Association between MnSOD Activity and Cognitive Impairment in Unmedicated First-Episode Schizophrenia: Regulated by MnSOD Ala-9Val Gene Polymorphism
Abstract
:1. Introduction
2. Material and Methods
2.1. Subjects
2.2. Clinical Symptom and Cognitive Function Measurements
2.3. Evaluation of MnSOD Activity
2.4. Genotyping
2.5. Statistical Analysis
3. Results
3.1. Genotype Effects on Performance of Cognition between Patients and HC
3.2. Effect of Ala-9Val Polymorphism on MnSOD Activity between Patients and Healthy Participants
3.3. MnSOD Activity and Performance of Cognition: Associations with MnSOD Ala-9Val Polymorphism
4. Discussion
4.1. Effects of Val-9Ala Polymorphism on the Susceptibility of SZ
4.2. MnSOD Ala-9Val Polymorphism on Cognitive Function in Participants with SZ
4.3. Increased MnSOD Level and Dysfunction of Cognition: Relationship to MnSOD Val-9Ala Genotype
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reichenberg, A.; Velthorst, E.; Davidson, M. Cognitive impairment and psychosis in schizophrenia: Independent or linked conditions? World Psychiatry 2019, 18, 162–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gold, J.M.; Robinson, B.; Leonard, C.J.; Hahn, B.; Chen, S.; McMahon, R.P.; Luck, S.J. Selective Attention, Working Memory, and Executive Function as Potential Independent Sources of Cognitive Dysfunction in Schizophrenia. Schizophr. Bull. 2018, 44, 1227–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fett, A.K.; Viechtbauer, W.; Dominguez, M.D.; Penn, D.L.; van Os, J.; Krabbendam, L. The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: A meta-analysis. Neurosci. Biobehav. Rev. 2011, 35, 573–588. [Google Scholar] [CrossRef] [Green Version]
- Pelletier-Baldelli, A.; Holt, D.J. Are Negative Symptoms Merely the "Real World" Consequences of Deficits in Social Cognition? Schizophr. Bull. 2020, 46, 236–241. [Google Scholar] [CrossRef]
- Haddad, P.M.; Correll, C.U. The acute efficacy of antipsychotics in schizophrenia: A review of recent meta-analyses. Ther. Adv. Psychopharmacol. 2018, 8, 303–318. [Google Scholar] [CrossRef] [Green Version]
- Rahal, A.; Kumar, A.; Singh, V.; Yadav, B.; Tiwari, R.; Chakraborty, S.; Dhama, K. Oxidative stress, prooxidants, and antioxidants: The interplay. BioMed Res. Int. 2014, 2014, 761264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salim, S. Oxidative stress and psychological disorders. Curr. Neuropharmacol. 2014, 12, 140–147. [Google Scholar] [CrossRef] [Green Version]
- García, S.; Alberich, S.; Martínez-Cengotitabengoa, M.; Arango, C.; Castro-Fornieles, J.; Parellada, M.; Baeza, I.; Moreno, C.; Mico, J.A.; Berrocoso, E.; et al. The complex association between the antioxidant defense system and clinical status in early psychosis. PLoS ONE 2018, 13, e0194685. [Google Scholar] [CrossRef]
- Lin, C.H.; Lane, H.Y. Early Identification and Intervention of Schizophrenia: Insight From Hypotheses of Glutamate Dysfunction and Oxidative Stress. Front. Psychiatry 2019, 10, 93. [Google Scholar] [CrossRef]
- Hardingham, G.E.; Lipton, S.A. Regulation of neuronal oxidative and nitrosative stress by endogenous protective pathways and disease processes. Antioxid. Redox Signal. 2011, 14, 1421–1424. [Google Scholar] [CrossRef]
- Sakamoto, T.; Imai, H. Hydrogen peroxide produced by superoxide dismutase SOD-2 activates sperm in Caenorhabditis elegans. J. Biol. Chem. 2017, 292, 14804–14813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crawford, A.; Fassett, R.G.; Geraghty, D.P.; Kunde, D.A.; Ball, M.J.; Robertson, I.K.; Coomes, J.S. Relationships between single nucleotide polymorphisms of antioxidant enzymes and disease. Gene 2012, 501, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.K.; St Clair, D.K. Manganese superoxide dismutase regulation and cancer. Free Radic. Biol. Med. 2012, 52, 2209–2222. [Google Scholar] [CrossRef]
- Dhar, S.K.; Scott, T.; Wang, C.; Fan, T.W.M.; St Clair, D.K. Mitochondrial superoxide targets energy metabolism to modulate epigenetic regulation of NRF2-mediated transcription. Free Radic. Biol. Med. 2022, 179, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.F.; Cao, B.; Xu, M.Y.; Liu, Y.Q.; Yan, L.L.; Liu, R.; Wang, J.Y.; Lu, Q.B. Meta-Analyses of Manganese Superoxide Dismutase Activity, Gene Ala-9Val Polymorphism, and the Risk of Schizophrenia. Medicine 2015, 94, e1507. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Chen, D.C.; Xiu, M.H.; Tan, Y.L.; Yang, F.D.; Zhang, L.Y.; Zhang, L.Y.; Haile, C.N.; Kosten, T.R. Clinical symptoms and cognitive impairment associated with male schizophrenia relate to plasma manganese superoxide dismutase activity: A case-control study. J. Psychiatr. Res. 2013, 47, 1049–1053. [Google Scholar] [CrossRef] [PubMed]
- Lang, X.; Wang, D.M.; Du, X.D.; Jia, Q.F.; Chen, D.C.; Xiu, M.; Wang, L.; Zhang, X. Elevated activity of plasma superoxide dismutase in never-treated first-episode schizophrenia patients: Associated with depressive symptoms. Schizophr. Res. 2020, 222, 291–296. [Google Scholar] [CrossRef]
- Michel, T.M.; Thome, J.; Martin, D.; Nara, K.; Zwerina, S.; Tatschner, T.; Weijers, H.G.; Koutsilieri, E. Cu, Zn- and Mn-superoxide dismutase levels in brains of patients with schizophrenic psychosis. J. Neural Transm. 2004, 111, 1191–1201. [Google Scholar] [CrossRef]
- Lerer, B.; Segman, R.H.; Hamdan, A.; Kanyas, K.; Karni, O.; Kohn, Y.; Korner, M.; Lanktree, M.; Kaadan, M.; Turetsky, N.; et al. Genome scan of Arab Israeli families maps a schizophrenia susceptibility gene to chromosome 6q23 and supports a locus at chromosome 10q24. Mol. Psychiatry 2003, 8, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.S.; Devalaraja, M.N.; St Clair, D.K. Molecular structure and organization of the human manganese superoxide dismutase gene. DNA Cell Biol. 1994, 13, 1127–1136. [Google Scholar] [CrossRef]
- Pourvali, K.; Abbasi, M.; Mottaghi, A. Role of Superoxide Dismutase 2 Gene Ala16Val Polymorphism and Total Antioxidant Capacity in Diabetes and its Complications. Avicenna J. Med. Biotechnol. 2016, 8, 48–56. [Google Scholar] [PubMed]
- Bresciani, G.; Cruz, I.B.; de Paz, J.A.; Cuevas, M.J.; González-Gallego, J. The MnSOD Ala16Val SNP: Relevance to human diseases and interaction with environmental factors. Free. Radic. Res. 2013, 47, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Chen, D.C.; Xiu, M.H.; Yang, F.D.; Tan, Y.; Luo, X.; Zuo, L.; Kosten, T.A.; Kosten, T.R. Cognitive function, plasma MnSOD activity, and MnSOD Ala-9Val polymorphism in patients with schizophrenia and normal controls. Schizophr. Bull. 2014, 40, 592–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akyol, O.; Yanik, M.; Elyas, H.; Namli, M.; Canatan, H.; Akin, H.; Yuce, H.; Yilmaz, H.R.; Tutkun, H.; Sogut, S.; et al. Association between Ala-9Val polymorphism of Mn-SOD gene and schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2005, 29, 123–131. [Google Scholar] [CrossRef]
- Gałecki, P.; Pietras, T.; Szemraj, J.; Florkowska, K.; Florkowski, A.; Zboralski, K. unctional polymorphism of manganese superoxide dismutase (MnSOD) gene correlates with schizophrenia in Polish population. Pol. Merkur. Lek. Organ Pol. Tow. Lek. 2006, 20, 329–332. [Google Scholar]
- Ventriglia, M.; Scassellati, C.; Bonvicini, C.; Squitti, R.; Bevacqua, M.G.; Foresti, G.; Tura, G.B.; Genarelli, M. No association between Ala9Val functional polymorphism of MnSOD gene and schizophrenia in a representative Italian sample. Neurosci. Lett. 2006, 410, 208–211. [Google Scholar] [CrossRef]
- Pae, C.U.; Kim, T.S.; Patkar, A.A.; Kim, J.J.; Lee, C.U.; Lee, S.J.; Jun, T.Y.; Lee, C.; Paik, I.H. Manganese superoxide dismutase (MnSOD: Ala-9Val) gene polymorphism may not be associated with schizophrenia and tardive dyskinesia. Psychiatry Res. 2007, 153, 77–81. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E. Effect of High-Fat Diets on Oxidative Stress, Cellular Inflammatory Response and Cognitive Function. Nutrients 2019, 11, 2579. [Google Scholar] [CrossRef] [Green Version]
- Mecocci, P.; Boccardi, V.; Cecchetti, R.; Bastiani, P.; Scamosci, M.; Ruggiero, C.; Baroni, M. A Long Journey into Aging, Brain Aging, and Alzheimer’s Disease Following the Oxidative Stress Tracks. J. Alzheimer’s Dis. JAD 2018, 62, 1319–1335. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443, 787–795. [Google Scholar] [CrossRef]
- Trist, B.G.; Hare, D.J.; Double, K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell 2019, 18, e13031. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wei, X.; Yang, X.; Huang, Z.; Chang, Z.; Xie, F.; Yang, Q.; Ding, C.; Xiang, W.; Yang, H.; et al. Plasma Lipoprotein-associated Phospholipase A2 and Superoxide Dismutase are Independent Predicators of Cognitive Impairment in Cerebral Small Vessel Disease Patients: Diagnosis and Assessment. Aging Dis. 2019, 10, 834–846. [Google Scholar] [CrossRef] [Green Version]
- Massaad, C.A.; Washington, T.M.; Pautler, R.G.; Klann, E. Overexpression of SOD-2 reduces hippocampal superoxide and prevents memory deficits in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2009, 106, 13576–13581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.L.; Li, X.H.; Dun, X.P.; Jing, X.K.; Yang, K.; Li, Y.K. Grape Seed Proanthocyanidin Extract Ameliorates Streptozotocin-induced Cognitive and Synaptic Plasticity Deficits by Inhibiting Oxidative Stress and Preserving AKT and ERK Activities. Curr. Med. Sci. 2020, 40, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Liencres, C.; Tas, C.; Brown, E.C.; Erdin, S.; Onur, E.; Cubukcoglu, Z.; Aydemir, O.; Esen-Danaci, A.; Brune, M. Oxidative stress in schizophrenia: A case-control study on the effects on social cognition and neurocognition. BMC Psychiatry 2014, 14, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Cengotitabengoa, M.; Mac-Dowell, K.S.; Leza, J.C.; Mico, J.A.; Fernandez, M.; Echevarria, E.; Sanjuan, J.; Elorza, J.; Gonzalez-Pinto, A. Cognitive impairment is related to oxidative stress and chemokine levels in first psychotic episodes. Schizophr. Res. 2012, 137, 66–72. [Google Scholar] [CrossRef]
- Wu, J.Q.; Chen, D.C.; Tan, Y.L.; Tan, S.P.; Wang, Z.R.; Xiu, M.H.; Yang, F.D.; Zhang, X.Y. Cognition impairment in schizophrenia patients with tardive dyskinesia: Association with plasma superoxide dismutase activity. Schizophr. Res. 2014, 152, 210–216. [Google Scholar] [CrossRef]
- Wei, C.; Sun, Y.; Chen, N.; Chen, S.; Xiu, M.; Zhang, X. Interaction of oxidative stress and BDNF on executive dysfunction in patients with chronic schizophrenia. Psychoneuroendocrinology 2020, 111, 104473. [Google Scholar] [CrossRef]
- Paiatto, L.N.; Silva, F.G.D.; Yamada, A.T.; Tamashiro, W.; Simioni, P.U. Adoptive transfer of dendritic cells expressing CD11c reduces the immunological response associated with experimental colitis in BALB/c mice. PLoS ONE 2018, 13, e0196994. [Google Scholar] [CrossRef] [Green Version]
- Chien, Y.L.; Hwu, H.G.; Hwang, T.J.; Hsieh, M.H.; Liu, C.C.; Lin-Shiau, S.Y.; Lin, C.M. Clinical implications of oxidative stress in schizophrenia: Acute relapse and chronic stable phase. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 99, 109868. [Google Scholar] [CrossRef]
- Talarowska, M.; Orzechowska, A.; Szemraj, J.; Su, K.P.; Maes, M.; Gałecki, P. Manganese superoxide dismutase gene expression and cognitive functions in recurrent depressive disorder. Neuropsychobiology 2014, 70, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Buckley, P.E.; Evans, D. First-episode schizophrenia. A window of opportunity for optimizing care and outcomes. Postgrad. Med. 2006, spec, 5–19. [Google Scholar]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987, 13. [Google Scholar] [CrossRef] [PubMed]
- Randolph, C.; Tierney, M.C.; Mohr, E.; Chase, T.N. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary clinical validity. J. Clin. Exp. Neuropsychol. 1998, 20, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.-H.; Tan, Y.-L.; Zhang, W.-F.; Wang, Z.-R.; Yang, G.-G.; Shi, C.; Zhang, X.-Y.; Zhou, D.-F. Repeatable battery for the assessment of neuropsychological status as a screening test in Chinese: Reliability and validity. Chin. Ment. Health J. 2008, 12, 865–869. [Google Scholar]
- Wu, J.Q.; Chen, D.C.; Tan, Y.L.; Tan, S.; Wang, Z.; Yang, F.; Soares, J.C.; Zhang, X.Y. Association of altered CuZn superoxide dismutase and cognitive impairment in schizophrenia patients with tardive dyskinesia. J. Psychiatr. Res. 2014, 58, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, X.Y.; Wang, H.; Tang, W.; Xia, Y.; Zhang, F.; Liu, J.; Fu, Y.; Chen, Y.; Liu, L.; et al. Elevated plasma superoxide dismutase in first-episode and drug naive patients with schizophrenia: Inverse association with positive symptoms. Prog. Neuropsychopharmacol Biol. Psychiatry 2012, 36, 34–38. [Google Scholar] [CrossRef]
- Oyanagui, Y. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal. Biochem. 1984, 142, 290–296. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Rao, W.-W.; Yu, Q.; Yu, Y.; Kou, C.; Tan, Y.-L.; Chen, D.-C.; Zuo, L.; Luo, X.; Soares, J.C. Association of the manganese superoxide dismutase gene Ala–9Val polymorphism with age of smoking initiation in male schizophrenia smokers. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2016, 171, 243–249. [Google Scholar] [CrossRef]
- Hori, H.; Ohmori, O.; Shinkai, T.; Kojima, H.; Okano, C.; Suzuki, T.; Nakamura, J. Manganese superoxide dismutase gene polymorphism and schizophrenia: Relation to tardive dyskinesia. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2000, 23, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, X.; Hou, G.; Sha, W.; Reynolds, G.P. The increased activity of plasma manganese superoxide dismutase in tardive dyskinesia is unrelated to the Ala-9Val polymorphism. J. Psychiatr. Res. 2002, 36, 317–324. [Google Scholar] [CrossRef]
- Hitzeroth, A.; Niehaus, D.J.; Koen, L.; Botes, W.C.; Deleuze, J.F.; Warnich, L. Association between the MnSOD Ala-9Val polymorphism and development of schizophrenia and abnormal involuntary movements in the Xhosa population. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Man, L.; Lv, X.; Du, X.D.; Yin, G.; Zhu, X.; Zhang, Y.; Soares, J.C.; Yang, X.N.; Chen, X.; Zhang, X.Y. Cognitive impairments and low BDNF serum levels in first-episode drug-naive patients with schizophrenia. Psychiatry Res. 2018, 263, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Xiu, M.H.; Wang, D.; Chen, S.; Du, X.D.; Chen, D.C.; Chen, N.; Wang, Y.C.; Yin, G.; Zhang, Y.; Tan, Y.L.; et al. Interleukin-3, symptoms and cognitive deficits in first-episode drug-naive and chronic medicated schizophrenia. Psychiatry Res. 2018, 263, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Du, X.; Yin, G.; Zhang, Y.; Chen, D.; Xiu, M.; Wang, C.; Zhang, R.; Cassidy, R.M.; Ning, Y.; et al. Prevalence and Clinical Correlates of and Cognitive Function at the Time of Suicide Attempts in First-Episode and Drug-Naive Patients With Schizophrenia. J. Clin. Psychiatry 2018, 79. [Google Scholar] [CrossRef]
- Piotrowski, P.; Kotowicz, K.; Rymaszewska, J.; Beszlej, J.A.; Plichta, P.; Samochowiec, J.; Kalinowska, S.; Trzesniowska-Drukala, B.; Misiak, B. Allostatic load index and its clinical correlates at various stages of psychosis. Schizophr. Res. 2019, 210, 73–80. [Google Scholar] [CrossRef]
- Reid, M.A.; Salibi, N.; White, D.M.; Gawne, T.J.; Denney, T.S.; Lahti, A.C. 7T Proton Magnetic Resonance Spectroscopy of the Anterior Cingulate Cortex in First-Episode Schizophrenia. Schizophr. Bull. 2019, 45, 180–189. [Google Scholar]
- Lindenberger, U.; Nagel, I.E.; Chicherio, C.; Li, S.C.; Heekeren, H.R.; Bäckman, L. Age-related decline in brain resources modulates genetic effects on cognitive functioning. Front. Neurosci. 2008, 2, 234–244. [Google Scholar]
- Tucker-Drob, E.M.; Briley, D.A. Continuity of genetic and environmental influences on cognition across the life span: A meta-analysis of longitudinal twin and adoption studies. Psychol. Bull. 2014, 140, 949–979. [Google Scholar] [CrossRef] [Green Version]
- Papenberg, G.; Lindenberger, U.; Bäckman, L. Aging-related magnification of genetic effects on cognitive and brain integrity. Trends Cogn. Sci. 2015, 19, 506–514. [Google Scholar]
- Gamarra, D.; Elcoroaristizabal, X.; Fernández-Martínez, M.; de Pancorbo, M.M. Association of the C47T Polymorphism in SOD2 with Amnestic Mild Cognitive Impairment and Alzheimer’s Disease in Carriers of the APOEε4 Allele. Dis. Markers 2015, 2015, 746329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiu, M.H.; Li, Z.; Chen, D.C.; Chen, S.; Curbo, M.E.; Wu, H.E.; Tong, Y.S.; Tan, S.P.; Zhang, X.Y. Interrelationships Between BDNF, Superoxide Dismutase, and Cognitive Impairment in Drug-Naive First-Episode Patients With Schizophrenia. Schizophr. Bull. 2020, 46, 1498–1510. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Du, X.; Huang, X.; Qi, L.; Jia, Q.; Yin, G.; Xiao, C.; Huang, X.-F.; Ning, Y.; Cassidy, R.M. Obesity, altered oxidative stress, and clinical correlates in chronic schizophrenia patients. Transl. Psychiatry 2018, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vats, P.; Sagar, N.; Singh, T.P.; Banerjee, M. Association of Superoxide dismutases (SOD1 and SOD2) and Glutathione peroxidase 1 (GPx1) gene polymorphisms with type 2 diabetes mellitus. Free. Radic. Res. 2015, 49, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Chestkov, I.V.; Jestkova, E.M.; Ershova, E.S.; Golimbet, V.G.; Lezheiko, T.V.; Kolesina, N.Y.; Dolgikh, O.A.; Izhevskaya, V.L.; Kostyuk, G.P.; Kutsev, S.I.; et al. ROS-Induced DNA Damage Associates with Abundance of Mitochondrial DNA in White Blood Cells of the Untreated Schizophrenic Patients. Oxidative Med. Cell. Longev. 2018, 2018, 8587475. [Google Scholar]
- Li, X.; Shen, M.; Cai, H.; Liu, K.; Liu, Y.; Huang, Z.; Liang, C.; Deng, X.; Ye, J.; Zou, Q.; et al. Association between manganese superoxide dismutase (MnSOD) polymorphism and prostate cancer susceptibility: A meta-analysis. Int. J. Biol. Markers 2016, 31, e422–e430. [Google Scholar]
- Martinez-Cengotitabengoa, M.; Mico, J.A.; Arango, C.; Castro-Fornieles, J.; Graell, M.; Paya, B.; Leza, J.C.; Zorrilla, I.; Parellada, M.; Lopez, M.P.; et al. Basal low antioxidant capacity correlates with cognitive deficits in early onset psychosis. A 2-year follow-up study. Schizophr. Res. 2014, 156, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Costantini, D.; Verhulst, S. Does high antioxidant capacity indicate low oxidative stress? Funct. Ecol. 2009, 23, 506–509. [Google Scholar] [CrossRef]
- Gianni, P.; Jan, K.J.; Douglas, M.J.; Stuart, P.M.; Tarnopolsky, M.A. Oxidative stress and the mitochondrial theory of aging in human skeletal muscle. Exp. Gerontol. 2004, 39, 1391–1400. [Google Scholar]
- Leonard, B.; Maes, M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci. Biobehav. Rev. 2012, 36, 764–785. [Google Scholar] [CrossRef]
- Maes, M. Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; Nelson, T.J.; Alkon, D.L.; Hongpaisan, J. Loss in PKC Epsilon Causes Downregulation of MnSOD and BDNF Expression in Neurons of Alzheimer’s Disease Hippocampus. J. Alzheimer’s Dis. JAD 2018, 63, 1173–1189. [Google Scholar] [CrossRef] [PubMed]
- Knapp, L.T.; Klann, E. Role of reactive oxygen species in hippocampal long-term potentiation: Contributory or inhibitory? J. Neurosci. Res. 2002, 70, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Thiels, E.; Urban, N.N.; Gonzalez-Burgos, G.R.; Kanterewicz, B.I.; Barrionuevo, G.; Chu, C.T.; Oury, T.D.; Klann, E. Impairment of long-term potentiation and associative memory in mice that overexpress extracellular superoxide dismutase. J. Neurosci. Off. J. Soc. Neurosci. 2000, 20, 7631–7639. [Google Scholar] [CrossRef] [Green Version]
- Kishida, K.T.; Klann, E. Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid Redox Signal 2007, 9, 233–244. [Google Scholar] [CrossRef]
- Kowalski, M.; Bielecka-Kowalska, A.; Oszajca, K.; Eusebio, M.; Jaworski, P.; Bartkowiak, J.; Szemraj, J. Manganese superoxide dismutase (MnSOD) gene (Ala-9Val, Ile58Thr) polymorphism in patients with age-related macular degeneration (AMD). Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2010, 16, Cr190–Cr196. [Google Scholar]
Schizophrenia (n = 234) | Healthy Controls (n = 232) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Total | Ala/Ala +Ala/Val (n = 63) | Val/Val (n = 171) | χ2 or F | p | Total | Ala/Ala +Ala/Val (n = 58) | Val/Val (n = 174) | χ2 or F | p |
Male (%) | 137 (58.5%) | 36 (57.1%) | 101 (59.4%) | 0.10 | 0.77 | 123 (53%) | 31 (53.4%) | 92 (52.9%) | 0.01 | 0.94 |
Age (years) | 27.1 ± 9.4 | 27.2 ± 9.0 | 27.1 ± 9.6 | 0.01 | 0.91 | 28.7 ± 11.0 | 28.5 ± 9.9 | 28.8 ± 11.3 | 0.04 | 0.85 |
Education (years) | 9.2 ± 3.9 | 10.2 ± 3.9 * | 8.9 ± 3.8 | 5.52 | 0.02 | 9.6 ± 3.1 | 10.0 ± 3.0 | 9.4 ± 3.2 | 1.21 | 0.27 |
BMI (kg/m2) | 21.4 ± 3.4 | 22.0 ± 3.4 | 21.2 ± 3.4 | 2.1 | 0.15 | 24.4 ± 3.8 | 24.4 ± 3.9 | 24.4 ± 3.7 | 0.01 | 0.96 |
Smokers (%) | 60 (25.6%) | 17 (28.8%) | 43 (25.7%) | 0.21 | 0.73 | 74 (31.9%) | 17 (29.8%) | 57 (33.1%) | 0.22 | 0.74 |
Age of onset (year) | 26.0 ± 9.5 | 26.2 ± 8.9 | 25.9 ± 9.7 | 0.05 | 0.82 | |||||
PANSS total score | 75.5 ± 16.7 | 74.9 ± 16.5 | 75.7 ± 16.8 | 0.11 | 0.74 | |||||
p subscore | 21.4 ± 6.3 | 21.6 ± 5.9 | 21.3 ± 6.4 | 0.11 | 0.74 | |||||
N subscore | 18.9 ± 7.0 | 18.4 ± 7.3 | 19.0 ± 6.9 | 0.37 | 0.55 | |||||
G subscore | 35.3 ± 9.6 | 34.9 ± 8.9 | 35.4 ± 9.8 | 0.12 | 0.73 |
Schizophrenia (n = 234) | Controls (n = 232) | F (p) Value | |
---|---|---|---|
Allele frequency (%) | 0.06 (0.81) | ||
Ala | 63 (13.5%) | 60 (12.9%) | |
Val | 405 (86.5%) | 404 (87.1%) | |
Genotype frequency (%) | 2.43 (0.30) | ||
Ala/Ala | 0 (0%) | 2 (0.9%) | |
Ala/Val | 63 (26.9%) | 56 (24.1%) | |
Val/Val | 171 (73.1%) | 174 (75%) |
Schizophrenia (n = 228) | Healthy Control (n = 228) | F case vs. control (p Value) | F genotype (p Value) | F interaction (p Value) | |||
---|---|---|---|---|---|---|---|
Cognitive Index | Ala/Ala + Ala/Val (n = 63) | Val/Val (n = 165) | Ala/Ala + Ala/Val (n = 58) | Val/Val (n = 170) | |||
Immediate memory | 66.2 ± 18.5 | 64.8 ± 16.0 | 74.8 ± 13.7 | 75.5 ± 17.7 | 29.7 (<0.001) | 0.05 (0.82) | 0.34 (0.56) |
Attention | 73.7 ± 22.3 | 74.7 ± 19.4 | 88.5 ± 19.1 | 87.6 ± 19.1 | 44.2 (<0.001) | 0.01 (0.98) | 0.21(0.65) |
Language | 76.5 ± 20.0 | 75.4 ± 18.1 | 92.6 ± 13.2 | 94.8 ± 11.9 | 112.8 (<0.001) | 0.08 (0.78) | 0.98(0.32) |
Visuospatial/constructional | 78.3 ± 18.9 | 77.0 ± 16.2 | 79.6 ± 14.4 | 78.6 ± 15.1 | 0.73 (0.39) | 0.49 (0.49) | 0.01 (0.95) |
Delayed memory | 70.5 ± 21.4 | 69.4 ± 19.6 | 83.0 ± 13.4 | 86.8 ± 14.2 | 66.0 (<0.001) | 0.53 (0.47) | 1.73 (0.19) |
Total | 67.6 ± 19.0 | 66.2 ± 14.8 | 78.6 ± 12.6 | 80.2 ± 14.2 | 61.5 (<0.001) | 0.01 (0.95) | 0.90 (0.34) |
MnSOD (U/mL) | 29.2 ± 18.0 | 22.5 ± 13.8 | 19.8 ± 11.2 | 22.7 ± 14.1 | 8.51 (<0.01) | 1.44 (0.23) | 9.15 (<0.01) |
Ala Carriers (n = 58) | Val Homozygotes (n = 151) | |||
---|---|---|---|---|
Cognitive Domains | Pearson r | p | Pearson r | p |
Immediate memory | −0.23 | 0.08 | −0.11 | 0.18 |
Attention | −0.20 | 0.14 | −0.18 | 0.024 |
Language | −0.18 | 0.18 | −0.07 | 0.39 |
Visuospatial/Constructional | −0.18 | 0.17 | −0.17 | 0.038 |
Delayed memory | −0.11 | 0.42 | −0.04 | 0.59 |
Total | −0.24 | 0.08 | −0.16 | 0.046 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.M.; Zhu, R.R.; Tian, Y.; Uludag, K.; Chen, J.J.; Zhou, H.X.; Wang, L.; Kosten, T.R.; Zhang, X.Y. Association between MnSOD Activity and Cognitive Impairment in Unmedicated First-Episode Schizophrenia: Regulated by MnSOD Ala-9Val Gene Polymorphism. Antioxidants 2022, 11, 1981. https://doi.org/10.3390/antiox11101981
Wang DM, Zhu RR, Tian Y, Uludag K, Chen JJ, Zhou HX, Wang L, Kosten TR, Zhang XY. Association between MnSOD Activity and Cognitive Impairment in Unmedicated First-Episode Schizophrenia: Regulated by MnSOD Ala-9Val Gene Polymorphism. Antioxidants. 2022; 11(10):1981. https://doi.org/10.3390/antiox11101981
Chicago/Turabian StyleWang, Dong Mei, Rong Rong Zhu, Yang Tian, Kadir Uludag, Jia Jing Chen, Hui Xia Zhou, Li Wang, Thomas R. Kosten, and Xiang Yang Zhang. 2022. "Association between MnSOD Activity and Cognitive Impairment in Unmedicated First-Episode Schizophrenia: Regulated by MnSOD Ala-9Val Gene Polymorphism" Antioxidants 11, no. 10: 1981. https://doi.org/10.3390/antiox11101981
APA StyleWang, D. M., Zhu, R. R., Tian, Y., Uludag, K., Chen, J. J., Zhou, H. X., Wang, L., Kosten, T. R., & Zhang, X. Y. (2022). Association between MnSOD Activity and Cognitive Impairment in Unmedicated First-Episode Schizophrenia: Regulated by MnSOD Ala-9Val Gene Polymorphism. Antioxidants, 11(10), 1981. https://doi.org/10.3390/antiox11101981