Interaction of Uric Acid and Neutrophil-to-Lymphocyte Ratio for Cardiometabolic Risk Stratification and Prognosis in Coronary Artery Disease Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Angiographic Study
2.3. Follow-Up
2.4. Statistical Analysis
2.4.1. Relative Excess Risk (RERI)
2.4.2. Attributable Proportion (AP)
2.4.3. Synergy Index (SI)
2.4.4. Multiplicative Interaction Ratio of HRs
3. Results
3.1. Characteristics of the Study Participants
3.2. Determinants of UA
3.3. Determinants of NLR
3.4. UA and NLR as Determinants of Outcomes
3.5. Interactive Effect of NLR and UA for Cardiac Death and Hard Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sverdlov, A.L.; Figtree, G.A.; Horowitz, J.D.; Ngo, D.T. Interplay between Oxidative Stress and Inflammation in Cardiometabolic Syndrome. Mediat. Inflamm. 2016, 2016, 8254590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassalle, C.; Mazzone, A.; Sabatino, L.; Carpeggiani, C. Uric Acid for Cardiovascular Risk: Dr. Jekyll or Mr. Hide? Diseases 2016, 4, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.J.; Oh, B.K.; Sung, K.C. Uric acid and cardiometabolic diseases. Clin. Hypertens. 2020, 26, 13. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Cheng, J.D. Uric Acid and Cardiovascular Disease: An Update from Molecular Mechanism to Clinical Perspective. Front. Pharmacol. 2020, 11, 582680. [Google Scholar] [CrossRef]
- Del Turco, S.; Basta, G.; De Caterina, A.R.; Sbrana, S.; Paradossi, U.; Taddei, A.; Trianni, G.; Ravani, M.; Palmieri, C.; Berti, S.; et al. Different inflammatory profile in young and elderly STEMI patients undergoing primary percutaneous coronary intervention (PPCI): Its influence on no-reflow and mortality. Int. J. Cardiol. 2019, 290, 34–39. [Google Scholar] [CrossRef]
- Liu, C.C.; Ko, H.J.; Liu, W.S.; Hung, C.L.; Hu, K.C.; Yu, L.Y.; Shih, S.C. Neutrophil-to-lymphocyte ratio as a predictive marker of metabolic syndrome. Medicine 2019, 98, e17537. [Google Scholar] [CrossRef]
- Verdoia, M.; Barbieri, L.; Di Giovine, G.; Marino, P.; Suryapranata, H.; De Luca, G.; Novara Atherosclerosis Study, G. Neutrophil to Lymphocyte Ratio and the Extent of Coronary Artery Disease: Results From a Large Cohort Study. Angiology 2016, 67, 75–82. [Google Scholar] [CrossRef]
- Vassalle, C.; Boni, C.; Di Cecco, P.; Landi, P. Elevated hydroperoxide levels as a prognostic predictor of mortality in a cohort of patients with cardiovascular disease. Int. J. Cardiol. 2006, 110, 415–416. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2018, 39, 119–177. [Google Scholar]
- Vassalle, C.; Bianchi, S.; Battaglia, D.; Landi, P.; Bianchi, F.; Carpeggiani, C. Elevated levels of oxidative stress as a prognostic predictor of major adverse cardiovascular events in patients with coronary artery disease. J. Atheroscler. Thromb. 2012, 19, 712–717. [Google Scholar] [CrossRef] [Green Version]
- Vassalle, C.; Bianchi, S.; Bianchi, F.; Landi, P.; Battaglia, D.; Carpeggiani, C. Oxidative stress as a predictor of cardiovascular events in coronary artery disease patients. Clin. Chem. Lab. Med. 2012, 50, 1463–1468. [Google Scholar] [CrossRef] [PubMed]
- Knol, M.J.; VanderWeele, T.J.; Groenwold, R.H.; Klungel, O.H.; Rovers, M.M.; Grobbee, D.E. Estimating measures of interaction on an additive scale for preventive exposures. Eur. J. Epidemiol. 2011, 26, 433–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuang, S.Y.; Chen, J.H.; Yeh, W.T.; Wu, C.C.; Pan, W.H. Hyperuricemia and increased risk of ischemic heart disease in a large Chinese cohort. Int. J. Cardiol. 2012, 154, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Hu, J.; Song, N.; Chen, R.; Zhang, T.; Ding, X. Hyperuricemia increases the risk of acute kidney injury: A systematic review and meta-analysis. BMC Nephrol. 2017, 18, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassalle, C.; Chatzianagnostou, K.; Vannucci, A.; Guiducci, L.; Battaglia, D.; Maffei, S.; Arvia, C.; Landi, P.; Carpeggiani, C. Gender differences for uric acid as predictor of hard events in patients referred for coronary angiography. Biomark. Med. 2016, 10, 349–355. [Google Scholar] [CrossRef]
- Vigna, L.; Vassalle, C.; Tirelli, A.S.; Gori, F.; Tomaino, L.; Sabatino, L.; Bamonti, F. Gender-related association between uric acid, homocysteine, gamma-glutamyltransferase, inflammatory biomarkers and metabolic syndrome in subjects affected by obesity. Biomark. Med. 2017, 11, 857–865. [Google Scholar] [CrossRef]
- Vigna, L.; Tirelli, A.S.; Gaggini, M.; Di Piazza, S.; Tomaino, L.; Turolo, S.; Moroncini, G.; Chatzianagnostou, K.; Bamonti, F.; Vassalle, C. Insulin resistance and cardiometabolic indexes: Comparison of concordance in working-age subjects with overweight and obesity. Endocrine 2022, 77, 231–241. [Google Scholar] [CrossRef]
- Donath, M.Y.; Meier, D.T.; Boni-Schnetzler, M. Inflammation in the Pathophysiology and Therapy of Cardiometabolic Disease. Endocr. Rev. 2019, 40, 1080–1091. [Google Scholar] [CrossRef] [Green Version]
- Trtica Majnaric, L.; Guljas, S.; Bosnic, Z.; Seric, V.; Wittlinger, T. Neutrophil-to-Lymphocyte Ratio as a Cardiovascular Risk Marker May Be Less Efficient in Women Than in Men. Biomolecules 2021, 11, 528. [Google Scholar] [CrossRef]
- Hashemi Moghanjoughi, P.; Neshat, S.; Rezaei, A.; Heshmat-Ghahdarijani, K. Is the Neutrophil-to-Lymphocyte Ratio an Exceptional Indicator for Metabolic Syndrome Disease and Outcomes? Endocr. Pract. 2022, 28, 342–348. [Google Scholar] [CrossRef]
- Kounis, N.G.; Soufras, G.D.; Tsigkas, G.; Hahalis, G. White blood cell counts, leukocyte ratios, and eosinophils as inflammatory markers in patients with coronary artery disease. Clin. Appl. Thromb. Hemost. 2015, 21, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jun Diao, J.; Qi, C.; Jin, J.; Li, L.; Gao, X.; Gong, L.; Wu, W. Predictive value of neutrophil to lymphocyte ratio in patients with acute ST segment elevation myocardial infarction after percutaneous coronary intervention: A meta-analysis. BMC Cardiovasc. Disord. 2018, 18, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inaba, S.; Sautin, Y.; Garcia, G.E.; Johnson, R.J. What can asymptomatic hyperuricaemia and systemic inflammation in the absence of gout tell us? Rheumatology 2013, 52, 963–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, D.Y.; Gur, M.; Elbasan, Z.; Yildiz, A.; Kaya, Z.; Icen, Y.K.; Kivrak, A.; Turkoglu, C.; Yilmaz, R.; Cayli, M. Predictors of preinterventional patency of infarct-related artery in patients with ST-segment elevation myocardial infarction: Importance of neutrophil to lymphocyte ratio and uric acid level. Exp. Clin. Cardiol. 2013, 18, e77–e81. [Google Scholar] [PubMed]
- Acet, H.; Ertas, F.; Akil, M.A.; Ozyurtlu, F.; Yildiz, A.; Polat, N.; Bilik, M.Z.; Aydin, M.; Oylumlu, M.; Kaya, H.; et al. Novel predictors of infarct-related artery patency for ST-segment elevation myocardial infarction: Platelet-to-lymphocyte ratio, uric acid, and neutrophil-to-lymphocyte ratio. Anatol. J. Cardiol. 2015, 15, 648–656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahbap, E.; Sakaci, T.; Kara, E.; Sahutoglu, T.; Koc, Y.; Basturk, T.; Sevinc, M.; Akgol, C.; Hasbal, B.; Isleem, M.; et al. Serum uric acid levels and inflammatory markers with respect to dipping status: A retrospective analysis of hypertensive patients with or without chronic kidney disease. Clin. Exp. Hypertens. 2016, 38, 555–563. [Google Scholar] [CrossRef]
- Tanindi, A.; Erkan, A.F.; Alhan, A.; Tore, H.F. Arterial stiffness and central arterial wave reflection are associated with serum uric acid, total bilirubin, and neutrophil-to-lymphocyte ratio in patients with coronary artery disease. Anatol. J. Cardiol. 2015, 15, 396–403. [Google Scholar] [CrossRef] [Green Version]
- Kawamoto, R.; Ninomiya, D.; Kikuchi, A.; Akase, T.; Kasai, Y.; Kusunoki, T.; Ohtsuka, N.; Kumagi, T. Association of neutrophil-to-lymphocyte ratio with early renal dysfunction and albuminuria among diabetic patients. Int. Urol. Nephrol. 2019, 51, 483–490. [Google Scholar] [CrossRef]
- El-Eshmawy, M.M.; Mahsoub, N.; Asar, M.; Elsehely, I. Association Between Total Bilirubin Levels and Cardio-Metabolic Risk Factors Related to Obesity. Endocr. Metab. Immune Disord. Drug Targets 2022, 22, 64–70. [Google Scholar] [CrossRef]
- Yilmaz, G.; Sevinc, C.; Ustundag, S.; Yavuz, Y.C.; Hacibekiroglu, T.; Hatipoglu, E.; Baysal, M. The relationship between mean platelet volume and neutrophil/lymphocyte ratio with inflammation and proteinuria in chronic kidney disease. Saudi J. Kidney Dis. Transpl. 2017, 28, 90–94. [Google Scholar]
- Zhu, H.Y.; Zhao, S.Z.; Zhang, M.L.; Wang, Y.; Pan, Z.M.; Cheng, H.R.; Zhao, K.; Wang, Z. Elevated Serum Uric Acid Increases the Risk of Ischemic Stroke Recurrence and Its Inflammatory Mechanism in Older Adults. Front. Aging Neurosci. 2022, 14, 822350. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chambless, L. Test for additive interaction in proportional hazards models. Ann. Epidemiol. 2007, 17, 227–236. [Google Scholar] [CrossRef] [PubMed]
- De Mutsert, R.; Jager, K.J.; Zoccali, C.; Dekker, F.W. The effect of joint exposures: Examining the presence of interaction. Kidney Int. 2009, 75, 677–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruoff, G.; Edwards, N.L. Overview of Serum Uric Acid Treatment Targets in Gout: Why Less Than 6 mg/dL? Postgrad. Med. 2016, 7, 706–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwabara, M.; Hisatome, I.; Niwa, K.; Bjornstad, P.; Roncal-Jimenez, C.A.; Andres-Hernando, A.; Kanbay, M.; Johnson, R.J.; Lanaspa, M.A. The Optimal Range of Serum Uric Acid for Cardiometabolic Diseases: A 5-Year Japanese Cohort Study. J. Clin. Med. 2020, 9, 942. [Google Scholar] [CrossRef] [Green Version]
- Maloberti, A.; Giannattasio, C.; Bombelli, M.; Desideri, G.; Cicero, A.F.G.; Muiesan, M.L.; Rosei, E.A.; Salvetti, M.; Ungar, A.; Rivasi, G.; et al. Hyperuricemia and Risk of Cardiovascular Outcomes: The Experience of the URRAH (Uric Acid Right for Heart Health) Project. High Blood Press. Cardiovasc. Prev. 2020, 27, 121–128. [Google Scholar] [CrossRef]
- Albisinni, S.; Pretot, D.; Al Hajj Obeid, W.; Aoun, F.; Quackels, T.; Peltier, A.; Roumeguere, T. The impact of neutrophil-to-lymphocyte, platelet-to-lymphocyte and haemoglobin-to-platelet ratio on localised renal cell carcinoma oncologic outcomes. Prog. Urol. 2019, 29, 423–431. [Google Scholar] [CrossRef]
- Liu, Y.L.; Lu, J.K.; Yin, H.P.; Xia, P.S.; Qiu, D.H.; Liang, M.Q.; Qu, J.F.; Chen, Y.K. High Neutrophil-to-Lymphocyte Ratio Predicts Hemorrhagic Transformation in Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Int. J. Hypertens. 2020, 2020, 5980261. [Google Scholar] [CrossRef] [Green Version]
- Olasinska-Wisniewska, A.; Perek, B.; Grygier, M.; Urbanowicz, T.; Misterski, M.; Puslecki, M.; Stefaniak, S.; Stelmark, K.; Lesiak, M.; Jemielity, M. Increased neutrophil-to-lymphocyte ratio is associated with higher incidence of acute kidney injury and worse survival after transcatheter aortic valve implantation. Cardiol. J. 2021, in press. [Google Scholar] [CrossRef]
Clinical Characteristics | no-CAD | CAD | AMI | p |
---|---|---|---|---|
Number | 806 | 1545 | 361 | - |
Age (years) | 65 ± 11 | 68 ± 10 | 66 ± 12 | <0.001 |
Males | 466 (58) | 1220 (79) | 274 (76) | <0.001 |
Hypertension | 437 (54) | 923 (60) | 188 (52) | <0.01 |
Type 2 Diabetes | 162 (20) | 515 (33) | 139 (38) | <0.001 |
Dyslipidemia | 416 (52) | 1224 (79) | 289 (80) | <0.001 |
Smoking habit (current or past) | 276 (32) | 717 (46) | 181 (50) | <0.001 |
Obesity (>30 kg/m2) | 221 (27) | 349 (23) | 75 (21) | <0.05 |
EF (%) | 53 ± 12 | 52 ± 11 | 46 ± 11 | <0.001 |
Multi-vessel disease | - | 876 (57) | 204 (87) | ns |
NLR | 2.6 ± 3.4 | 2.6 ± 2.6 | 5.3 ± 4.3 | <0.001 |
UA (mg/dL)) | 6 ± 1.7 | 6.1 ± 1.6 | 6.1 ± 1.5 | ns |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variable | Std-Coeff | t-Value | p | Std-Coeff | t-Value | p |
Age (years) | 0.08 | 4.0 | <0.001 | 0.09 | 4.7 | <0.001 |
Male gender | 0.18 | 9.4 | <0.001 | 0.18 | 9.3 | <0.001 |
Hypertension | 0.05 | 2.5 | <0.05 | 0.05 | 2.8 | <0.01 |
Type 2 Diabetes | 0.11 | 5.9 | <0.001 | 0.05 | 2.8 | <0.01 |
Dyslipidemia | −0.25 | −1.3 | ns | - | - | - |
Smoking habit (current or past) | 0.03 | 1.5 | ns | - | - | - |
BMI | 0.15 | 8.0 | <0.001 | 0.15 | 7.7 | <0.001 |
EF (%) | −0.24 | −13.0 | <0.001 | −0.21 | −11.1 | <0.001 |
Multi-vessel disease | 0.06 | 2.9 | <0.01 | −0.36 | −1.8 | ns |
NLR | 0.07 | 3.7 | <0.001 | 0.04 | 2 | <0.05 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Variable | Std-Coeff | t-Value | p | Std-Coeff | t-Value | p |
Age (years) | 0.11 | 5.5 | <0.001 | 0.07 | 3.3 | <0.01 |
Male gender | −0.002 | −0.11 | ns | - | - | - |
Hypertension | −0.05 | −2.49 | <0.05 | −0.03 | −1.7 | ns |
Type 2 Diabetes | 0.1 | 5.0 | <0.001 | 0.08 | 4 | <0.001 |
Dyslipidemia | −0.6 | −2.9 | <0.01 | −0.05 | −2.6 | <0.01 |
Smoking habit (current or past) | −0.01 | −0.4 | ns | - | - | - |
BMI | −0.1 | −5.3 | <0.001 | −0.1 | −5.2 | <0.001 |
EF (%) | −0.14 | −7.4 | <0.001 | −0.08 | −4.2 | <0.001 |
Multi-vessel disease | 0.08 | 4.2 | <0.001 | 0.04 | 2.1 | <0.05 |
UA (mg/dL)) | 0.07 | 3.7 | <0.001 | 0.04 | 2.1 | <0.05 |
Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
Cardiac Death | ||||
Age (>68 years, 50th percentile) | 4.5 (2.7–7.5) | <0.001 | 3.5 (2.1–5.8) | <0.001 |
Male gender | 1.0 (0.7–1.6) | ns | - | - |
Hypertension | 0.8 (0.6–1.2) | ns | - | - |
Type 2 Diabetes | 1.9 (1.3–2.8) | <0.01 | 1.6 (1.1–2.4) | <0.05 |
Dyslipidemia | 0.4 (0.3–0.6) | <0.001 | 0.5 (0.3–0.7) | <0.001 |
Smoking habit | 1.1 (0.8–1.7) | ns | - | - |
Obesity (>30 kg/m2) | 0.3 (0.2–0.6) | <0.01 | 0.3 (0.2–0.7) | <0.01 |
EF (<50%) | 3.6 (2.4–5.4) | <0.001 | 2.6 (1.7–3.9) | <0.001 |
CAD | 1.9 (1.1–3.1) | <0.05 | 1.7 (1.0–2.9) | <0.05 |
NLR (>3.2, 75th percentile) | 2.9 (2.0–4.4) | <0.001 | 1.8 (1.2–2.7) | <0.01 |
UA (>6 mg/dL in females, >7 mg/dL in males) | 1.7 (1.2–2.6) | <0.01 | 1.2 (0.9–1.9) | ns |
HE | ||||
Age (>68 years, 50th percentile) | 2.7 (2.0–3.7) | <0.001 | 2.3 (1.7–3.2) | <0.001 |
Male gender | 1.2 (0.9–1.7) | ns | - | - |
Hypertension | 1.0 (0.8–1.3) | ns | - | - |
Type 2 Diabetes | 1.4 (1.0–1.8) | <0.05 | 1.2 (0.9–1.5) | ns |
Dyslipidemia | 0.6 (0.5–0.8) | <0.001 | 0.7 (0.5–0.9) | <0.01 |
Smoking habit | 1.1 (0.9–1.5) | ns | - | - |
Obesity (>30 kg/m2) | 0.5 (0.4–0.8) | <0.01 | 0.6 (0.4–0.9) | <0.01 |
EF (<50%) | <0.001 | ns | 2.1 (1.6–2.8) | <0.001 |
CAD | 2.1 (1.4–2.9) | <0.001 | 1.9 (1.3–2.7) | <0.01 |
NLR (>3.2, 75th percentile) | 2.5 (1.9–3.2) | <0.001 | 1.8 (1.4–2.4) | <0.001 |
UA (>6 mg/dL in females, >7 mg/dL in males) | 1.1 (0.9–1.) | ns | - | - |
Parameter | Unadjusted HR (95% CI) p | Estimate Value (95% CI) | Adjusted HR * (95% CI) p | Estimate Value * (95% CI) |
---|---|---|---|---|
low UA low NLR | Reference | Reference | ||
high UA low NLR | 1.6 (0.9–2.8) <0.1 | 1.4 (0.8–2.4) ns | ||
low UA high NLR | 2.8 (1.7–4.7) <0.001 | 2.3 (1.3–3.8) <0.01 | ||
high UA high NLR | 4.7 (2.7–8.2) <0.001 | 3.3 (1.9–5.8) <0.001 | ||
Additive Interaction | ||||
RERI | 1.4 (−1.0–3.7) | 0.7 (−1.1–2.4) | ||
AP | 0.3 (−0.1–0.7) | 0.2 (−0.3–0.7) | ||
SI | 1.6 (0.3–2.8) | 1.4 (0.1–2.7) | ||
Multiplicative Interaction | ||||
ratio of HRs | 1.1 (0.5–2.4) | 1.1 (0.4–2.3) |
Parameter | Unadjusted HR (95% CI) p | Estimate Value (95% CI) | Adjusted HR * (95% CI) p | Estimate Value * (95% CI) |
---|---|---|---|---|
low UA low NLR | Reference | Reference | ||
high UA low NLR | 0.9 (0.6–1.3) ns | 0.8 (0.5–1.2) ns | ||
low UA high NLR | 2.1 (1.5–2.9) <0.001 | 1.8 (1.3–2.6) ≤0.001 | ||
high UA high NLR | 2.9 (2.0–4.2) <0.001 | 2.3 (1.6–3.4) <0.001 | ||
Additive Interaction | ||||
RERI | 0.9 (−0.2–2.1) | 0.7 (−0.2–1.6) | ||
AP | 0.3 (0.01–0.6) | 0.3 (−0.04–0.6) | ||
SI | 2.0 (0.2–3.7) | 2.1 (−0.4–4.7) | ||
Multiplicative Interaction | ||||
ratio of HRs | 1.6 (0.9–2.8) | 1.6 (0.9–2.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Turco, S.; Bastiani, L.; Minichilli, F.; Landi, P.; Basta, G.; Pingitore, A.; Vassalle, C. Interaction of Uric Acid and Neutrophil-to-Lymphocyte Ratio for Cardiometabolic Risk Stratification and Prognosis in Coronary Artery Disease Patients. Antioxidants 2022, 11, 2163. https://doi.org/10.3390/antiox11112163
Del Turco S, Bastiani L, Minichilli F, Landi P, Basta G, Pingitore A, Vassalle C. Interaction of Uric Acid and Neutrophil-to-Lymphocyte Ratio for Cardiometabolic Risk Stratification and Prognosis in Coronary Artery Disease Patients. Antioxidants. 2022; 11(11):2163. https://doi.org/10.3390/antiox11112163
Chicago/Turabian StyleDel Turco, Serena, Luca Bastiani, Fabrizio Minichilli, Patrizia Landi, Giuseppina Basta, Alessandro Pingitore, and Cristina Vassalle. 2022. "Interaction of Uric Acid and Neutrophil-to-Lymphocyte Ratio for Cardiometabolic Risk Stratification and Prognosis in Coronary Artery Disease Patients" Antioxidants 11, no. 11: 2163. https://doi.org/10.3390/antiox11112163
APA StyleDel Turco, S., Bastiani, L., Minichilli, F., Landi, P., Basta, G., Pingitore, A., & Vassalle, C. (2022). Interaction of Uric Acid and Neutrophil-to-Lymphocyte Ratio for Cardiometabolic Risk Stratification and Prognosis in Coronary Artery Disease Patients. Antioxidants, 11(11), 2163. https://doi.org/10.3390/antiox11112163