]-NH3-C23H44O2 (30); 575.5 [M + H]-NH3-C23H42O2 (100); | 0.08 | II | V | L > O |
C117 | TG 18:1_18:2_23:0 | 1493 | + | C62H114O6 | 972.8958 [M + NH4]+ 993.8246 [M + K]+ | 955.9 [M + H]-NH3 (30); 937.7 [M + H]-NH3-H2O (20); 675.6 [M + H]-NH3-C18H32O2 (80); 673.6 [M + H]-NH3-C18H34O2 (90); 601.4 [M + H]-NH3-C23H46O2 (100); | 0.34 | II | V | L > O |
C118 | TG 18:2_18:2_25:0 | 1494 | + | C64H116O6 | 998.9106 [M + NH4]+ | 981.7 [M + H]-NH3 (50); 963.7 [M + H]-NH3-H2O (20); 701.7 [M + H]-NH3-C18H32O2 (95); 599.5 [M + H]-NH3-C25H50O2 (100); | −0.34 | II | V | L > O |
C119 | TG 16:0_18:1_24:1 | 1498 | + | C61H114O6 | 960.8948 [M + NH4]+ 981.8245 [M + K]+ 965.8508 [M + Na]+ | 687.6 [M + H]-NH3-C16H32O2 (90); 661.6 [M + H]-NH3-C18H34O2 (100); 577.6 [M + H]-NH3-C24H46O2 (75); | −0.51 | II | V | L > O |
C120 | TG 18:1_18:1_24:1 | 1498 | + | C63H116O6 | 986.9104 [M + NH4]+ | 969.8 [M + H]-NH3 (15); 687.7 [M + H]-NH3-C18H34O2 (100); 603.5 [M + H]-NH3-C24H46O2 (60); | −0.55 | II | E,V | C > S L > O |
C121 | TG 18:1_18:1_23:0 | 1505 | + | C62H116O6 | 974.9109 [M + NH4]+ | 675.6 [M + H]-NH3-C18H34O2 (100); 603.6 [M + H]-NH3-C23H46O2 (40); | −0.03 | II | V | L > O |
C122 | TG 16:0_18:1_26:1 | 1512 | + | C63H118O6 | 988.9262 [M + NH4]+ | 715.6 [M + H]-NH3-C16H32O2 (75); 689.5 [M + H]-NH3-C18H34O2 (100); 577.5 [M + H]-NH3-C26H50O2 (60); | −0.39 | II | V | L > O |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinaldi de Alvarenga, J.F.; Garcia-Aloy, M.; Ulaszewska, M.; Zagmutt, S.; Perez-Montero, M.; Vrhovsek, U.; Lamuela-Raventós, R.M.; Rodriguez-Rodriguez, R. Integrated Metabolomics, Lipidomics, and Genomics Reveal the Presence of a New Biomarker, Butanediol Glucuronide, Associated with the Activation of Liver Ketogenesis and Lipid Oxidation by Tomato-Based Sofrito in Obese Rats. Antioxidants 2022, 11, 2165. https://doi.org/10.3390/antiox11112165
Rinaldi de Alvarenga JF, Garcia-Aloy M, Ulaszewska M, Zagmutt S, Perez-Montero M, Vrhovsek U, Lamuela-Raventós RM, Rodriguez-Rodriguez R. Integrated Metabolomics, Lipidomics, and Genomics Reveal the Presence of a New Biomarker, Butanediol Glucuronide, Associated with the Activation of Liver Ketogenesis and Lipid Oxidation by Tomato-Based Sofrito in Obese Rats. Antioxidants. 2022; 11(11):2165. https://doi.org/10.3390/antiox11112165
Chicago/Turabian StyleRinaldi de Alvarenga, José Fernando, Mar Garcia-Aloy, Marynka Ulaszewska, Sebastian Zagmutt, Marta Perez-Montero, Urska Vrhovsek, Rosa M. Lamuela-Raventós, and Rosalia Rodriguez-Rodriguez. 2022. "Integrated Metabolomics, Lipidomics, and Genomics Reveal the Presence of a New Biomarker, Butanediol Glucuronide, Associated with the Activation of Liver Ketogenesis and Lipid Oxidation by Tomato-Based Sofrito in Obese Rats" Antioxidants 11, no. 11: 2165. https://doi.org/10.3390/antiox11112165
APA StyleRinaldi de Alvarenga, J. F., Garcia-Aloy, M., Ulaszewska, M., Zagmutt, S., Perez-Montero, M., Vrhovsek, U., Lamuela-Raventós, R. M., & Rodriguez-Rodriguez, R. (2022). Integrated Metabolomics, Lipidomics, and Genomics Reveal the Presence of a New Biomarker, Butanediol Glucuronide, Associated with the Activation of Liver Ketogenesis and Lipid Oxidation by Tomato-Based Sofrito in Obese Rats. Antioxidants, 11(11), 2165. https://doi.org/10.3390/antiox11112165