Integrated Metabolomics, Lipidomics, and Genomics Reveal the Presence of a New Biomarker, Butanediol Glucuronide, Associated with the Activation of Liver Ketogenesis and Lipid Oxidation by Tomato-Based Sofrito in Obese Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Animal Study
2.3. Sofrito Bioactive Compounds Analysis in Feed
2.4. Untargeted Approach
2.4.1. Metabolomics Assay
Sample Extraction
LC-HRMS Analysis
2.4.2. Lipidomics Assay
Sample Extraction
LC-HRMS Analysis
2.4.3. Data Analysis
2.5. RNA Isolation and Quantitative RT-PCR
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jackson, S.E.; Llewellyn, C.H.; Smith, L. The obesity epidemic—Nature via nurture: A narrative review of high-income countries. SAGE Open Med. 2020, 8, 205031212091826. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 19 November 2019).
- Finkelstein, E.A.; Khavjou, O.A.; Thompson, H.; Trogdon, J.G.; Pan, L.; Sherry, B.; Dietz, W. Obesity and Severe Obesity Forecasts Through 2030. Am. J. Prev. Med. 2012, 42, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Callahan, E.A. Current Status and Response to the Global Obesity Pandemic; Callahan, E.A., Ed.; National Academies Press: Washington, DC, USA, 2019; ISBN 978-0-309-48505-0. [Google Scholar]
- Azzu, V.; Vacca, M.; Virtue, S.; Allison, M.; Vidal-Puig, A. Adipose Tissue-Liver Cross Talk in the Control of Whole-Body Metabolism: Implications in Nonalcoholic Fatty Liver Disease. Gastroenterology 2020, 158, 1899–1912. [Google Scholar] [CrossRef]
- Marrelli, M.; Statti, G.; Conforti, F. A review of biologically active natural products from Mediterranean wild edible plants: Benefits in the treatment of obesity and its related disorders. Molecules 2020, 25, 649. [Google Scholar] [CrossRef] [Green Version]
- Kushner, R.F. Weight loss strategies for treatment of obesity. Prog. Cardiovasc. Dis. 2014, 56, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Xia, Q.; Campbell, J.A.; Ahmad, H.; Si, L.; Graaff, B.; Palmer, A.J. Bariatric surgery is a cost-saving treatment for obesity—A comprehensive meta-analysis and updated systematic review of health economic evaluations of bariatric surgery. Obes. Rev. 2020, 21, e12932. [Google Scholar] [CrossRef]
- Moore, M.P.; Cunningham, R.P.; Dashek, R.J.; Mucinski, J.M.; Rector, R.S. A Fad too Far? Dietary Strategies for the Prevention and Treatment of NAFLD. Obesity 2020, 28, 1843–1852. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E. The role of the Mediterranean diet on weight loss and obesity-related diseases. Rev. Endocr. Metab. Disord. 2020, 21, 315–327. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; García-Arellano, A.; Toledo, E.; Salas-Salvadó, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schröder, H.; Arós, F.; Gómez-Gracia, E.; et al. A 14-Item Mediterranean Diet Assessment Tool and Obesity Indexes among High-Risk Subjects: The PREDIMED Trial. PLoS ONE 2012, 7, e43134. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; de Alvarenga, J.F.R.; Estruch, R.; Lamuela-Raventos, R.M. Bioactive compounds present in the Mediterranean sofrito. Food Chem. 2013, 141, 3365–3372. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi de Alvarenga, J.F.; Quifer-Rada, P.; Francetto Juliano, F.; Hurtado-Barroso, S.; Illan, M.; Torrado-Prat, X.; Lamuela-Raventós, R.M. Using Extra Virgin Olive Oil to Cook Vegetables Enhances Polyphenol and Carotenoid Extractability: A Study Applying the sofrito Technique. Molecules 2019, 24, 1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinaldi de Alvarenga, J.F.; Quifer-Rada, P.; Hurtado-Barroso, S.; Illan, M.; Torrado-Prat, X.; Lamuela-Raventós, R.M. Cuisinomics: MS-based untargeted approach reveals chemical modulation by a recipe during home cooking. Food Res. Int. 2020, 138, 109787. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi de Alvarenga, J.F.; Tran, C.; Hurtado-Barroso, S.; Martinez-Huélamo, M.; Illan, M.; Lamuela-Raventos, R.M. Home cooking and ingredient synergism improve lycopene isomer production in Sofrito. Food Res. Int. 2017, 99, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Storniolo, C.E.; Sacanella, I.; Mitjavila, M.T.; Lamuela-Raventos, R.M.; Moreno, J.J. Bioactive compounds of cooked tomato sauce modulate oxidative stress and arachidonic acid cascade induced by oxidized LDL in macrophage cultures. Nutrients 2019, 11, 1880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storniolo, C.E.; Sacanella, I.; Lamuela-Raventos, R.M.; Moreno, J.J. Bioactive Compounds of Mediterranean Cooked Tomato Sauce (Sofrito) Modulate Intestinal Epithelial Cancer Cell Growth through Oxidative Stress/Arachidonic Acid Cascade Regulation. ACS Omega 2020, 5, 17071–17077. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Barroso, S.; Martínez-Huélamo, M.; De Alvarenga, J.F.R.; Quifer-Rada, P.; Vallverdú-Queralt, A.; Pérez-Fernández, S.; Lamuela-Raventós, R.M. Acute effect of a single dose of tomato sofrito on plasmatic inflammatory biomarkers in healthy men. Nutrients 2019, 11, 851. [Google Scholar] [CrossRef] [Green Version]
- Ferro, Y.; Mazza, E.; Angotti, E.; Pujia, R.; Mirarchi, A.; Salvati, M.A.; Terracciano, R.; Savino, R.; Romeo, S.; Scuteri, A.; et al. Effect of a novel functional tomato sauce (OsteoCol) from vine-ripened tomatoes on serum lipids in individuals with common hypercholesterolemia: Tomato sauce and hypercholesterolemia. J. Transl. Med. 2021, 19, 19. [Google Scholar] [CrossRef]
- Martín-Pozuelo, G.; Navarro-González, I.; González-Barrio, R.; Santaella, M.; García-Alonso, J.; Hidalgo, N.; Gómez-Gallego, C.; Ros, G.; Periago, M.J. The effect of tomato juice supplementation on biomarkers and gene expression related to lipid metabolism in rats with induced hepatic steatosis. Eur. J. Nutr. 2015, 54, 933–944. [Google Scholar] [CrossRef]
- Rodriguez-Rodriguez, R.; Jiménez-Altayó, F.; Alsina, L.; Onetti, Y.; Rinaldi de Alvarenga, J.F.; Claro, C.; Ogalla, E.; Casals, N.; Lamuela-Raventos, R.M. Mediterranean tomato-based sofrito protects against vascular alterations in obese Zucker rats by preserving NO bioavailability. Mol. Nutr. Food Res. 2017, 61, 1601010. [Google Scholar] [CrossRef]
- Sandoval, V.; Rodríguez-Rodríguez, R.; Martínez-Garza, Ú.; Rosell-Cardona, C.; Lamuela-Raventós, R.; Marrero, P.F.; Haro, D.; Relat, J. Mediterranean Tomato-Based Sofrito Sauce Improves Fibroblast Growth Factor 21 (FGF21) Signaling in White Adipose Tissue of Obese ZUCKER Rats. Mol. Nutr. Food Res. 2018, 62, 1700606. [Google Scholar] [CrossRef] [PubMed]
- Hrvolová, B.; Martínez-Huélamo, M.; Colmán-Martínez, M.; Hurtado-Barroso, S.; Lamuela-Raventós, R.M.; Kalina, J. Development of an advanced HPLC–MS/MS method for the determination of carotenoids and fat-soluble vitamins in human plasma. Int. J. Mol. Sci. 2016, 17, 1719. [Google Scholar] [CrossRef] [Green Version]
- Di Lecce, G.; Martínez-Huélamo, M.; Tulipani, S.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Setup of a UHPLC–QqQ-MS Method for the Analysis of Phenolic Compounds in Cherry Tomatoes, Tomato Sauce, and Tomato Juice. J. Agric. Food Chem. 2013, 61, 8373–8380. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, A.L.; Cavaliere, C.; Crescenzi, C.; Foglia, P.; Nescatelli, R.; Samperi, R.; Laganà, A. Comparison of extraction methods for the identification and quantification of polyphenols in virgin olive oil by ultra-HPLC-QToF mass spectrometry. Food Chem. 2014, 158, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, M.; Angelidou, G.; Ni, Z.; Criscuolo, A.; Schiller, J.; Blüher, M.; Fedorova, M. AdipoAtlas: A reference lipidome for human white adipose tissue. Cell Rep. Med. 2021, 2, 100407. [Google Scholar] [CrossRef] [PubMed]
- Haug, K.; Cochrane, K.; Nainala, V.C.; Williams, M.; Chang, J.; Jayaseelan, K.V.; O’Donovan, C. MetaboLights: A resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 2020, 48, D440–D444. [Google Scholar] [CrossRef] [Green Version]
- Ancillotti, C.; Ulaszewska, M.; Mattivi, F.; Del Bubba, M. Untargeted Metabolomics Analytical Strategy Based on Liquid Chromatography/Electrospray Ionization Linear Ion Trap Quadrupole/Orbitrap Mass Spectrometry for Discovering New Polyphenol Metabolites in Human Biofluids after Acute Ingestion of Vaccinium myrti. J. Am. Soc. Mass Spectrom. 2019, 30, 381–402. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Narváez-Rivas, M.; Zhang, Q. Comprehensive untargeted lipidomic analysis using core–shell C30 particle column and high field orbitrap mass spectrometer. J. Chromatogr. A 2016, 1440, 123–134. [Google Scholar] [CrossRef]
- Della Corte, A.; Chitarrini, G.; Di Gangi, I.M.; Masuero, D.; Soini, E.; Mattivi, F.; Vrhovsek, U. A rapid LC-MS/MS method for quantitative profiling of fatty acids, sterols, glycerolipids, glycerophospholipids and sphingolipids in grapes. Talanta 2015, 140, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Benton, H.P.; Want, E.J.; Ebbels, T.M.D. Correction of mass calibration gaps in liquid chromatography–mass spectrometry metabolomics data. Bioinformatics 2010, 26, 2488–2489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tautenhahn, R.; Böttcher, C.; Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 2008, 9, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rodríguez, R.; Miralpeix, C.; Fosch, A.; Pozo, M.; Calderón-Domínguez, M.; Perpinyà, X.; Vellvehí, M.; López, M.; Herrero, L.; Serra, D.; et al. CPT1C in the ventromedial nucleus of the hypothalamus is necessary for brown fat thermogenesis activation in obesity. Mol. Metab. 2019, 19, 75–85. [Google Scholar] [CrossRef]
- Bendini, A.; Vallverdú-Queralt, A.; Valli, E.; Palagano, R.; Lamuela-Raventos, R.M.; Toschi, T.G. Italian and Spanish commercial tomato sauces for pasta dressing: Study of sensory and head-space profiles by Flash Profiling and solid-phase microextraction-gas chomatography-mass spectrometry. J. Sci. Food Agric. 2017, 97, 3261–3267. [Google Scholar] [CrossRef]
- Beltrán Sanahuja, A.; De Pablo Gallego, S.L.; Maestre Pérez, S.E.; Valdés García, A.; Prats Moya, M.S. Influence of Cooking and Ingredients on the Antioxidant Activity, Phenolic Content and Volatile Profile of Different Variants of the Mediterranean Typical Tomato Sofrito. Antioxidants 2019, 8, 551. [Google Scholar] [CrossRef] [Green Version]
- Farag, M.A.; Ali, S.E.; Hodaya, R.H.; El-Seedi, H.R.; Sultani, H.N.; Laub, A.; Eissa, T.F.; Abou-Zaid, F.O.F.; Wessjohann, L.A. Phytochemical profiles and antimicrobial activities of Allium cepa red cv. and A. sativum subjected to different drying methods: A comparative MS-based metabolomics. Molecules 2017, 22, 761. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.-J.; Huang, H.; Ouyang, P.-K. Microbial 2,3-butanediol production: A state-of-the-art review. Biotechnol. Adv. 2011, 29, 351–364. [Google Scholar] [CrossRef]
- Hossain, M.A.; Lee, S.-J.; Park, N.-H.; Birhanu, B.T.; Mechesso, A.F.; Park, J.-Y.; Park, E.-J.; Lee, S.-P.; Youn, S.-J.; Park, S.-C. Enhancement of Lipid Metabolism and Hepatic Stability in Fat-Induced Obese Mice by Fermented Cucurbita moschata Extract. Evidence-Based Complement. Altern. Med. 2018, 2018, 3908453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trouwborst, I.; Bowser, S.M.; Goossens, G.H.; Blaak, E.E. Ectopic Fat Accumulation in Distinct Insulin Resistant Phenotypes; Targets for Personalized Nutritional Interventions. Front. Nutr. 2018, 5, 77. [Google Scholar] [CrossRef]
- Cheng, X.; Geng, F.; Pan, M.; Wu, X.; Zhong, Y.; Wang, C.; Tian, Z.; Cheng, C.; Zhang, R.; Puduvalli, V.; et al. Targeting DGAT1 Ameliorates Glioblastoma by Increasing Fat Catabolism and Oxidative Stress. Cell Metab. 2020, 32, 229–242.e8. [Google Scholar] [CrossRef] [PubMed]
- Puchalska, P.; Crawford, P.A. Metabolic and Signaling Roles of Ketone Bodies in Health and Disease. Annu. Rev. Nutr. 2021, 41, 49–77. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Choi, J.; Selen Alpergin, E.S.; Zhao, L.; Hartung, T.; Scafidi, S.; Riddle, R.C.; Wolfgang, M.J. Loss of Hepatic Mitochondrial Long-Chain Fatty Acid Oxidation Confers Resistance to Diet-Induced Obesity and Glucose Intolerance. Cell Rep. 2017, 20, 655–667. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, C.G.; Waigi, E.W.; Singh, G.; Castaneda, T.R.; Mell, B.; Chakraborty, S.; Wenceslau, C.F.; Joe, B. Physiologic, Metabolic, and Toxicologic Profile of 1,3-Butanediol. J. Pharmacol. Exp. Ther. 2021, 379, 245–252. [Google Scholar] [CrossRef]
- Walton, C.M.; Jacobsen, S.M.; Dallon, B.W.; Saito, E.R.; Bennett, S.L.H.; Davidson, L.E.; Thomson, D.M.; Hyldahl, R.D.; Bikman, B.T. Ketones Elicit Distinct Alterations in Adipose Mitochondrial Bioenergetics. Int. J. Mol. Sci. 2020, 21, 6255. [Google Scholar] [CrossRef]
- Taggart, A.K.P.; Kero, J.; Gan, X.; Cai, T.Q.; Cheng, K.; Ippolito, M.; Ren, N.; Kaplan, R.; Wu, K.; Wu, T.J.; et al. (D)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J. Biol. Chem. 2005, 280, 26649–26652. [Google Scholar] [CrossRef] [Green Version]
- van der Stelt, I.; Hoevenaars, F.; Široká, J.; de Ronde, L.; Friedecký, D.; Keijer, J.; van Schothorst, E. Metabolic Response of Visceral White Adipose Tissue of Obese Mice Exposed for 5 Days to Human Room Temperature Compared to Mouse Thermoneutrality. Front. Physiol. 2017, 8, 179. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Hao, G.; Shao, M.; Nham, K.; An, Y.; Wang, Q.; Zhu, Y.; Kusminski, C.M.; Hassan, G.; Gupta, R.K.; et al. An Adipose Tissue Atlas: An Image-Guided Identification of Human-like BAT and Beige Depots in Rodents. Cell Metab. 2018, 27, 252–262.e3. [Google Scholar] [CrossRef]
- Grzybek, M.; Palladini, A.; Alexaki, V.I.; Surma, M.A.; Simons, K.; Chavakis, T.; Klose, C.; Coskun, Ü. Comprehensive and quantitative analysis of white and brown adipose tissue by shotgun lipidomics. Mol. Metab. 2019, 22, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martí, A.; Sandoval, V.; Marrero, P.F.; Haro, D.; Relat, J. Nutritional regulation of fibroblast growth factor 21: From macronutrients to bioactive dietary compounds. Horm. Mol. Biol. Clin. Investig. 2017, 30, 20160034. [Google Scholar] [CrossRef] [PubMed]
C | Compound | rt | P | MF | Exact Mass | MS/MS | Error | ID | T | Change |
---|---|---|---|---|---|---|---|---|---|---|
C001 | butanediol glucuronide (alcohol) | 81 | − | C10H18O8 | 265.0928 [M − H]− 531.1929 [2M − H]− 363.0697 [M − H+H3PO4]− | 265.0930 [M − H] (90); 247.0825 [M − H]-H2O; (40) 229.0719 [M − H]-(2)H2O (20); 205.0719 [M − H]-CH3COO (25); 189.0769 [M − H]-C2H2O2-H2O (20); 175.0250 [M − H]-glucuronide (20); 157.0145 [M − H]-glucuronide-H2O (50); 129.0196 (40); 113.0248 (100) gluruconide frag; 99.0091 (15) gluruconide frag; 95.0142 (30) gluruconide frag; 87.0091 (40) gluruconide frag; 85.0299 (60) gluruconide frag | 0.30 | II | L | S > C |
+ | 284.1341 [M + NH4]+ 267.1077 [M + H]+ 533.2075 [2M + H]+ 289.0895 [M + Na]+ 305.0635 [M + K]+ | 249.0965 (100) [M + H]-NH3-H2O; 91.0751 (15) [M + H]-glucuronide; 73.0645 (30); [M + H]- H2O-glucuronide | −1.12 | |||||||
C002 | DG 14:0_18:2 | 1061 | + | C35H64O5 | 582.5090 [M + NH4]+ | 565.3 [M + H]-NH3 (25); 547.4 [M + H]-NH3-H2O (100); 337.3 (228) [M + H]-C14H28O2 (60); 285.2 (280.1) [M + H]-C18H32O2 (90) | −0.20 | II | V | O > L |
C003 | DG 16:1_18:2 | 1081 | + | C37H66O5 | 608.5230 [M + NH4]+ 629.4522 [M + K]+ | 591.5 [M + H]-NH3 (60); 573.4 [M + H]-NH3-H2O (100); 337.3 [M + H]-C16H30O2 (30); 311.3 [M + H]-C18H32O2 (20) | −2.99 | II | E | S > C |
C004 | DG 18:2_20:4 | 1089 | + | C41H68O5 | 658.5385 [M + NH4]+ | 641.5 [M + H]-NH3 (100); 623.4 [M + H]-NH3-H2O (25); 361.3 [M + H]-C18H32O2 (10); 337.3 [M + H]-C20H32O2 (100) | −2.99 | II | E | S > C |
C005 | DG 34:3 (II) | 1099 | + | C37H66O5 | 608.5233 [M + NH4]+ | n.d. | −2.48 | III | E | S > C |
C006 | DG 16:0_16:1 | 1146 | + | C35H66O5 | 584.5230 [M + NH4]+ 605.4523 [M + K]+ 612.5542 [M + C2H8N]+ | 567.4 [M + H]-NH3 (100); 549.5 [M + H]-NH3-H2O (95); 313.3 [M + H]-NH3-C16H30O2 (80); 311.3 [M + H]-NH3-C16H32O2 (60) | −3.12 | II | V | S > C O > L |
C007 | DG 34:2 (I) | 1158 | + | C37H68O5 | 610.5385 [M + NH4]+ 615.4949 [M + Na]+ 638.5699 [M + C2H8N]+ 631.4679 [M + K]+ | n.d. | −3.23 | III | E,V | S > C |
C008 | DG 34:2 (II) | 1168 | + | C37H68O5 | 610.5384 [M + NH4]+ 615.4942 [M + Na]+ 631.4675 [M + K]+ 638.5697 [M + C2H8N]+ | n.d. | −3.40 | III | E,V | S > C |
C009 | DG 18:1_20:4 | 1168 | + | C41H70O5 | 660.5542 [M + NH4]+ 681.4834 [M + K]+ | 643.4 [M + H]-NH3 (70); 625.5 [M + H]-NH3-H2O (20); 361.4 [M + H]-NH3-C18H34O2 (20); 339.3 [M + H]-NH3-C20H32O2 (100) | −2.90 | II | E | S > C O > L |
C010 | DG 18:1_18:2 | 1182 | + | C39H70O5 | 636.5540 [M + NH4]+ 641.5097 [M + Na]+ 664.5857 [M + C2H8N]+ 657.4833 [M + K]+ | 619.5 [M + H]-NH3 (70); 601.5 [M + H]-NH3-H2O (100); 339.2 [M + H]-NH3-C18H32O2 (35); 337.2 [M + H]-NH3-C18H34O2 (20); | −3.34 | II | E | S > C |
C011 | DG 16:0_16:0 | 1233 | + | C35H68O5 | 586.5387 [M + NH4] 614.5700 [M + C2H8N] 607.4678 [M + K] | 569.5 [M + H]-NH3 (60); 551.5 [M + H]-NH3-H2O (70); 313.2 [M + H]-NH3-C16H32O2 (100) | −3.02 | II | E,V | S > C O > L |
C012 | DG 16:0_18:1 | 1248 | + | C37H70O5 | 612.5542 [M + NH4]+ 617.5096 [M + Na]+ 640.5854 [M + C2H8N]+ 633.4830 [M + K]+ | 595.3 [M + H]-NH3 (50); 577.4 [M + H]-NH3-H2O (100); 339.3 [M + H]-NH3-C16H32O2 (70); 313.2 [M + H]-NH3-C18H34O2 (80) | −3.14 | II | E,V | S > C O > L |
C013 | DG 18:1_18:1 | 1259 | + | C39H72O5 | 638.5716 [M + NH4]+ 643.5273 [M + Na]+ 659.5008 [M + K]+ 666.6033 [M + C2H8N]+ | 621.5 [M + H]-NH3 (35); 603.5 [M + H]-NH3-H2O (75); 339.2 [M + H]-NH3-C18H34O2 (100) | −0.19 | II | E,V | S > C O > L |
C014 | DG 18:0_18:2 | 1272 | + | C39H72O5 | 638.5719 [M + NH4]+ 666.6035 [M + C2H8N]+ 659.5008 [M + K]+ | 621.5 [M + H]-NH3 (20); 603.5 [M + H]-NH3-H2O (100); 341.2 [M + H]-NH3-C18H32O2 (85) 337.4 [M + H]-NH3-C18H36O2 (40) | 0.30 | II | V | O > L |
C015 | TG 38:3 | 1281 | + | C41H72O6 | 678.5672 [M + NH4]+ 699.4965 [M + K]+ | n.d. | 0.85 | III | E,V | C > S L > O |
C016 | TG 4:0_18:2_18:2 | 1284 | + | C43H74O6 | 704.5814 [M + NH4]+ 7255121 [M + K]+ 732.6140 [M + C2H8N]+ | 687.5 [M + H]-NH3 (100); 669.7 [M + H]-NH3-H2O (15); 599.5 [M + H]-NH3-C4H8O2 (70) 407.4 [M + H]-NH3-C18H32O2 (65) | −1.22 | II | E,V | C > S L > O |
C017 | TG 2:0_16:0_18:1 | 1308 | + | C39H72O6 | 654.5647 [M + NH4]+ 675.4943 [M + K]+ 682.5963 [M + C2H8N]+ | 637.4 [M + H]-NH3 (10); 577.4 [M + H]-NH3-C2H4O2 (50) 381.3 [M + H]-NH3-C16H32O2 (100) 355.2 [M + H]-NH3-C18H32O2 (45) | −3.05 | II | E | S > C |
C018 | DG 34:0 | 1314 | + | C37H72O5 | 614.5716 [M + NH4]+ 635.5011 [M + K]+ | n.d. | −0.19 | III | V | O > L |
C019 | DG 18:0_18:1 | 1319 | + | C39H74O5 | 640.5874 [M + NH4]+ 661.5168 [M + K]+ 668.6190 [M + C2H8N]+ | 623.2 [M + H]-NH3 (65); 605.6 [M + H]-NH3-H2O (85); 341.2 [M + H]-NH3-C18H34O2 (100); 339.3 [M + H]-NH3-C18H36O2 (70) | 0.06 | II | E,V | S > C O > L |
C020 | TG 4:0_16:0_18:2 | 1324 | + | C41H74O6 | 680.5820 [M + NH4]+ 685.5379 [M + Na]+ 701.5116 [M + K]+ 708.6138 [M + C2H8N]+ | 575.5 [M + H]-NH3-C4H8O2 (90) 407.3 [M + H]-NH3-C16H32O2 (100) 383.4 [M + H]-NH3-C18H32O2 (70) | −0.36 | II | V | L > O |
C021 | TG 4:0_18:1_18:2 | 1328 | + | C43H76O6 | 706.5981 [M + NH4]+ 727.5277 [M + K]+ 734.6296 [M + C2H8N]+ | 689.5 [M + H]-NH3 (50); 671.5 [M + H]-NH3-H2O (15); 601.5 [M + H]-NH3-C4H8O2 (100) 407.3 [M + H]-NH3-C18H32O2 (50) 409.3 [M + H]-NH3-C18H34O2 (60) | 0.23 | II | E,V | C > S L > O |
C022 | TG 42:4 | 1336 | + | C45H78O6 | 732.6140 [M + NH4]+ | n.d. | 0.59 | III | V | L > O |
C023 | TG 40:2 | 1360 | + | C43H78O6 | 708.6137 [M + NH4]+ 736.6456 [M + C2H8N]+ | n.d. | 0.17 | III | V | L > O |
C024 | TG 6:0_18:1_18:2 | 1363 | + | C45H80O6 | 734.6295 [M + NH4]+ 755.5590 [M + K]+ | 717.5 [M + H]-NH3 (40); 601.5 [M + H]-NH3-C6H12O2 (100) 437.4 [M + H]-NH3-C18H32O2 (75) 435.4 [M + H]-NH3-C18H34O2 (55) | 0.38 | II | E,V | C > S L > O |
C025 | TG 44:4 | 1368 | + | C47H82O6 | 760.6453 [M + NH4]+ 781.5746 [M + K]+ | n.d. | 0.57 | III | E,V | C > S L > O |
C026 | TG 10:0_18:2_18:3 | 1375 | + | C49H84O6 | 786.6609 [M + NH4]+ | 769.5 [M + H]-NH3 (100); 751.5 [M + H]-NH3-H2O (20); 597.4 [M + H]-NH3-C10H20O2 (50) 491.5 [M + H]-NH3-C18H30O2 (35) 489.4 [M + H]-NH3-C18H32O2 (45) | 0.47 | II | V | L > O |
C027 | TG 38:0 | 1379 | + | C41H78O6 | 684.6140 [M + NH4]+ 705.5435 [M + K]+ | n.d. | 0.63 | III | E,V | C > S L > O |
C028 | TG 8:0_16:0_18:2 | 1385 | + | C45H82O6 | 736.6451 [M + NH4]+ 757.5747 [M + K]+ 741.6006 [M + Na]+ | 719.6 [M + H]-NH3 (20); 575.5 [M + H]-NH3-C8H16O2 (100); 463.3 [M + H]-NH3-C16H32O2 (85) 439.3 [M + H]-NH3-C18H32O2 (75) | 0.31 | II | E,V | C > S L > O |
C029 | TG 10:0_16:1_18:2 | 1388 | + | C47H84O6 | 762.6611 [M + NH4]+ 783.5906 [M + K]+ | 745.6 [M + H]-NH3 (20); 573.5 [M + H]-NH3-C10H20O2 (100) 491.4 [M + H]-NH3-C16H30O2 (80) 465.4 [M + H]-NH3-C18H32O2 (70) | 0.77 | II | E,V | C > S L > O |
C030 | TG 10:0_18:2_18:2 | 1392 | + | C49H86O6 | 788.6765 [M + NH4]+ 809.6062 [M + K]+ 793.6322 [M + Na]+ 816.7082 [M + C2H8N]+ | 771.6 [M + H]-NH3 (100); 753.6 [M + H]-NH3-H2O (20); 699.5 [M + H]-NH3-C10H20O2 (90) 491.5 [M + H]-NH3-C18H32O2 (80) | 0.42 | II | E,V | C > S L > O |
C031 | TG 43:2 | 1397 | + | C46H84O6 | 750.6611 [M + NH4]+ | n.d. | 0.78 | III | V | L > O |
C032 | TG 12:0_18:2_18:3 | 1397 | + | C51H88O6 | 814.6926 [M + NH4]+ 835.6221 [M + K]+ | 797.6 [M + H]-NH3 (100); 779.6 [M + H]-NH3-H2O (20); 597.5 [M + H]-NH3-C12H24O2 (50) 519.4 [M + H]-NH3-C18H30O2 (40) 517.3 [M + H]-NH3-C18H32O2 (35) | 0.97 | II | E,V | C > S L > O |
C033 | TG 45:3 | 1399 | + | C48H86O6 | 776.6767 [M + NH4]+ | n.d. | 0.69 | III | V | L > O |
C034 | TG 8:0_16:0_16:0 | 1401 | + | C43H82O6 | 712.6453 [M + NH4]+ 733.5748 [M + K]+ | 551.5 [M + H]-NH3-C8H16O2 (50) 439.4 [M + H]-NH3-C16H32O2 (100) | 0.60 | II | E,V | C > S L > O |
C035 | TG 14:1_18:2_18:3 | 1402 | + | C53H90O6 | 840.7079 [M + NH4]+ 861.6371 [M + K]+ | 823.6 [M + H]-NH3 (100); 805.5 [M + H]-NH3-H2O (20); 597.4 [M + H]-NH3-C14H26O2 (70) 545.5 [M + H]-NH3-C18H30O2 (50) 543.4 [M + H]-NH3-C18H32O2 (40) | 0.51 | II | E,V | C > S L > O |
C036 | TG 10:0_16:0_18:2 | 1406 | + | C47H86O6 | 764.6761 [M + NH4]+ 785.6061 [M + K]+ | 747.5 [M + H]-NH3 (10) 575.4 [M + H]-NH3-C10H20O2 (100) 491.4 [M + H]-NH3-C16H32O2 (90) 467.5 [M + H]-NH3-C18H32O2 (80) | −0.11 | II | V | L > O |
C037 | TG 49:5 | 1406 | + | C52H90O6 | 828.7085 [M + NH4]+ | n.d. | 1.26 | III | V | L > O |
C038 | TG 16:1_18:3_18:3 | 1406 | + | C55H92O6 | 866.7238 [M + NH4]+ 887.6536 [M + K]+ | 849.7 [M + H]-NH3 (100); 831.6 [M + H]-NH3-H2O (20); 595.6 [M + H]-NH3-C16H30O2 (50) 571.4 [M + H]-NH3-C18H30O2 (60) | 0.79 | II | E,V | C > S L > O |
C039 | TG 18:2_18:3_18:3 | 1407 | + | C57H94O6 | 892.7394 [M + NH4]+ 897.6951 [M + Na]+ 913.6689 [M + K]+ 920.7722 [M + C2H8N]+ | 875.7 [M + H]-NH3 (100); 857.6 [M + H]-NH3-H2O (20); 597.4 [M + H]-NH3-C18H30O2 (70); 595.4 [M + H]-NH3-C18H32O2 (40) | 0.71 | II | E,V | C > S L > O |
C040 | TG 51:6 | 1409 | + | C54H92O6 | 854.7236 [M + NH4]+ | n.d. | 0.56 | III | E,V | C > S L > O |
C041 | TG 58:11 | 1410 | + | C61H96O6 | 942.7511 [M + NH4]+ | n.d. | −3.60 | III | E,V | C > S |
C042 | TG 14:1_16:1_18:2 | 1411 | + | C51H90O6 | 816.7072 [M + NH4]+ 821.6636 [M + Na]+ 837.6373 [M + K]+ | 799.8 [M + H]-NH3 (80); 781.8 [M + H]-NH3-H2O (10); 573.5 [M + H]-NH3-C14H26O2 (100) 545.4 [M + H]-NH3-C16H30O2 (60) 519.5 [M + H]-NH3-C18H32O2 (50) | -0.35 | II | V | L > O |
C043 | TG 16:0_16:3_20:4/TG 16:3_18:2_18:2 | 1411 | + | C55H92O6 | 866.7238 [M + NH4]+ 887.6537 [M + K]+ | 849.7 [M + H]-NH3 (70); 831.6 [M + H]-NH3-H2O (15); 599.5 [M + H]-NH3-C16H26O2 (100) 569.3 [M + H]-NH3-C18H32O2 (40) 547.4 [M + H]-NH3-C20H32O2 (50) | 0.79 | III | V | L > O |
C044 | TG 53:7 | 1412 | + | C56H94O6 | 880.7392 [M + NH4]+ | n.d. | −0.49 | III | E,V | C > S L > O |
C045 | TG 16:1_16:1_18:3/ TG 14:1_18:2_18:2 | 1414 | + | C53H92O6 | 842.7227 [M + NH4]+ 847.6791 [M + Na]+ 863.6530 [M + K]+ | 825.7 [M + H]-NH3 (100); 807.7 [M + H]-NH3-H2O (20); 599.5 [M + H]-NH3-C14H26O2 (40) 571.4 [M + H]-NH3-C16H30O2 (60) 547.5 [M + H]-NH3-C18H30O2 (30) 545.4 [M + H]-NH3-C18H32O2 (50) | −0.52 | II | E,V | C > S L > O |
C046 | TG 18:2_18:3_20:4/TG 18:2_18:2_20:5 | 1414 | + | C59H96O6 | 918.7550 [M + NH4]+ 939.6845 [M + K]+ | 901.7 [M + H]-NH3 (80) 883.7 [M + H]-NH3-H2O (20) 623.5 [M + H]-NH3-C18H30O2 (20) 621.6 [M + H]-NH3-C18H32O2 (30) 599.5 [M + H]-NH3-C20H32O2 (40) 597.4 [M + H]-NH3-C20H32O2 (100) | 0.63 | II | E,V | C > S L > O |
C047 | TG 45:2 | 1415 | + | C48H88O6 | 778.6926 [M + NH4]+ | n.d. | 1.01 | III | V | L > O |
C048 | TG 16:1_18:2_18:3 | 1416 | + | C55H94O6 | 868.7355 [M + NH4]+ 873.6923 [M + Na]+ 889.6655 [M + K]+ | 851.6 [M + H]-NH3 (100) 833.6 [M + H]-NH3-H2O (20) 597.5 [M + H]-NH3-C16H30O2 (60) 573.5 [M + H]-NH3-C18H30O2 (40) 571.5 [M + H]-NH3-C18H32O2 (35) | −0.56 | II | E,V | C > S L > O |
C049 | TG 47:3 | 1417 | + | C50H90O6 | 804.7088 [M + NH4]+ | n.d. | 1.68 | III | V | L > O |
C050 | TG 18:2_20:4_22:6 | 1417 | + | C63H98O6 | 968.7675 [M + NH4]+ | 651.6 [M + H]-NH3 (45) 671.5 [M + H]-NH3-C18H32O2 (30) 647.4 [M + H]-NH3-C20H32O2 (100) 623.4 [M + H]-NH3-C22H32O2 (60) | −2.71 | II | E | C > S |
C051 | TG 18:2_18:2_18:3 | 1419 | + | C57H96O6 | 894.7538 [M + NH4]+ 899.7105 [M + Na]+ 915.6837 [M + K]+ 922.788 [M + C2H8N]+ | 877.8 [M + H]-NH3 (100) 859.8 [M + H]-NH3-H2O (15) 599.4 [M + H]-NH3-C18H30O2 (70) 597.4 [M + H]-NH3-C18H32O2 (70) | −0.72 | II | E,V | C > S L > O |
C052 | TG 10:0_16:0_18:1/ others | 1420 | + | C47H88O6 | 766.6919 [M + NH4]+ 771.6481 [M + Na]+ 787.6217 [M + K]+ | 577.4 [M + H]-NH3-C10H20O2 (50) 549.5 [M + H]-NH3-C12H24O2 (70) 521.4 [M + H]-NH3-C14H28O2 (85) 495.4 [M + H]-NH3-C16H30O2 (60) 493.4 [M + H]-NH3-C16H32O2 (100) 467.5 [M + H]-NH3-C18H34O2 (40) | 0.09 | E,V | S > C O > L | |
C053 | TG 49:4 | 1420 | + | C52H92O6 | 851.6532 [M + K]+ 830.7241 [M + NH4]+ | n.d. | 1.19 | III | E,V | C > S L > O |
C054 | TG 15:1_18:2_18:2 | 1421 | + | C54H94O6 | 856.7396 [M + NH4]+ 877.6690 [M + K]+ | 839.6 [M + H]-NH3 (100) 821.6 [M + H]-NH3-H2O (15) 599.5 [M + H]-NH3-C15H28O2 (40) 559.5 [M + H]-NH3-C18H32O2 (60) | 0.98 | II | E,V | C > S L > O |
C055 | TG 55:8 | 1422 | + | C58H96O6 | 906.7541 [M + NH4]+ | n.d. | −0.37 | III | V | L > O |
C056 | TG 18:2_18:2_22:6 | 1422 | + | C61H98O6 | 944.7701 [M + NH4]+ 965.6994 [M + K]+ | 927.7 [M + H]-NH3 (60) 909.6 [M + H]-NH3-H2O (30) 647.5 [M + H]-NH3-C18H32O2 (20) 599.5 [M + H]-NH3-C22H32O2 (100) | 0.02 | II | E,V | C > S L > O |
C057 | TG 16:1_16:1_16:1 | 1423 | + | C51H92O6 | 818.7227 [M + NH4]+ 839.6530 [M + K]+ 823.6790 [M + Na]+ | 801.6 [M + H]-NH3 (20) 783.5 [M + H]-NH3-H2O (10) 547.4 [M + H]-NH3-C16H30O2 (100) | −0.54 | II | E,V | S > C O > L |
C058 | TG 17:1_18:2_18:3 | 1424 | + | C56H96O6 | 882.7549 [M + NH4]+ 903.6841 [M + K]+ | 865.7 [M + H]-NH3 (100); 847.6 [M + H]-NH3-H2O (20); 585.3 [M + H]-NH3-C18H32O2 (60); 597.5 [M + H]-NH3-C17H32O2 (50); | 0.54 | II | E,V | C > S L > O |
C059 | TG 18:2_18:2_20:4 | 1426 | + | C59H98O6 | 920.7697 [M + NH4]+ 941.6994 [M + K]+ | 903.7 [M + H]-NH3 (65); 623.6 [M + H]-NH3-C18H32O2 (20); 599.5 [M + H]-NH3-C20H32O2 (20); | −0.42 | II | E,V | C > S L > O |
C060 | TG 16:0_16:1_20:4 | 1428 | + | C55H96O6 | 870.7535 [M + NH4]+ 853.7282 [M + H]+ | 853.8 [M + H]-NH3 (90); 835.8 [M + H]-NH3-H2O (20) 597.5 [M + H]-NH3-C16H32O2 (60) 549.5 [M + H]-NH3-C20H32O2 (100) | −1.09 | II | V | L > O |
C061 | TG 15:0_16:1_16:1 | 1430 | + | C50H92O6 | 806.7238 [M + NH4]+ | 789.3 [M + H]-NH3 (30); 547.4 [M + H]-NH3-C15H30O2 (30) 535.5 [M + H]-NH3-C16H30O2 (100) | 0.85 | III | V | O > L |
C062 | TG 18:2_18:2_18:2 | 1430 | + | C57H98O6 | 896.7688 [M + NH4]+ 917.6988 [M + K]+ 879.7437 [M + H]+ 901.7257 [M + Na]+ | 879.7 [M + H]-NH3 (100); 861.7 [M + H]-NH3-H2O (15); 599.5 [M + H]-NH3-C18H32O2 (100); | −1.46 | II | E,V | C > S L > O |
C063 | TG 15:0_16:1_18:2 | 1432 | + | C52H94O6 | 832.7392 [M + NH4]+ | 815.7 [M + H]-NH3 (60); 573.5 [M + H]-NH3-C15H30O2 (100) 561.4 [M + H]-NH3-C16H30O2 (80) 535.4 [M + H]-NH3-C18H32O2 (95); | 0.52 | II | E,V | C > S L > O |
C064 | TG 55:7 | 1432 | + | C58H98O6 | 908.7698 [M + NH4]+ | n.d. | −0.31 | III | E,V | C > S L > O |
C065 | TG 18:2_18:2_22:5/ TG 18:1_18:2_20:6 | 1432 | + | C61H100O6 | 946.7825 [M + NH4]+ | 929.7 [M + H]-NH3 (45); 911.6 [M + H]-NH3-H2O (15); 649.6 [M + H]-NH3-C18H32O2 (40); 625.7 [M + H]-NH3-C20H28O2 (30); 599.5 [M + H]-NH3-C22H34O2 (100); | −3.48 | II | E | C > S |
C066 | TG 12:0_14:0_18:0/ TG 14:0_14:0_16:0 | 1433 | + | C47H90O6 | 768.7081 [M + NH4]+ | 551.5 [M + H]-NH3-C12H24O2 (50); 523.5 [M + H]-NH3-C14H28O2 (80); 495.5 [M + H]-NH3-C16H32O2 (100); | 0.83 | II | E,V | S > C O > L |
C067 | TG 16:1_17:1_18:2 | 1433 | + | C54H96O6 | 858.7547 [M + NH4]+ 879.6843 [M + K]+ | 841.7 [M + H]-NH3 (100); 587.5 [M + H]-NH3-C16H30O2 (65); 573.4 [M + H]-NH3-C17H32O2 (75); 561.5 [M + H]-NH3-C18H32O2 (60); | 0.32 | II | E,V | C > S L > O |
C068 | TG 14:0_16:0_16:1/TG 12:0_16:0_18:1 | 1434 | + | C49H92O6 | 794.7228 [M + NH4]+ 815.6531 [M + K]+ 799.6793 [M + Na]+ | 777.6 [M + H]-NH3 (15); 577.5 [M + H]-NH3-C12H24O2 (30); 549.4 [M + H]-NH3-C14H28O2 (80); 523.4 [M + H]-NH3-C16H30O2 (50); 521.5 [M + H]-NH3-C16H32O2 (100); | −0.42 | II | E,V | S > C O > L |
C069 | TG 17:1_18:2_18:2 | 1434 | + | C56H98O6 | 884.7704 [M + NH4]+ 905.6996 [M + K]+ | 867.7 [M + H]-NH3 (100); 849.5 [M + H]-NH3-H2O (15); 599.5 [M + H]-NH3-C17H32O2 (40); 587.4 [M + H]-NH3-C18H32O2 (50); | 0.37 | II | E,V | C > S L > O |
C070 | TG 16:0_16:1_16:1/… | 1435 | + | C51H94O6 | 820.7380 [M + NH4]+ 825.6947 [M + Na]+ 841.6684 [M + K]+ | 803.6 [M + H]-NH3 (15); 549.5 [M + H]-NH3-C16H30O2 (100); 547.5 [M + H]-NH3-C16H32O2 (60); | −0.97 | II | E,V | S > C O > L |
C071 | TG 55:6 | 1436 | + | C58H100O6 | 910.7855 [M + NH4]+ | n.d. | −0.26 | III | V | L > O |
C072 | TG 18:1_18:2_20:4/ TG 16:0_18:2_22:5 | 1436 | + | C59H100O6 | 922.7852 [M + NH4]+ 943.715 [M + K]+ | 905.7 [M + H]-NH3 (60); 887.7 [M + H]-NH3-H2O (15); 649.5 [M + H]-NH3-C16H32O2 (15) 625.5 [M + H]-NH3-C18H32O2 (30) 623.6 [M + H]-NH3-C18H34O2 (25) 601.5 [M + H]-NH3-C20H32O2 (80) 577.5 [M + H]-NH3-C18H332O2 (10) 575.5 [M + H]-NH3-C22H34O2 (100) | −0.59 | II | E,V | C > S L > O |
C073 | TG 58:8 | 1436 | + | C61H102O6 | 948.8005 [M + NH4]+ 969.7299 [M + K]+ | n.d. | −0.95 | II | E,V | C > S L > O |
C074 | TG 16:1_16:1_18:1 | 1437 | + | C53H96O6 | 846.7535 [M + NH4]+ 867.6837 [M + K]+ | 829.7 [M + H]-NH3 (20) 575.4 [M + H]-NH3-C16H30O2 (100) 547.5 [M + H]-NH3-C18H34O2 (45) | −1.12 | II | E,V | S > C O > L |
C075 | TG 16:1_18:1_18:2 | 1440 | + | C55H98O6 | 872.769 [M + NH4]+ 855.7436 [M + H]+ | 855.7 [M + H]-NH3 (50) 837.6 [M + H]-NH3-H2O (15); 601.5 [M + H]-NH3-C16H30O2 (95); 575.4 [M + H]-NH3-C18H32O2 (60) 573.4 [M + H]-NH3-C18H34O2 (100) | −1.26 | II | E,V | C > S L > O |
C076 | TG 18:1_18:2_18:2 | 1441 | + | C57H100O6 | 898.7841 [M + NH4]+ 881.7586 [M + H]+ 919.7147 [M + K]+ | 881.7 [M + H]-NH3 (100) 863.6 [M + H]-NH3-H2O (15); 601.5 [M + H]-NH3-C18H32O2 (70) 599.6 [M + H]-NH3-C18H34O2 (80) | −1.85 | II | E,V | C > S L > O |
C077 | TG 15:0_16:0_16:1 | 1442 | + | C50H94O6 | 808.7391 [M + NH4]+ | 791.6 [M + H]-NH3 (10) 549.6 [M + H]-NH3-C15H30O2 (100) 537.5 [M + H]-NH3-C16H30O2 (60) 535.4 [M + H]-NH3-C16H32O2 (90) | 0.40 | E,V | S > C O > L | |
C078 | TG 15:0_16:0_18:2 | 1444 | + | C52H96O6 | 834.7546 [M + NH4]+ | 575.4 [M + H]-NH3-C15H30O2 (90); 561.5 [M + H]-NH3-C16H32O2 (100); 537.5 [M + H]-NH3-C18H32O2 (80) | 0.21 | II | V | L > O |
C079 | TG 15:0_18:1_18:2/ others | 1444 | + | C54H98O6 | 860.7696 [M + NH4]+ 881.6997 [M + K]+ | 843.6 [M + H]-NH3 (50) 601.5 [M + H]-NH3-C15H30O2 (95) 587.5 [M + H]-NH3-C16H32O2 (65); 575.4 [M + H]-NH3-C17H32O2 (50); 563.5 [M + H]-NH3-C18H32O2 (100); 561.5 [M + H]-NH3-C18H34O2 (60); | −0.57 | E,V | C > S L > O | |
C080 | TG 57:7 | 1444 | + | C60H102O6 | 936.8009 [M + NH4]+ | n.d. | −0.52 | III | E,V | C > S L > O |
C081 | TG 60:9 | 1444 | + | C63H104O6 | 974.8164 [M + NH4]+ | n.d. | −0.66 | III | V | O > L |
C082 | TG 17:1_18:1_18:2 | 1445 | + | C56H100O6 | 886.7857 [M + NH4]+ 891.7404 [M + Na]+ 907.7150 [M + K]+ | 869.7 [M + H]-NH3 (100); 851.7 [M + H]-NH3-H2O (15); 601.4 [M + H]-NH3-C17H32O2 (85); 589.6 [M + H]-NH3-C18H32O2 (90); 587.5 [M + H]-NH3-C18H34O2 (80) | −0.03 | II | E,V | C > S L > O |
C083 | TG 58:7 | 1445 | + | C61H104O6 | 950.8164 [M + NH4]+ 971.746 [M + K]+ | n.d. | −0.68 | III | E,V | C > S L > O |
C084 | TG 14:0_16:0_16:0 | 1446 | + | C49H94O6 | 796.7367 [M + NH4]+ | 551.5 [M + H]-NH3-C16H30O2 (100); 523.4 [M + H]-NH3-C14H28O2 (40) | −2.67 | II | E | S > C |
C085 | TG 18:2_18:2_19:1 | 1446 | + | C58H102O6 | 912.8013 [M + NH4]+ 933.7308 [M + K]+ | 869.7 [M + H]-NH3 (100); 615.5 [M + H]-NH3-C18H32O2 (85); 599.6 [M + H]-NH3-C19H36O2 (60) | −0.09 | II | E,V | C > S L > O |
C086 | TG 16:0_16:0_16:1/TG 14:0_16:0_18:1 | 1447 | + | C51H96O6 | 822.7539 [M + NH4]+ 843.6841 [M + K]+ | 805.7 [M + H]-NH3 (20); 551.5 [M + H]-NH3-C16H30O2 (45); 549.6 [M + H]-NH3-C16H32O2 (100); | −0.66 | II | E,V | S > C O > L |
C087 | TG 16:0_16:0_18:2 TG 16:0_16:1_18:1 | 1449 | + | C53H98O6 | 848.7691 [M + NH4]+ | 577.4 [M + H]-NH3-C16H30O2 (80); 575.4 [M + H]-NH3-C16H32O2 (100); 549.5 [M + H]-NH3-C18H34O2 (90) | −1.18 | II | E,V | S > C O > L |
C088 | TG 18:1_18:1_18:2 | 1452 | + | C57H102O6 | 900.7994 [M + NH4]+ | 883.8 [M + H]-NH3 (30); 603.5 [M + H]-NH3-C18H32O2 (40); 601.5 [M + H]-NH3-C18H34O2 (100) | −2.24 | II | E,V | C > S L > O |
C089 | TG 15:0_16:0_18:1 | 1454 | + | C52H98O6 | 836.7700 [M + NH4]+ 857.7001 [M + K]+ | 819.7 [M + H]-NH3 (20); 577.5 [M + H]-NH3-C15H30O2 (100); 563.6 [M + H]-NH3-C16H32O2 (80); 537.4 [M + H]-NH3-C18H34O2 (90) | −0.10 | II | E,V | S > C O > L |
C090 | TG 57:6 | 1454 | + | C60H104O6 | 938.8167 [M + NH4]+ | n.d. | −0.36 | III | E,V | C > S L > O |
C091 | TG 17:1_18:1_18:1 | 1456 | + | C56H102O6 | 888.8004 [M + NH4]+ 893.7565 [M + Na]+ 909.7307 [M + K]+ | 871.7 [M + H]-NH3 (20); 603.4 [M + H]-NH3-C17H32O2 (40); 589.6 [M + H]-NH3-C18H34O2 (100) | −1.13 | II | E,V | C > S L > O |
C092 | TG 56:5 | 1456 | + | C59H104O6 | 926.8153 [M + NH4]+ 947.7461 [M + K]+ 931.7720 [M + Na]+ | n.d. | −1.90 | III | E,V | S > C O > L |
C093 | TG 18:1_18:2_19:1 | 1457 | + | C58H104O6 | 914.8167 [M + NH4]+ 935.7462 [M + K]+ 942.8487 [M + C2H8N]+ | 897.7 [M + H]-NH3 (60); 617.6 [M + H]-NH3-C18H32O2 (90); 615.5 [M + H]-NH3-C18H34O2 (100); 601.4 [M + H]-NH3-C19H36O2 (40) | −0.37 | II | E,V | C > S L > O |
C094 | TG 18:1_18:1_22:4 | 1457 | + | C61H106O6 | 952.8319 [M + NH4]+ | 935.7 [M + H]-NH3 (100); 917.7 [M + H]-NH3-H2O (15); 653.6 [M + H]-NH3-C18H34O2 (60); 603.5 [M + H]-NH3-C22H36O2 (50) | −0.83 | II | V | O > L |
C095 | TG 60:7 | 1457 | + | C63H108O6 | 978.8476 [M + NH4]+ | n.d. | −0.76 | III | E,V | C > S L > O |
C096 | TG 57:5 | 1458 | + | C60H106O6 | 940.8322 [M + NH4]+ | n.d. | −0.52 | III | V | L > O |
C097 | TG 16:0_16:0_18:1 | 1460 | + | C53H100O6 | 850.7846 [M + NH4]+ | 577.4 [M + H]-NH3-C16H32O2 (100); 551.5 [M + H]-NH3-C18H34O2 (45) | −1.36 | II | E,V | S > C O > L |
C098 | TG 16:0_18:1_18:1 | 1460 | + | C55H102O6 | 876.8001 [M + NH4]+ | 603.4 [M + H]-NH3-C16H32O2 (60); 577.5 [M + H]-NH3-C18H34O2 (100) | −1.49 | II | E,V | S > C O > L |
C099 | TG 18:1_18:2_20:1 | 1465 | + | C59H106O6 | 928.8317 [M + NH4]+ | 911.7 [M + H]-NH3 (50); 893.8 [M + H]-NH3-H2O (15); 631.5 [M + H]-NH3-C18H32O2 (40); 629.5 [M + H]-NH3-C18H34O2 (100); 601.5 [M + H]-NH3-C20H38O2 (60) | −1.08 | II | V | L > O |
C100 | TG 16:0_16:0_17:0 | 1466 | + | C52H100O6 | 838.7862 [M + NH4]+ | 565.5 [M + H]-NH3-C16H32O2 (100); 551.5 [M + H]-NH3-C17H34O2 (80) | 0.57 | II | V | L > O |
C101 | TG 18:1_18:1_19:1 | 1468 | + | C58H106O6 | 916.8325 [M + NH4]+ 937.7621 [M + K]+; 921.788 [M + Na]+ | 899.8 [M + H]-NH3 (30) 881.7 [M + H]-NH3-H2O (15); 617.6 [M + H]-NH3-C18H34O2 (100); 603.6 [M + H]-NH3-C19H36O2 (50) | −0.20 | II | E,V | C > S L > O |
C102 | TG 18:0_18:1_22:4 | 1468 | + | C61H108O6 | 975.7774 [M + K]+ 954.8479 [M + NH4]+ | 937.8 [M + H]-NH3 (90) 919.6 [M + H]-NH3-H2O (30); 655.6 [M + H]-NH3-C18H34O2 (70); 653.5 [M + H]-NH3-C18H36O2 (55); 605.5 [M + H]-NH3-C22H36O2 (65) | −0.46 | II | E,V | S > C O > L |
C103 | TG 57:4 | 1469 | + | C60H108O6 | 942.8485 [M + NH4]+ | n.d. | 0.18 | III | V | L > O |
C104 | TG 59:5 | 1470 | + | C62H110O6 | 968.8638 [M + NH4]+ | n.d. | −0.19 | III | V | L > O |
C105 | TG 16:0_18:0_18:1 | 1473 | + | C55H104O6 | 878.8162 [M + NH4]+ 899.7463 [M + K]+ 883.7727 [M + Na]+ | 605.4 [M + H]-NH3-C16H32O2 (100); 579.4 [M + H]-NH3-C18H34O2 (70); 577.5 [M + H]-NH3-C18H36O2 (90) | −0.96 | II | E,V | S > C O > L |
C106 | TG 18:0_18:1_18:1/TG 16:0_18:1_20:1 | 1473 | + | C57H106O6 | 904.8314 [M + NH4]+ | 605.4 [M + H]-NH3-C18H34O2 (100); 603.4 [M + H]-NH3-C18H36O2 (50) | −1.44 | II | E,V | S > C O > L |
C107 | TG 18:1_18:1_20:1 | 1475 | + | C59H108O6 | 930.8472 [M + NH4]+ 935.8038 [M + Na]+ 951.7773 [M + K]+ | 913.8 [M + H]-NH3 (20); 631.5 [M + H]-NH3-C18H34O2 (100); 603.5 [M + H]-NH3-C20H38O2 (65) | −1.24 | II | V | L > O |
C108 | TG 18:0_18:1_22:3 | 1476 | + | C61H110O6 | 956.8635 [M + NH4]+ 977.793 [M + K]+ | 939.8 [M + H]-NH3 (100); 921.6 [M + H]-NH3-H2O (30); 657.5 [M + H]-NH3-C18H34O2 (40); 655.6 [M + H]-NH3-C18H36O2 (65); 605.5 [M + H]-NH3-C22H38O2 (45) | −0.51 | II | E,V | C > S L > O |
C109 | TG 18:2_18:2_24:1 | 1476 | + | C63H112O6 | 982.8792 [M + NH4]+ | 695.8 [M + H]-NH3 (100); 947.8 [M + H]-NH3-H2O (20); 685.7 [M + H]-NH3-C18H32O2 (60); 599.4 [M + H]-NH3-C24H46O2 (50) | −0.45 | II | E,V | C > S L > O |
C110 | TG 16:0_17:0_18:0/ others | 1479 | + | C54H104O6 | 866.8178 [M + NH4]+ | 607.5 [M + H]-NH3-C15H30O2 (30); 593.6 [M + H]-NH3-C16H32O2 (100); 579.6 [M + H]-NH3-C17H34O2 (80); 565.4 [M + H]-NH3-C18H36O2 (75); 551.5 [M + H]-NH3-C19H38O2 (30); | 0.91 | II | V | L > O |
C111 | TG 18:1_18:1_19:0 | 1479 | + | C58H108O6 | 918.8481 [M + NH4]+ 923.8041 [M + Na]+ 939.7776 [M + K]+ | 619.6 [M + H]-NH3-C18H34O2 (100); 603.5 [M + H]-NH3-C19H38O2 (50) | −0.26 | II | E,V | C > S L > O |
C112 | TG 18:2_18:2_23:0/TG 18:1_18:2_23:1 | 1481 | + | C62H112O6 | 970.8798 [M + NH4]+ | 953.9 [M + H]-NH3 (100); 935.7 [M + H]-NH3-H2O (15); 673.6 [M + H]-NH3-C18H32O2 (90); 671.7 [M + H]-NH3-C18H34O2 (70); 601.6 [M + H]-NH3-C23H44O2 (50); 599.6 [M + H]-NH3-C23H46O2 (50) | 0.18 | II | E,V | C > S L > O |
C113 | TG 18:0_18:0_18:1/TG 16:0_18:1_20:0 | 1485 | + | C57H108O6 | 906.8474 [M + NH4]+ 927.7779 [M + K]+ 911.8043 [M + Na]+ | 607.5 [M + H]-NH3-C18H34O2 (70); 605.5 [M + H]-NH3-C18H36O2 (100); | −1.05 | II | E,V | S > C O > L |
C114 | TG 60:4 | 1485 | + | C63H114O6 | 984.895 [M + NH4]+ | n.d. | −0.29 | III | E,V | C > S L > O |
C115 | TG 58:3 | 1486 | + | C61H112O6 | 958.8791 [M + NH4]+ 979.8088 [M + K]+ 963.8349 [M + Na]+ | n.d. | −0.56 | III | E,V | C > S L > O |
C116 | TG 18:1_18:1_21:0/ TG 16:0_18:1_23:1/ TG 16:0_18:0_23:2 | 1493 | + | C60H112O6 | 946.8797 [M + NH4]+ 967.8087 [M + K]+ | 673.7 [M + H]-NH3-C16H32O2 (90); 647.6 [M + H]-NH3-C18H34O2 (60); 645.6 [M + H]-NH3-C18H36O2 (100); 603.6 [M + H]-NH3-C21H42O2 (30); 577.5 [M + H]-NH3-C23H44O2 (30); 575.5 [M + H]-NH3-C23H42O2 (100); | 0.08 | II | V | L > O |
C117 | TG 18:1_18:2_23:0 | 1493 | + | C62H114O6 | 972.8958 [M + NH4]+ 993.8246 [M + K]+ | 955.9 [M + H]-NH3 (30); 937.7 [M + H]-NH3-H2O (20); 675.6 [M + H]-NH3-C18H32O2 (80); 673.6 [M + H]-NH3-C18H34O2 (90); 601.4 [M + H]-NH3-C23H46O2 (100); | 0.34 | II | V | L > O |
C118 | TG 18:2_18:2_25:0 | 1494 | + | C64H116O6 | 998.9106 [M + NH4]+ | 981.7 [M + H]-NH3 (50); 963.7 [M + H]-NH3-H2O (20); 701.7 [M + H]-NH3-C18H32O2 (95); 599.5 [M + H]-NH3-C25H50O2 (100); | −0.34 | II | V | L > O |
C119 | TG 16:0_18:1_24:1 | 1498 | + | C61H114O6 | 960.8948 [M + NH4]+ 981.8245 [M + K]+ 965.8508 [M + Na]+ | 687.6 [M + H]-NH3-C16H32O2 (90); 661.6 [M + H]-NH3-C18H34O2 (100); 577.6 [M + H]-NH3-C24H46O2 (75); | −0.51 | II | V | L > O |
C120 | TG 18:1_18:1_24:1 | 1498 | + | C63H116O6 | 986.9104 [M + NH4]+ | 969.8 [M + H]-NH3 (15); 687.7 [M + H]-NH3-C18H34O2 (100); 603.5 [M + H]-NH3-C24H46O2 (60); | −0.55 | II | E,V | C > S L > O |
C121 | TG 18:1_18:1_23:0 | 1505 | + | C62H116O6 | 974.9109 [M + NH4]+ | 675.6 [M + H]-NH3-C18H34O2 (100); 603.6 [M + H]-NH3-C23H46O2 (40); | −0.03 | II | V | L > O |
C122 | TG 16:0_18:1_26:1 | 1512 | + | C63H118O6 | 988.9262 [M + NH4]+ | 715.6 [M + H]-NH3-C16H32O2 (75); 689.5 [M + H]-NH3-C18H34O2 (100); 577.5 [M + H]-NH3-C26H50O2 (60); | −0.39 | II | V | L > O |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinaldi de Alvarenga, J.F.; Garcia-Aloy, M.; Ulaszewska, M.; Zagmutt, S.; Perez-Montero, M.; Vrhovsek, U.; Lamuela-Raventós, R.M.; Rodriguez-Rodriguez, R. Integrated Metabolomics, Lipidomics, and Genomics Reveal the Presence of a New Biomarker, Butanediol Glucuronide, Associated with the Activation of Liver Ketogenesis and Lipid Oxidation by Tomato-Based Sofrito in Obese Rats. Antioxidants 2022, 11, 2165. https://doi.org/10.3390/antiox11112165
Rinaldi de Alvarenga JF, Garcia-Aloy M, Ulaszewska M, Zagmutt S, Perez-Montero M, Vrhovsek U, Lamuela-Raventós RM, Rodriguez-Rodriguez R. Integrated Metabolomics, Lipidomics, and Genomics Reveal the Presence of a New Biomarker, Butanediol Glucuronide, Associated with the Activation of Liver Ketogenesis and Lipid Oxidation by Tomato-Based Sofrito in Obese Rats. Antioxidants. 2022; 11(11):2165. https://doi.org/10.3390/antiox11112165
Chicago/Turabian StyleRinaldi de Alvarenga, José Fernando, Mar Garcia-Aloy, Marynka Ulaszewska, Sebastian Zagmutt, Marta Perez-Montero, Urska Vrhovsek, Rosa M. Lamuela-Raventós, and Rosalia Rodriguez-Rodriguez. 2022. "Integrated Metabolomics, Lipidomics, and Genomics Reveal the Presence of a New Biomarker, Butanediol Glucuronide, Associated with the Activation of Liver Ketogenesis and Lipid Oxidation by Tomato-Based Sofrito in Obese Rats" Antioxidants 11, no. 11: 2165. https://doi.org/10.3390/antiox11112165
APA StyleRinaldi de Alvarenga, J. F., Garcia-Aloy, M., Ulaszewska, M., Zagmutt, S., Perez-Montero, M., Vrhovsek, U., Lamuela-Raventós, R. M., & Rodriguez-Rodriguez, R. (2022). Integrated Metabolomics, Lipidomics, and Genomics Reveal the Presence of a New Biomarker, Butanediol Glucuronide, Associated with the Activation of Liver Ketogenesis and Lipid Oxidation by Tomato-Based Sofrito in Obese Rats. Antioxidants, 11(11), 2165. https://doi.org/10.3390/antiox11112165